
DIVISIBILITY OF FIBONOMIALS AND LUCASNOMIALS

VIA A GENERAL KUMMER RULE

CHRISTIAN BALLOT

Abstract. Marques et al. have recently studied some specific Fibonomial divisibility ques-
tions. For instance, they determined all integers n ≥ 1 such that the Fibonomial

(

3n

n

)

F
is

divisible by 3. We reexamine those questions with the Kummer-like rule established by Knuth
and Wilf for Fibonomials. After stating a Kummer result valid for all primes and Lucasnomi-
als, i.e., generalized binomials

(

∗

∗

)

U
with U a fundamental Lucas sequence, we obtain broad

divisibility theorems for Lucasnomials along the line of Marques et al. original questions.

1. Introduction

In the papers [5, 6], one finds three divisibility theorems and a conjecture concerning Fi-
bonomial coefficients. We state them below.

Theorem 1.1. Given an integer n ≥ 1, we have

3 divides

(

3n

n

)

F

⇐⇒ n ≥ 3 and n 6= 2 · 3r, (r ≥ 1).

Theorem 1.2. Let s be a positive integer. Then

3 divides

(

sn

n

)

F

for all n ≥ 1 ⇐⇒ 12 divides s.

Theorem 1.3. Let p be a prime congruent to ±2 (mod 5). Then for all integers a ≥ 1

p divides

(

pa+1

pa

)

F

.

Conjecture 1.4. Let p be a prime congruent to ±1 (mod 5). Then for all integers a ≥ 1

p does not divide

(

pa+1

pa

)

F

.

Corresponding results for ordinary binomials are easy to establish and rather plain in com-
parison. Indeed, we have the following propositions.

Proposition 1.5. Given a prime p, we have

p divides

(

pn

n

)

for all integers n ≥ 1.

Proposition 1.6. Let s be a positive integer and p be a prime. Then

p divides

(

sn

n

)

for all integers n ≥ 1 ⇐⇒ p divides s.
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If (Xn)n≥0 is a sequence of integers, where X0 = 0 and Xn 6= 0 for n ≥ 1, we define for all
nonnegative integers m and n the generalized binomials with respect to X as

(

m

n

)

X

=











XmXm−1···Xm−n+1

XnXn−1···X1
, m ≥ n ≥ 1;

1, n = 0;

0, otherwise.

Fibonomials are generalized binomials with respect to the Fibonacci sequence X = F .
They are known to be integers. The p-adic valuation of an integer m, denoted by νp(m), is
the largest exponent e such that pe divides m. The proofs of the three theorems given in [5]
and [6] consisted in comparing the 3-adic or the p-adic valuations of both the numerator and
the denominator of the Fibonomial coefficient at hand. If their difference is strictly positive
then the prime divides the coefficient. The ingredients were the well-known regularity with
which the powers of a prime enter the Fibonacci sequence, the Legendre p-adic valuation of a
factorial together with upper and lower estimates for this Legendre formula. They do not use
the generalizations of Kummer’s result on the p-adic valuation of binomials which would have
seemed natural in this context.

Kummer [4, p. 116], showed that the p-adic valuation of a binomial coefficient
(

m+n
n

)

is equal
to the number of carries that occur when one addsm and n in base-p notation. A generalization
of this classical result was established in [3] for certain sequences of positive integers which,
besides the sequence of natural numbers, include the Fibonacci sequence. Knuth and Wilf did
state their generalized Kummer result for the particular case of the Fibonacci sequence.

Theorem 1.7. Let m and n be two positive integers. Let p be a prime of rank ρ in the

Fibonacci sequence. If p is odd, then the p-adic valuation of the Fibonomial coefficient
(

m+n
n

)

F
is equal to the number of carries that occur to the left of the radix point when m/ρ and n/ρ
are added in base-p notation, plus νp(Fρ) if a carry occurs across the radix point. If p is 2,
then one counts the above carries and adds one in case there is a carry from the first to the

second digit to the left of the radix point.

If P and Q are any two integers, Q nonzero, then the fundamental Lucas sequence U =
U(P,Q) with parameters P and Q is defined by U0 = 0, U1 = 1 and, for all n ≥ 0, recursively
by Un+2 = PUn+1 − QUn. Any prime p, p - Q, possesses a rank of appearance ρ in U which
is the least positive t such that p divides Ut. The law of appearance for primes says that, for
p odd, ρ divides p − εp, where εp = (D | p), (− | −) denoting the Legendre character, and
D = P 2 − 4Q, while, for p = 2, ρ = 2, if 2 | D, and ρ = 3, if 2 - D. It is well-known that
p divides Un if and only if ρ divides n. If U2U3U4U6 6= 0, then the sequence U is said to be
nondegenerate. In that case, Un 6= 0 for all n > 0. We may then consider Lucasnomials, i.e.,
generalized binomials with respect to U . When (P,Q) = (2, 1), then Un = n for all n ≥ 0;
the corresponding Lucasnomials are the ordinary binomials. If (P,Q) = (1,−1), then U = F ,
the Fibonacci sequence and we get the oft-studied Fibonomial coefficients. To each U(P,Q) is
associated a companion Lucas sequence V which satisfies the same recursion as the U sequence,
but has initial values V0 = 2 and V1 = P . We recall that any fundamental Lucas sequence
U is a divisibility sequence, that is, m | n implies Um | Un. Lucasnomials with respect to a
nondegenerate U are well-known to be integers, and in some reasonable sense, it is true of
Lucasnomials with respect to a degenerate U as well [1, Appendix].

