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Abstract. For a sequence of arbitrary integers B = (Bn)
∞

n=0 let GB denote the smallest
number such that for every k ≥ GB one can find k consecutive terms of B with the property
that none of these terms is coprime to all the others. If GB exists we say that B is a Pillai
sequence. This paper links up with our recent works by giving a full characterization of this
property for associated Lucas and Lehmer sequences. The more general T -Pillai property is
also considered.

1. Introduction

Pillai [14] asked the following question. Is it true that in every set of k ≥ 2 consecutive
integers one can always find an element which is coprime to all the others among them? Pillai
[14], showed that the answer to the above question is positive for 2 ≤ k ≤ 16, but negative
if 17 ≤ k ≤ 430. Later Brauer [3] extended Pillai’s result by proving that the latter is valid
for k ≥ 431 as well. The problem has already been generalized in many ways, for example
by replacing the coprimality property with severely relaxed requirements. For results in this
direction we mention the papers of Caro [4], Hajdu and Saradha [5], and the references given
there.

The content of this article is strongly related to another type of generalization, namely if we
replace consecutive integers with consecutive terms of an integer sequence. So let B = (Bn)

∞
n=0

be a sequence of arbitrary integers and write gB for the smallest number k with the property
that there exists k consecutive terms of B such that none of these terms is coprime to all the
others. Similarly, we define the quantity GB as the least value such that for every k ≥ GB

one can find k consecutive terms of B satisfying the latter property. We will say that B is a
Pillai sequence whenever GB exists. By the classical results of Pillai and Brauer we have that
gN = GN = 17, hence, N is a Pillai sequence.

Ohtomo and Tamari [13] investigated the case when B is an arithmetic progression. They
proved that every such sequence is a Pillai sequence. In our recent works [6, 7] we considered
the problem in recurrence sequences, showing that apart from some degenerate cases every
linear and elliptic divisibility sequence is a Pillai sequence. We could also give the exact values
of the quantities gB and GB in the case of Lucas and Lehmer sequences. From these results one
might think that being a Pillai sequence is some kind of “automatic” property for recurrence
sequences, but this is not the situation. We showed in [6] that a family of so-called associated
Lucas and Lehmer sequences is not Pillai and even the quantity gB does not exist.

Associated Lucas and Lehmer sequences are integer-valued linear recurrence sequences of
order two and four, respectively. A well-known example of the former is the sequence of
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Lucas numbers. Note that these sequences are also known as Lucas and Lehmer sequences
of the second kind. The arithmetic and divisibility properties of such sequences have been
investigated by many authors from many aspects. Here we just mention a few of the most
important and interesting results.

One of the main questions is about the greatest common divisors of terms of associated
Lucas or Lehmer sequences. A nice theorem of McDaniel [11], gives us a precise formula for
calculating the greatest common divisor of two terms in such a sequence. McDaniel [12], also
investigated the problems of factorizing Lucas numbers as a product of two integers differing by
a constant, and representing them as the difference of two squares. Building on earlier works,
mostly on the work of Somer [16], Smyth [15] described the sets of terms of associated Lucas
sequences which are divisible by their indices. Smyth even showed that the numbers in these
sets can be represented as products of so-called basic numbers. Luca and Shorey [8, 9, 10]
investigated Diophantine equations with products of terms of associated Lucas sequences,
where the indices are chosen under certain assumptions.

In this paper, we continue the investigation of Pillai sequences that started in [6, 7], giving
a full characterization of this property in associated Lucas and Lehmer sequences. Our main
result shows that for such a sequence being Pillai depends on the parities of the coefficients
in their defining recurrences only. We treat the non-degenerate and degenerate sequences in
separate theorems. In each case, when the sequence v̂ proves to be Pillai, upper bounds for gv̂
and Gv̂ are provided. A result on the particular sequence L of Lucas numbers is also given.
This shows that while this sequence is not Pillai, the quantity gL exists.