Although it is clear that the authors of the two papers [5] and [6] have opened a new vein
of investigations in raising these few divisibility questions, that is, there are many similar
questions that may be asked, we will stay on their tracks only broadening somewhat their
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questions. Thus, given a fundamental nondegenerate Lucas sequence U and a prime p, we are
interested in the three questions.

Question 1. What can be said of the set of integers n ≥ 1 such that p |
(

pn
n

)

U
?

Question 2. Can one find a simple necessary and sufficient condition on s ≥ 1 such that
p divides

(

sn
n

)

U
for all n ≥ 1?

Question 3. Given b > a ≥ 0, what is the p-adic valuation of
(

pb

pa

)

U
?

The paper contains six sections besides this introduction. In Sections 2 and 3 we stay with
the Fibonacci sequence. In Section 2 we use Theorem 1.7 to prove Conjecture 1.4 and reprove
Theorem 1.1. Indeed, the proof of Theorem 1.1 in [5] was divided into four propositions and
took four pages. Proposition 9, the last of these four propositions, only treated – for the sake
of brevity and illustration – one among forty-eight cases, thus leaving forty-seven cases to the
patience or the good faith of the readers. We present a fully explicit, short proof of Theorem
1.1 that makes the exceptional integers of the form 2 · 3r appear naturally. In Section 3 we
tackle Question 1 for p = 2, 5 and 7, before giving an upper estimate on the size of the set
of exceptional integers n for which p -

(

pn
n

)

F
. To go further we establish in Section 4, after

Knuth and Wilf, a Kummer-like theorem that applies to all nondegenerate fundamental Lucas
sequences and all primes p. In Sections 5, 6, and 7, we put to use the Kummerian tool of
Section 4 to respectively make progress on Question 1 and fully answer Questions 2 and 3.

Notation. Note that when adding two nonnegative rational numbers x and y in base p a
carry occurs across the radix point if and only if the sum of the fractional parts of x and y is
at least 1, i.e., if and only if {x} + {y} ≥ 1. In such an addition (or a subtraction), because
of Theorem 1.7, we will say that a carry is relevant if and only if it occurs either across, or to
the left of the radix point. We define the boolean function cp(x, y), or c(x, y), to be 1 if and
only if there is at least one relevant carry in the addition of x and y in base p.

2. Fibonomial Divisibility with the Rescue of Theorem 1.7

We begin by mutating Conjecture 1.4 into a theorem.

Theorem 2.1. Let p be a prime congruent to ±1 (mod 5). Then for all integers a ≥ 1

p does not divide

(

pa+1

pa

)

F

.

Proof. By Theorem 1.7, p does not divide
(

pa+1

pa

)

F
if and only if cp(p

a/ρ, σpa) = 0, where

σ = (p− 1)/ρ. Since 1 ≤ σ < p, the base-p expansion of the integer σpa has leading digit σ at
the (a+ 1)st position to the left of the radix point followed by only 0’s. The rational number
pa/ρ, less than pa, has all its p-ary digits to the right of this (a + 1)st position. Thus, there
are no carries in the addition of pa/ρ to σpa in base p and therefore no relevant ones. �

Lemma 2.2. Let p be a prime and ` ≥ 1 an integer. The addition of ` and (p− 1)` in base p
produces at least one carry.

Proof. We have
(

p `
`

)

= p ×
(

p `−1
`−1

)

. Since p divides the binomial
(

p `
`

)

, there is a carry in our
addition by Kummer’s Theorem. However, one can also give a direct proof. If d is the least
significant nonzero digit of ` expressed in base p, then p − d is the least significant nonzero
digit of (p− 1)` and occupies the same position. Thus, there is a carry in the addition. �

We now give a proof of Theorem 1.1 based on Knuth and Wilf’s Kummer-like result.
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Proof. The rank of p = 3 in the Fibonacci sequence is 4. Put x = n/4 and y = 2n/4. By

Theorem 1.7, 3 |
(3n
n

)

F
if and only if c(x, y) = 1. If 4 | n, then x and y are integers and

c(x, y) = c(x, 2x) = 1 by Lemma 2.2. If n = 3 + 4k, then 2n = 2 + 4(2k + 1). The sum of the
fractional parts of x and y exceeds 1, so there is a carry across the radix point. If n = 1+ 4k,
then 2n = 2+8k. Thus, c(x, y) = c(k, 2k) = 1, by Lemma 2.2, unless k = 0 and n = 1. If n =
2+4k, then 2n = 4(2k+1). Hence, c(x, y) = c(k, 2k+1). We organize the discussion according
to the value of k (mod 3). If 3 | k, then c(k, 2k+1) = c(k, 2k) = 1, unless k = 0 and n = 2. If
k = 2+3k1, then 2k+1 = 2+3(2k1+1). The least significant digits in k and 2k+1 being both
2, there is a carry. Finally if k = 1 + 3k1 we find that c(x, y) = c(k, 2k + 1) = c(k1, 2k1 + 1).
Thus, reiterating our reasoning, we see that c(x, y) = 0 if and only if there is an r ≥ 0 and an
rth integer kr = 1 with k = 1+ 3(1 + 3(1 + · · ·+ 3(1 + 3kr)) · · · ) = 1+ 3+ 9+ · · ·+ 3r, i.e., if
and only if n = 2 + 4k = 2 · 3r+1. �

3. Can we Generalize Theorem 1.1 to Other Primes?

The analogue of Theorem 1.1 for the prime 2 is an easy result.

Theorem 3.1. For n ≥ 1 an integer, we have

2 divides

(

2n

n

)

F

⇐⇒ n ≥ 2.

Proof. Note that, by Theorem 1.7, 2 divides
(2n
n

)

F
if and only if c2(n/3, n/3) = 1. Write

n = 3k + ν, 0 ≤ ν ≤ 2. Clearly c2(n/3, n/3) ≥ c2(k, k). But, by Lemma 2.2, c2(k, k) = 1 for
all k ≥ 1. If k = 0, then n = 1 or 2 and there is a carry across the radix point if and only if
n/3 + n/3 ≥ 1, i.e., if and only if n = 2. �

With the help of Theorem 1.7, the determination of the integers n for which p divides
(

pn
n

)

F
when p is 2 or 3 was simple. But how easy is it to settle the analogous divisibility questions
for primes larger than 3?

The case of p = 5 is unique because ν5(Fn) = ν5(n) for all n ≥ 0 so that the 5-adic valuation
of the Fibonomial

(

m+n
n

)

F
is the same as that of the binomial

(

m+n
n

)

. Therefore the answer is

given by Proposition 1.5. Hence, 5 divides
(5n
n

)

F
for all n ≥ 1.

Can we determine those integers n ≥ 1 for which 7 divides
(7n
n

)

F
?

Note that ρF (7) = 8. Putting x = n/8, 7 will divide
(7n
n

)

F
if and only if c7(x, 6x) = 1, by

Theorem 1.7. Set n = η + 8k, where 0 ≤ η ≤ 7. We break the investigation into lemmas.

Lemma 3.2. We have

c7(x, 6x) =

{

1, if η = 0, 1, 5, 6 or 7;

c7(k, η − 1 + 6k), otherwise.

Proof. If η = 0, then c7(x, 6x) = c7(k, 6k) = 1, by Lemma 2.2. If η = 1, then 6n = 6+48k. The
sum of the fractional parts of x and 6x being less than 1, we find that c7(x, 6x) = c7(k, 6k) = 1.
If η = 7, then 6n = 2 + 8(6k + 5). Hence, {x} + {6x} = (7 + 2)/8 > 1 and c7(x, 6x) = 1.
Similarly, if 5 ≤ η ≤ 6, then 6n = 8η−2η+48k = (16−2η)+8(6k+η−2). As 4 ≤ 16−2η ≤ 6
the sum of the fractional parts of x and 6x is larger than one and c7(x, 6x) = 1.

If 2 ≤ η ≤ 4, then 6n = (8 − 2η) + 8[(η − 1) + 6k]. Because η + (8 − 2η) < 8, the sum
{x} + {6x} < 1 and thus, c7(x, 6x) = c7(k, η − 1 + 6k). �

Lemma 3.3. If n = 2 + 8k, then c7(x, 6x) = 0 if and only if k = 1 + 7 + · · · + 7λ, for some

λ ≥ 0.
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Proof. By Lemma 3.2, c7(x, 6x) = c7(k, 1 + 6k). Let κ be the least nonnegative residue of k
(mod 7), that is, k = κ+7k1, k1 ≥ 0, κ < 7. If 2 ≤ κ ≤ 6, then 6k+1 = (8−κ)+7(κ−1+6k1).
But κ + (8 − κ) ≥ 7 so c7(k, 1 + 6k) = 1. If κ = 0, then c7(k, 1 + 6k) = c7(k, 6k) = 1 by
Lemma 2.2. If k = 1 + 7k1, then 1 + 6k = 7(1 + 6k1). Thus, c7(k, 1 + 6k) = c7(k1, 1 + 6k1).
Therefore, c7(k, 1+6k) = 0 implies either k = 1 or there exist k1, . . . , kλ with kλ = 1 such that
k = 1+7k1 = 1+7(1+7k2) = · · · = 1+7(1+7(1+ · · ·+7(1+7kλ)) · · · ) = 1+7+72+ · · ·+7λ.
Conversely, if k = 1 + 7 + 72 + · · · + 7λ, then 1 + 6k = 7λ+1 and c7(k, 1 + 6k) = 0. �

Lemma 3.4. If n = 3 + 8k, then c7(x, 6x) = 0 if and only if k is of the form

2 · 7
λ − 1

6
+ 7λ · 7

µ − 1

6
, for some λ ≥ 0, µ ≥ 0.