We also give an insight into the more general T -Pillai property which is obtained by replacing
the coprimality condition with the so-called T -coprimality, where the ”unwanted” gcd-s are
from a set T of integers. In the case of Pillai sequences the set of “unwanted” gcd-s is T = {1}.
On this topic two results will be presented, one for the associated Lucas and another one for
the associated Lehmer sequences.

2. Basic Definitions and Notations

In this section, we introduce the necessary background containing a brief overview of the
sequences we shall work with and our terminology concerning the T -Pillai property as well.

2.1. Associated Lucas and Lehmer sequences. Let M and N be integers, such that
N 6= 0. A sequence v = (vn)

∞
n=0 is called an associated Lucas sequence corresponding to the

parameters (M,N) if v0 = 2, v1 = M and for every n ≥ 0 we have

vn+2 = Mvn+1 −Nvn. (2.1)

A well-known example of such sequences is the sequence of Lucas numbers denoted by L =
(Ln)

∞
n=0, where (M,N) = (1,−1).

We shall also work with associated Lehmer sequences. Let M and N be as before. We say
that a sequence ṽ = (ṽn)

∞
n=0 is an associated Lehmer sequence corresponding to the parameters

(M,N) if ṽ0 = 2, ṽ1 = 1 and for every n ≥ 0 the terms satisfy the recurrence relation

ṽn+2 =

{

Mṽn+1 −Nṽn, if n is even,

ṽn+1 −Nṽn, if n is odd.
(2.2)

An associated Lucas (or associated Lehmer, resp.) sequence is said to be non-degenerate if
the quotient of the roots of the polynomial

x2 −Mx+N (or x2 −
√
Mx+N , resp.)
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is not a root of unity. Otherwise, we call it degenerate.

2.2. T -Pillai sequences. Let T be a set of arbitrary integers. We say that two integers p
and q are T -coprime if gcd(p, q) ∈ T . We would like to use this notion as a generalization of
coprimality, hence always suppose that 1 ∈ T . As one can easily see the case T = {1} gives
back the canonical definition of coprimality.

Replacing coprimality with T -coprimality in the definition of Pillai sequences leads us to
the notion of T -Pillai sequences. Let B be a sequence of arbitrary integers as before and let
gB(T ) denote the smallest number k such that there exists k consecutive terms of B with the
property that none of these is T -coprime to all the others. Similarly, write GB(T ) for the least
value such that for every k ≥ GB(T ) there exists k consecutive terms of B with the latter
property. To be consistent with the terminology presented in Section 1, we use gB and GB for
the case T = {1} and we call B a Pillai sequence if GB exists.

3. New Results

We begin with a simple but important remark about the case when the corresponding
parameters are not coprime.

Remark 3.1. Let v̂ = (v̂n)
∞
n=0 be an associated Lucas or Lehmer sequence corresponding to

the parameters (M,N). Observe that if the parameters are not coprime then gcd(M,N) | v̂n
for every n ≥ 3. Hence, v̂ is a Pillai sequence and gv̂ = Gv̂ = 2.

In view of this observation, from this point on we suppose that gcd(M,N) = 1, without
any further mentioning.

3.1. Results on the Pillai Property. Our first result gives a characterization of the Pillai
property in non-degenerate associated Lucas and Lehmer sequences. Interestingly, the fact
whether they are Pillai or not depends on the parities of the two corresponding parameters
only. Moreover, an explicit upper bound for the g and G values is also given.

Theorem 3.1. Let v̂ be a non-degenerate associated Lucas or Lehmer sequence corresponding

to the parameters (M,N). Then v̂ is Pillai if and only if M is even and N is odd. Further, if

Gv̂ exists and v̂ is an associated Lucas sequence, then

gv̂ = Gv̂ = 2,

and if v̂ is an associated Lehmer sequence, then

gv̂ ≤ Gv̂ ≤ 1543.

The following statement concerns the well-known sequence of Lucas numbers. It turns out
that it is not Pillai, but the corresponding gL quantity exists and can be calculated precisely.

Theorem 3.2. The sequence of Lucas numbers L = (Ln)
∞
n=0 is not a Pillai sequence, but gL

exists and gL = 171.