Proof. By Lemma 3.2, c7(x, 6x) = c7(k, 2 + 6k). Let k > 0. Writing k = κ+ 7k1, (0 ≤ κ ≤ 6),
we are about to see that c7(k, 2 + 6k) = 0 =⇒ κ = 1 or 2. Indeed, if 7 | k or 3 ≤ κ ≤ 6,

then k ≥ 3 and
(7k+2

k

)

= (7k+2)(7k+1)(7k)
k(k−1)(k−2)

(7k−1
k−3

)

is divisible by 7. Hence, by Kummer’s rule,

c7(k, 6k + 2) = 1. On the one hand, if k = 1 + 7k1, then 2 + 6k = 1 + 7(1 + 6k1). Hence,
c7(k, 2 + 6k) = c7(k1, 1 + 6k1). By the proof of Lemma 3.3, we know, using a base-7 writing,
that k1 = 11 · · · 17 (with, say, µ ones, µ ≥ 0) in order for c7(k1, 1 + 6k1) to be 0. Thus,
k = 1 + 7k1 = 11 · · · 17 (with µ + 1 ones). On the other hand, if k = 2 + 7k1, then 2 + 6k =
7(2 + 6k1). Hence, c7(k, 2 + 6k) = c7(k1, 2 + 6k1). Therefore, since after any string of 2’s we
may bifurcate to a string of 1’s, c7(x, 6x) = 0 if and only if k is of the form 1 · · · 12 · · · 27 with,
say λ 2’s and µ 1’s. That is, if and only if, k is of the form indicated in the statement of the
lemma. Note that if k is of this form, then 6k + 2 = 7λ + 7λ+µ explaining the ‘if’ part of the
above ‘if and only if’ statement. �

Lemma 3.5. If n = 4 + 8k, then c7(x, 6x) = 0 if and only if k is of the form

3 · 7
λ − 1

6
+ 7λ · 2 · 7

µ − 1

6
+ 7λ+µ 7

ν − 1

6
, for some λ ≥ 0, µ ≥ 0 and ν ≥ 0.

Proof. By Lemma 3.2, c7(x, 6x) = c7(k, 3 + 6k). Let di, i ≥ 0, be the (i+ 1)-rightmost base-7
digit of k, k0 := d0 and recursively ki+1 := (ki − di)/7. Assume k > 0. If d0 = 0, then
c7(k, 3 + 6k) = c7(k1, 6k1) = 1. If 4 ≤ d0 ≤ 6, then 3+ 6k = (10− d0) + 7(d0 − 1+ 6k1). As d0
and 10− d0 both belong to {4, 5, 6} there is a carry between the first and second digits when
adding k to 3+ 6k. If d0 = 1, then 3 + 6k = 2+ 7(1 + 6k1) and c7(k, 3 + 6k) = c7(k1, 1+ 6k1),
which we know from the proof of Lemma 3.3 to be 0 if and only if k1 = (7l − 1)/6 for some
l ≥ 0. That is, taking the case k = 0 into account, when k is of the form (7λ − 1)/6 for some
λ ≥ 0. If d0 = 2, then 3 + 6k = 1 + 7(2 + 6k1). Hence, c7(k, 3 + 6k) = c7(k1, 2 + 6k1). But
in that case, by the proof of Lemma 3.4, we know that c7(x, 6x) = 0 if and only if di = 2 for
0 ≤ i < λ and di = 1 for i ≥ λ, for some λ ≥ 0. If d0 = 3, then 3 + 6k = 7(3 + 6k1). Hence,
c7(k, 3 + 6k) = c7(k1, 3 + 6k1). So in order to have c7(x, 6x) = 0 and, moving right to left
through the base-7 digits of k, we must have a sequence of 3’s, followed by a sequence of digits
all 2’s, followed by a sequence of 1’s, where each sequence may potentially be empty. For all
such k’s, we do have c7(k, 3 + 6k) = 0 because 6k + 3 is of the form 7λ + 7λ+µ + 7λ+µ+ν for
some nonnegative exponents λ, µ and ν. Such numbers have base-7 digits at most 3. �

So we obtain the theorem.
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Theorem 3.6. Given an integer n ≥ 1, 7 divides
(7n
n

)

F
unless n = 1 or is of one of the forms

2 + 8 · 7λ−1
6 , (λ ≥ 0)

3 + 8 ·
[

2 · 7λ−1
6 + 7λ · 7µ−1

6

]

, (λ ≥ 0, µ ≥ 0)

4 + 8 ·
[

3 · 7λ−1
6 + 7λ · 2 · 7µ−1

6 + 7λ+µ · 7ν−1
6

]

, (λ ≥ 0, µ ≥ 0, ν ≥ 0).

It seems that, given a prime p and time, the method might yield explicitly the set Ep of
integers n such that p -

(

pn
n

)

F
. Instead we use the experience of the primes 3 and 7 to derive

a general upper estimate for the size of Ep, which is always a slim set of integers. Let Ep(x)
denote the cardinality of Ep ∩ [1, x]. From Theorems 1.1 and 3.6 we can see that E3(x) is

O(log x) and E7(x) is O(log3 x). We begin by a general lemma.

Lemma 3.7. Let k = d1 + pk1 ≥ 1, where k1 ≥ 0 is an integer, p is a prime and 0 ≤ d1 < p.
Suppose cp(k, d + (p − 1)k) = 0, where 1 ≤ d ≤ p − 2. Then cp(k1, d1 + (p − 1)k1) = 0 and

1 ≤ d1 ≤ d.

Proof. If k1 = 0, then the lemma clearly holds. Assume k1 ≥ 1. In particular, k ≥ p > d. If
d1 = 0 or if d1 > d then

(

d+ pk

k

)

=
(d+ pk) · · · (pk)

k(k − 1) · · · (k − d)

(

pk − 1

k − d− 1

)

is divisible by p,

which, by Kummer’s rule, says that cp(k, d+ (p− 1)k) = 1, a contradiction. Now

d+ (p− 1)k = d+ (p− 1)(d1 + k1p)

= d− d1 + p(d1 + k1(p− 1)).

Thus, as the sum of the least significant p-ary digits of k and d + (p − 1)k is d < p, we find
that cp(k, d + (p− 1)k) = cp(k1, d1 + (p− 1)k1) = 0. �

Suppose n belongs to Ep. Write n = η + kρ, where k is nonnegative and 1 ≤ η < ρ. Note
that η 6= 0 by Lemma 2.2. In fact, more generally η must be admissible, i.e., it must satisfy
η
ρ
+
{ (p−1)η

ρ

}

< 1. Define s = sp as the largest integer
⌊ (p−1)η

ρ

⌋

over all admissible η’s and note

that s ≤ p− 2 as η/ρ < 1.

Theorem 3.8. Let p be a prime. Then Ep(x), the number of integers n ≤ x such that p does

not divide
(

pn
n

)

F
, is O(logs x), where the implied constant may depend on p, and where the

integer s, 0 ≤ s ≤ p− 2, was defined above.

Proof. Let x be large. Assume p has rank ρ. Fix an admissible η. Suppose n ∈ Ep, n ≤ x
and n = η + kρ. To prove our theorem it will suffice to show that the number of k’s, k ≤ x

and cp(k, d + (p − 1)k) = 0, is O(logs x), where d =
⌊ (p−1)η

ρ

⌋

. Indeed, cp(n/ρ, n(p − 1)/ρ) =

cp(k, d+(p−1)k). By Lemma 3.7, d1, the least significant p-ary digit of k, satisfies 1 ≤ d1 ≤ d,
which means the p-ary expansion of k may contain a string of least significant digits all equal
to d1, (possibly) followed by a string of a digit strictly less than d1, and so forth with possibly
more strings of smaller digits. That is in p-ary notation

k = 0 · · · 0du · · · dudv · · · dv · · · dw · · · dwd1 · · · d1,
where d ≥ d1 > dw > · · · > dv > du ≥ 1 and the 0’s have been added so as to have all the
1 + blogp xc least significant digits of any k ≤ x. Let 1 ≤ q ≤ d. Choose q digits among the
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d possible ones and then ‘separate’ those q + 1 digits (including the 0’s) by choosing q places
among at most blogp xc. There are at most p choices for an admissible η. Hence,

Ep(x) ≤ p×
d

∑

q=1

(

d

q

)(blogp xc
q

)

≤ p

(

d

bd/2c

) d
∑

q=1

(blogp xc
q

)

≤ p

(

s

bs/2c

)

s

(blogp xc
s

)

= O
(

logs x
)

.

�

4. A Kummer Theorem Tailored to Fundamental Lucas Sequences

Knuth and Wilf [3] considered a sequence of positive integers (Cn)n≥1 and showed that

νp

(

m+ n

n

)

C

=
∑

k≥1

(

dpk(m+ n)− dpk(m)− dpk(n)
)

, (4.1)

where dpk(m) is the number of integers i, 1 ≤ i ≤ m, such that pk divides Ci. This is based
on the fact that νp(CmCm−1 · · ·C1) =

∑

k≥1 dpk(m), a formula which extends the Legendre

formula νp(n!) =
∑

k≥1bm
pk
c.

For an easy calculation of dpk(m) it is convenient that C be a strong divisibility sequence,
i.e., that for all positive integers m and n,

gcd(Cm, Cn) = Cgcd(m,n). (4.2)

Indeed, C is strongly divisible if and only if C is regularly divisible, which means that for all
m ≥ 1, either m never divides any term Cn, n ≥ 1, or there exists a ρ = ρ(m) ≥ 1 such that
m | Cn if and only if ρ | n. The integer ρ(m) is called the rank of appearance of m in C.
The connection between strong and regular divisibilities was first found by Ward [7]. Hence,
if ρ(pk) exists for all k ≥ 1, then dpk(m) = b m

ρ(pk)
c. In order to have a simple generalization of

the rule of Kummer, which we mentioned in the introduction, it is convenient for a regularly
divisible sequence to generally satisfy, in addition,

ρ(pk+1) = p · ρ(pk). (4.3)