To complete the investigation of the Pillai property in associated sequences we shall handle
the degenerate sequences as well. The following theorem involves two separate statements, one
for degenerate associated Lucas and another one for degenerate associated Lehmer sequences.

Theorem 3.3. Let v be a degenerate associated Lucas sequence corresponding to the param-

eters (M,N). Then v is Pillai if and only if (M,N) = (±2, 1) or (0,±1) and in these cases

gv = Gv = 2.
Now let ṽ be a degenerate associated Lehmer sequence corresponding to the parameters

(M,N). Then ṽ is Pillai if and only if (M,N) = (0,±1) and gṽ = Gṽ = 171 in both cases.
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3.2. Results on the T -Pillai Property. In this part, we investigate the more general T -
Pillai property. Recall the assumption that 1 ∈ T always, hence if an integer sequence is not
Pillai then it cannot be T -Pillai. Our first theorem gives a characterization of the T -Pillai
property in non-degenerate associated Lucas sequences.

Theorem 3.4. Let v be a non-degenerate associated Lucas sequence corresponding to the

parameters (M,N) such that M is even and N is odd, and let T be an arbitrary set of integers

with 1 ∈ T . Then v is a T -Pillai sequence if and only if 2 6∈ T . Further, if v is a T -Pillai
sequence, then

gv(T ) = Gv(T ) = 2.

Note that the above statement is not valid if we replace v by a non-degenerate associated
Lehmer sequence. It can be easily checked with the extreme example T = N \ {2}. Our last
theorem shows that the T -Pillai property in non-degenerate associated Lehmer sequences can
still be described under an extra assumption on T .

Theorem 3.5. Let ṽ be a non-degenerate associated Lehmer sequence corresponding to the

parameters (M,N) such that M is even and N is odd, S be a finite set of arbitrary primes

with s elements and T be an arbitrary set of integers whose prime divisors are in S. Then ṽ
is a T -Pillai sequence if and only if 2 6∈ T . Further,

gṽ ≤ Gṽ ≤ 20(s + 15) log(s+ 15).

Observe that Theorem 3.4 and 3.5 do not say anything about the cases apart from M is
even and N is odd. However, we have the assumption 1 ∈ T , that is, a sequence which is not
Pillai cannot be T -Pillai. Thus, we consider these cases trivial.

Finally, we note that since there are only finitely many degenerate associated Lucas and
Lehmer sequences, for such sequences the T -Pillai property can be easily checked for any given
set T (see also the proof of Theorem 3.3).

4. Proofs

4.1. Some lemmas. The first important result we mention is due to McDaniel [11] who has
described the gcd-s of terms in associated Lucas and Lehmer sequences. Before giving the
precise statement we need to introduce a new notation. If q is an integer then denote by ν2(q)
the exponent of 2 in the prime factorization of q.

Lemma 4.1 (Main Theorem in [11]). Let v̂ be an associated Lucas or Lehmer sequence cor-

responding to the parameters (M,N). Then we have

gcd(v̂i, v̂j) =

{

v̂gcd(i,j), if ν2(i) = ν2(j);

1 or 2, otherwise.

Our second lemma is on the multiplicity of terms in non-degenerate associated Lehmer
sequences with value ±1. It is an immediate consequence of the celebrated result of Bilu,
Hanrot, and Voutier [1] concerning the primitive prime divisors Lucas and Lehmer sequences.
By primitive prime divisor of ṽn we mean a prime divisor p of ṽn such that p does not divide ṽm
whenever m < n. In a few words, the Primitive Prime Divisor Theorem of Bilu, Hanrot and
Voutier says that the term ûn of a non-degenerate Lucas or Lehmer sequence has a primitive
prime factor for every n ≥ 31 and the cases for which n < 31 and ûn does not have a primitive
divisor are completely classified.
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Table 1. Values of (M,N,n) such that ṽn = ±1

(M,N) n
(±1 + 3N,N), N 6= ±1 1, 3

((Lk + 5Fk)/2, Fk), k 6= 0, 1, 2 1, 5
(22, 9) 1, 7

Lemma 4.2. Let ṽ = (ṽn)
∞
n=0 be a non-degenerate associated Lehmer sequence corresponding

to the parameters (M,N) with even M and odd N . Then all the triples (M,N,n), where

ṽn = ±1 are given in Table 1. Here L = (Ln)
∞
n=0 and F = (Fn)

∞
n=0 stand for the sequence of

Lucas and Fibonacci numbers, respectively.

Proof. First, observe that from the parities of the parameters and (2.2) every term with an
even indice is even too. Hence, we can confine our attention to odd indices only. A well-
known relation between the ordinary Lehmer sequence ũ = (ũn)

∞
n=0 and the associated Lehmer

sequence ṽ = (ṽn)
∞
n=0 both corresponding to the parameters (M,N) that

ṽn =
ũ2n
ũn

.

That is, whenever ũ2n have a primitive prime divisor, then ṽn also has one. Hence, we can
use the tables in [1] and with some more, but simple calculations, including the solution of a
Thue equation by Magma [2], we obtain Table 1. �

We shall also need some tools concerning the Pillai and T -Pillai properties.

Lemma 4.3. Suppose that T is a finite set of odd positive integers and let O = (On)
∞
n=0 =

(2n + 1)∞n=0 be the sequence of odd positive integers. Put

T ′ = {2α · t : t ∈ T, α = 0, 1}.
Suppose that

|T ′(X)| ≤ X

10 logX

holds for every X > X1, where

T ′(X) = {t ∈ T ′ : t ≤ X}.
Then we have

GO(T ) ≤ max(425, 2X1 + 1).

Proof. This result is an immediate consequence of Theorem 2.10 and Corollary 2.11 in [5]. �

The last lemma gives a bit more insight into some details of the so-called prime covering of
the sequence of odd positive integers.

Lemma 4.4. The sequence of odd integers O = (On)
∞
n=0 = (2n + 1)∞n=0 is a Pillai sequence

and gO = GO = 86. Further, suppose that for some even non-negative integer t the 86

consecutive odd integers t + 1, . . . , t + 171 have the property that none of them is coprime to

all the others. Then for any i ∈ {2, 4, . . . , 170} there exists an even non-negative t′ such that

none of t′ + 1, . . . , t′ + 171 is coprime to all the others, t′ + j ≡ t+ j (p) for all primes p with

2 < p < 86, and ν2(t
′ + i) > ν2(t

′ + j) for every i 6= j ∈ {1, 2, . . . , 171}.
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Proof. The fact that O is a Pillai sequence is a consequence of Theorem 1 in [13]. The values
GO = gO = 86 are given by Theorem 2.8. of [5]. To prove the second part of the statement, one
can extend the construction given in the proof of Theorem 2.8. of [5]. Namely, the appropriate
values for t are constructed by the help of a linear system of congruences, where the moduli are
the odd primes < 86. Extending this system by a congruence modulo an appropriate power of
2 (say 27), one can obtain infinitely many values for t′ satisfying the required properties. �

4.2. Proofs of the Theorems.

Proof of Theorem 3.1. We split the proof into three parts corresponding to the parities of the
parameters involved. Note that the case when M and N are both even is excluded by the
condition gcd(M,N) = 1.

Case 1.a. Let M be even and N be odd and suppose that v̂ is a non-degenerate associ-
ated Lucas sequence. The defining relation (2.1) gives that every term is even in v̂ which
immediately implies that v̂ is a Pillai sequence with gv̂ = Gv̂ = 2.

Case 1.b. Now let M and N be the same as before and suppose that v̂ is a non-degenerate
associated Lehmer sequence. Using Lemma 4.2 we obtain that the set

T = {i : v̂i = ±1},
is exactly one of the following.

{1}, {1, 3}, {1, 5}, {1, 7}.
Consider k ≥ 2 consecutive terms of v̂, say v̂t+1, . . . , v̂t+k. Observe that the recurrence
relation (2.2) gives us that every second term of v̂ is even, hence by Lemma 4.1 it is sufficient
to show that for every odd i ∈ {t+1, . . . , t+ k} there exists an odd j ∈ {t+1, . . . , t+ k} \ {i}
such that gcd(i, j) 6∈ T . That is, if the sequence O = (On)

∞
n=0 = (2n + 1)∞n=0 of positive odd

integers forms a T -Pillai sequence then the same is true for v̂. The possibilities for T and
Lemma 4.3 with some simple calculation yield

gv̂ ≤ Gv̂ ≤ 1543.