We have a couple of remarks. First the analysis made in [3] for sequences of positive integers
is actually valid for all sequences of nonzero integers. All nondegenerate fundamental Lucas
sequences U(P,Q) have nonzero terms Un for all n ≥ 1. Secondly, although these Lucas
sequences are often studied with the hypothesis that gcd(P,Q) = 1, which makes them strong
divisibility sequences (here condition (4.2) is replaced by gcd(Cm, Cn) = |Cgcd(m,n)|), strong
divisibility is not necessary. Indeed, if gcd(P,Q) > 1, then U(P,Q) nearly remains regularly
divisible. That is, regular divisibility holds for all integers m having no special prime factors.
Special primes are the prime divisors of gcd(P,Q). Moreover, it was shown in Theorem 3.8,
[2, p. 26], that, even when gcd(P,Q) > 1, for all nondegenerate U(P,Q) and all odd primes
not dividing Q, we have for n ≥ 1 an integer

νp(Un) = a+ b, if and only if, n = λpbρ, (4.4)

where ρ is the rank of p, νp(Uρ) = a ≥ 1 and λ is a positive integer prime to p.
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Therefore, for all odd primes p not dividing Q and all k ≥ a, (4.3) holds. Consequently,
for such primes, we may determine the p-adic valuation of

(

m+n
n

)

U
using a Kummer-like rule.

Indeed,

dpk(m) =

⌊

m

ρ(pk)

⌋

=

{

⌊

m
ρ

⌋

, if 1 ≤ k ≤ a;
⌊

m
pk−aρ

⌋

, if k > a.

As bx+yc−bxc−byc = 1 if and only if {x}+{y} ≥ 1, we find that dpk(m+n)−dpk(m)−dpk(n) =
1 if and only if there is a carry either across the radix point if 1 ≤ k ≤ a, or at position k − a
to the left of the radix point if k > a when adding m/ρ and n/ρ in base p.

Theorem 3.30 of [2] gave the 2-adic valuation of all terms of a companion Lucas sequence
Vn(P,Q) when Q is odd. Using this together with the identities U3(n+2) = V3U3(n+1) −Q3U3n

and U2n = UnVn and an induction on j = ν2(n) ≥ 0, one can get a result comparable to (4.4),
but for the prime 2, namely we have the following theorem.

Theorem 4.1. Suppose U = U(P,Q) is a nondegenerate fundamental Lucas sequence with Q
odd. The rank ρ of 2 is either 2, if P is even, or 3, if P is odd. The 2-adic valuation of a term

Un is determined by the fact that 2 divides Un if and only if ρ divides n, and by the formulas

ν2(Uρn) = ν2(Uρ) + ν2(n), if P is even, or if P is odd and Q ≡ 1 (mod 4),

and
{

ν2(U3(2n+1)) = ν2(U3) = 1,

ν2(U6n) = ν2(U6) + ν2(n) = 1 + ν2(P
2 − 3Q) + ν2(n),

if P is odd and Q ≡ −1 (mod 4).

We sum up our remarks in Theorem 4.2, which is a Kummer-like theorem for generalized
binomials related to a nondegenerate fundamental Lucas sequence.

Theorem 4.2. Let U = U(P,Q) be a nondegenerate fundamental Lucas sequence. Let p be a

prime not dividing Q of rank ρ in U . Then the p-adic valuation of the Lucasnomial
(

m+n
n

)

U
is

equal to the number of carries that occur to the left of the radix point when m/ρ and n/ρ are

added in base-p notation, plus νp(Uρ) if a carry occurs across the radix point, unless p is 2, P
is odd and Q is −1 modulo 4, in which case one must add the 2-adic valuation of (P 2− 3Q)/2
to the previous count if, in the same addition, there is a carry from the first to the second digit

to the left of the radix point.

It might be worth giving an explicit statement for the 2-adic valuation of Lucasnomials.

Corollary 4.3. Let U = U(P,Q) be a nondegenerate fundamental Lucas sequence with Q odd.

Then

ν2

(

m+ n

n

)

U

=











C(m,n) + ν2(P/2) · c0, if P is even;

C(m/3, n/3) + ν2(P
2 −Q) · c−1, if P is odd and Q ≡ 1 (mod 4);

C(m/3, n/3) + ν2
(

(P 2 − 3Q)/2
)

· c0 + c−1, if P is odd and Q ≡ 3 (mod 4),

where C(x, y) is the number of carries that occur to the left of the radix point when adding

x and y in base 2, and ci is 1 or 0 according to respectively the presence or the absence of a

carry going from position i to i+1, and the 0 and −1 positions are respectively the first to the

left and the first to the right of the radix point.

Remark. In the above corollary, when P is even, c0 = 1 if and only if m and n are both
odd.
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5. A Few More Results Concerning Question 1

The results of the previous section make it plain that the proof of Theorem 3.8 holds for all
fundamental Lucas sequences. Given U and p, define EU, p as the set of integers n ≥ 1 such
that p -

(

pn
n

)

U
and EU, p(x) as the cardinality of the set of integers n ≤ x in EU, p.

Theorem 5.1. Let U be a fundamental nondegenerate Lucas sequence with parameters P and

Q and p - Q be a prime. Then EU, p(x) is O(logp−2 x), where the implied constant may depend

on p.

However we cannot resist giving an explicit description of EU, p for at least p = 2 and p = 3
for all cases of U(P,Q).

Theorem 5.2. Let U be a fundamental nondegenerate Lucas sequence with parameters P and

Q with Q odd. Let ρ be the rank of 2 in U . Then for n ≥ 1

2 divides

(

2n

n

)

U

for all n ≥ 1 unless ρ = 3 and n = 1.

Proof. If ρ = 3, then c2(n/3, n/3) = 1 for the same integers as in the Fibonacci case. If ρ = 2,
then clearly c2(n/2, n/2) = 1 for all n ≥ 1. �

Theorem 5.3. Let U be a fundamental nondegenerate Lucas sequence with parameters P and

Q, where 3 does not divide Q. Let ρ be the rank of 3 in U . Then for n ≥ 1

3 |
(

3n

n

)

U

⇐⇒











n 6= 3r (r ≥ 0), if ρ = 2;

n ≥ 1, if ρ = 3;

n 6= 1 and n 6= 2 · 3r (r ≥ 0), if ρ = 4.

Proof. If ρ is 4, then the analysis is identical to that of the Fibonacci case. If ρ is 3, then it
suffices to observe that

3 |
(

3n

n

)

U

⇐⇒ c3
(n

3
,
2n

3

)

= 1 ⇐⇒ c3(n, 2n) = 1 ⇐⇒ 3 |
(

3n

n

)

.

If ρ is 2, then we study c3(n/2, n). If n = 2k, then c3(n/2, n) = c3(k, 2k) = 1 by Lemma 2.2.
If n = 2k + 1, then c3(n/2, n) = c3(k, 2k + 1). As usual we write k = κ + 3k1, 0 ≤ κ ≤ 2.
It is easily checked that c3(k, 2k + 1) = 1 for κ = 0 or 2. If κ = 1, then c3(k, 2k + 1) =
c3(1+3k1, 3(1+2k1)) = c3(k1, 2k1+1). In order to have c3(k, 2k+1) = 0, the 3-ary expansion
of k must only contain the digit 1, i.e., k = (3r − 1)/2 and n = 3r. �

Remark. That integers of the form 3r, r ≥ 0, belong to EU, 3 when P is even, i.e., when
ρ(3) = 2, will also be a consequence of Theorem 7.1 of Section 7.

6. Question 2 Under the Grill

We now turn to Theorem 1.2 for which a generalization, valid for all primes, not just the
prime 3, and all fundamental Lucas sequences, is given.

Theorem 6.1. Let U be a nondegenerate fundamental Lucas sequence with parameters P
and Q. Let p be a prime not dividing Q of rank ρ. Let s ≥ 1 be an integer. Then

p divides
(

sn
n

)

U
for all n ≥ 1 if and only if the least common multiple of p and ρ divides

s, that is,

p divides

(

sn

n

)

U

for all n ≥ 1 ⇐⇒
{

pρ | s, if p - D;

p | s, if p | D,

where D = P 2 − 4Q.
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Proof. Assume p divides
(

sn
n

)

U
for all n ≥ 1. For n = 1,

(

sn
n

)

U
= Us. But p | Us implies that

ρ | s. Now for all n ≥ 1 we have
(

sn

n

)

U

=
Usn

Un

(

sn− 1

n− 1

)

U

. (6.1)

Choose n = ρ. We assume first p odd and show that
(

sρ−1
ρ−1

)

U
is not a multiple of p. By the

addition formula 2Um+n = VmUn + UmVn, we find that

2ρ−1
ρ−1
∏

t=1

U(s−1)ρ+t =

ρ−1
∏

t=1

(V(s−1)ρUt + U(s−1)ρVt) ≡ V ρ−1
(s−1)ρ ×

ρ−1
∏

t=1

Ut (mod p).

Therefore,
(

sρ− 1

ρ− 1

)

U

=

∏ρ−1
t=1 U(s−1)ρ+t
∏ρ−1

t=1 Ut

≡
(

V(s−1)ρ

2

)ρ−1

(mod p).

But V 2
(s−1)ρ = DU2

(s−1)ρ + 4Q(s−1)ρ ≡ 4Q(s−1)ρ (mod p), so V(s−1)ρ 6≡ 0 (mod p). Hence, p

divides Usρ/Uρ. By the law of appearance of prime powers (4.4), p must divide s. Assume
now p = 2, and ρ = 3 since there is nothing more to prove in the case ρ = 2. By Theorem 4.2,
2 |

(

3s
3

)

U
if and only if c2(s−1, 1) = 1. That is, s−1 must be odd, and thus s even. Therefore,

in all cases, the least common multiple of p and ρ divides s.
Let us prove the converse. Suppose p | D, i.e., ρ = p. Our hypothesis is that p | s. If p - n,

then νp(Un) = 0 while νp(Usn) ≥ νp(Up) ≥ 1. If p | n, then νp(Usn) ≥ νp(Upn) = 1 + νp(Un).
If p is odd, νp(Upn) = 1 + νp(Un) by (4.4). If p = 2, as P = U2 is even by hypothesis,
νp(U2n) = 1 + νp(Un) by Theorem 4.1. Thus, in all cases, p divides Usn/Un, and

(

sn
n

)

U
by

(6.1). Suppose now p - D, so p and ρ are coprime and pρ | s. Then, for all n ≥ 1,

νp(Usn) ≥ νp(Upρn) ≥ 1 + νp(Uρn) ≥ 1 + νp(Un),

where the inequality νp(Upρn) ≥ 1 + νp(Uρn) is an equality in all cases unless p is 2, Q ≡ −1
(mod 4) and n is odd, by (4.4) and Theorem 4.1. Hence, again, Usn/Un is a multiple of p and,
by (6.1),

(

sn
n

)

U
is a multiple of p. �

Remark. Propositions 1.5 and 1.6 are also corollaries of Theorem 6.1.

7. The Answer to Question 3

We establish a theorem which generalizes Theorems 1.3 and 2.1 to all nondegenerate fun-
damental Lucas sequences. Additionally it provides the p-adic valuation of the coefficients
(

pa+1

pa

)

U
as well as that of the coefficients

(

pb

pa

)

U
(b > a ≥ 0).

Theorem 7.1. Let U = U(P,Q) be a nondegenerate fundamental Lucas sequence. Let a and

b be two integers with 0 ≤ a < b and p - Q a prime of rank ρ in U . Then νp
(

pb

pa

)

U
equals

• 0, if ρ | p− 1, or if ρ | p+ 1 and b− a is even;

•
{

b− a, if a ≥ 1,

b− 1 + νp(Up), if a = 0,
if ρ = p;

•
{

νp(Uρ) +
a−1
2 , if a is odd,

a
2 + δ2, if a is even,

if ρ ≥ 3, ρ | p+ 1 and b− a is odd,
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where

δ2 =

{

0, if p is odd or a = 0;

ν2(P
2 − 3Q)− 1, if p is 2 and a ≥ 2.

Proof. If ρ | p − 1, then the argument of Theorem 2.1 nearly carries over (no pun intended).
That is, if p− 1 = σρ, then

pb

ρ
− pa

ρ
=

pa

ρ
(pb−a − 1) =

p− 1

ρ
pa(1 + p+ · · ·+ pb−a−1)

= σ(pb−1 + pb−2 + · · ·+ pa),

whereas pa/ρ < pa. Thus, there is no carry in the base-p addition of (pb − pa)/ρ and pa/ρ.
We note here that when adding in base p two nonnegative reals, say x and y, there is a

carry at a given position if and only if there is a carry at the same position when subtracting
x from x+ y. (Indeed, {x′}+ {y′} ≥ 1 if and only if {x′ + y′} − {x′} < 0, where x′ and y′ are
any two reals obtained by shifting i places the radix point in the p-ary expansions of both x
and y).

If ρ is p, then subtracting pa−1 from pb−1 in base p produces exactly b− a carries. The first
of these carries will occur across the radix point only for a = 0. Thus, by Theorem 4.2, the
result holds.

Suppose ρ | p + 1 and ρ > 2. Write ρσ = p + 1. Note that 1 ≤ σ < p. Then the p-adic

valuation of
(

pb

pa

)

U
depends on relevant carries when subtracting pa/ρ from pb/ρ. Now

pb

ρ
= σ

pb

p+ 1
= σ

pb−1

1 + 1
p

= σ(pb−1 − pb−2 + pb−3 − pb−4 + · · · )
= (σ − 1)pb−1 + (p− σ)pb−2 + · · ·+ da−1p

a−1 + (p− 1− da−1)p
a−2 + · · · ,

and thus,
pa

ρ
= (σ − 1)pa−1 + (p− σ)pa−2 + (σ − 1)pa−3 + (p − σ)pa−4 + · · · ,

where

da−1 =

{

σ − 1, if b− a is even;

p− σ, if b− a is odd.

Since ρ = p+1
σ

> 2, we see that p−σ > σ−1. Hence, if b−a is even, then da−1 = σ−1 and the

subtraction of pa/ρ from pb/ρ produces no carry at all. If b− a is odd, then da−1 = p− σ and
the rightmost relevant carry in subtracting pa/ρ from pb/ρ stems from subtraction at position
a− 2. Subsequent ones occur every two positions till we hit either position 0 or position −1,
according to the parity, respectively even or odd, of a. Thus, there are no relevant carries
if a = 0. The result then follows by application of Theorem 4.2. Note that there is no
contradiction between Theorem 4.2 and this theorem for p = 2, ρ = 3 and a even ≥ 2, when
we add δ2 regardless of the parity of P and the value of Q (mod 4). Indeed, ρ = 3 implies P
is odd, since U2 = P . However, if P is odd and if Q ≡ 1 (mod 4), then P 2 − 3Q ≡ 2 (mod 4)
and so δ2 = 0. �

We state a simple but striking corollary of Theorem 7.1.
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Corollary 7.2. Let U(P,Q) be a nondegenerate fundamental Lucas sequence where D =
P 2 − 4Q is not a square integer. Suppose p - PQD is prime. Then

p divides

(

p2

p

)

U

if and only if p is inert in Q(
√
D ).

(To see that the above corollary holds for p = 2, we recall that if D is an odd integer, then

2 is inert in Q(
√
D ) if and only if D ≡ 5 (mod 8).)
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