Case 2. Suppose that M and N are both odd and v̂ is a non-degenerate associated Lucas
or Lehmer sequence. Let k = 2α for some α > 0 and consider k consecutive terms of v̂, say
v̂t+1, . . . , v̂t+k. By the choice of k there exist two indices i, j ∈ {t + 1, . . . , t + k} such that
ν2(i) > ν2(j) > ν2(l) hold for every l ∈ {t+1, . . . , t+ k} \ {i, j}. Observe that by the defining
relations (2.1) and (2.2) we have that precisely every third term of v̂ is even. Obviously, i
and j differ by 2α−1, that is, cannot be divisible by 3 at the same time. Without losing
generality we can suppose that 3 - i. Then Lemma 4.1 gives us that gcd(v̂i, v̂l) = 1 for every
i 6= l ∈ {t+ 1, . . . , t+ k}. Thus, v̂ is not a Pillai sequence in this case.

Case 3. Suppose that M is odd and N is even and v̂ is a non-degenerate associated Lucas
or Lehmer sequence. Let k ≥ 2 and consider k consecutive terms of v̂, say v̂t+1, . . . , v̂t+k.
Then there exists an index i ∈ {t + 1, . . . , t + k} such that ν2(i) > ν2(j) for every i 6= j ∈
{t+1, . . . , t+k}. Lemma 4.1 gives us gcd(v̂i, v̂j) = 1 or 2, from which 2 is not possible because
by the recurrence relations (2.1) and (2.2) we have that every term of v̂ is odd. Hence, the
sequence cannot be Pillai and even gv̂ does not exist. �

Proof of Theorem 3.2. Let L = (Ln)
∞
n=0 be the sequence of Lucas numbers. The first part of

the statement, namely that L is not a Pillai sequence is a simple consequence of Theorem 3.1
because now (M,N) = (1,−1). We split the proof of the second part of the statement into
two. First we prove the existence of 171 consecutive Lucas numbers with the property that
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none of them is coprime to all the others, then we show that one cannot find such a string of
consecutive Lucas numbers with fewer terms.

From the first part of the statement of Lemma 4.4 we know that for some non-negative
even integer t the 86 consecutive odd integers t+ 1, t + 3, . . . , t+ 171 have the property that
none of them is coprime to all the others. Further, there exists a positive integer t′ such that
t′+1, t′+3, . . . , t′+171 are 86 consecutive odd integers having the latter property and 3 | t′+84
and ν2(t

′+84) > ν2(t
′+j) for every j ∈ {1, 2, . . . , 171}\{84}. Now consider the corresponding

consecutive Lucas numbers of the above indices, namely Lt′+1, Lt′+2, . . . , Lt′+171. Observe that
the recurrence relation (2.1) gives us that every third Lucas number is even, hence by 3 | t′+84,
Lt′+84 is even and cannot be coprime to all the others. As it was mentioned above for every
i ∈ {t′+1, t′+3, . . . , t′+171} there exists an index j ∈ {t′+1, t′+3, . . . , t′+171}\{i} such that
gcd(i, j) 6= 1. Note that besides L1 = 1 there are no other ±1 values in L. From Lemma 4.1 it
follows that in this case gcd(Li, Lj) 6= 1. Finally for every i ∈ {t′+2, t′+4, . . . , t′+170}\{t′+84}
there exists an index j ∈ {t′+2, t′+4, . . . , t′+170}\{t′+84} such that i 6= j and ν2(i) = ν2(j).
That is, gcd(i, j) ≥ 2, hence gcd(Li, Lj) 6= 1 which shows that Lt′+1, Lt′+2, . . . , Lt′+171 are 171
consecutive Lucas numbers none of which is coprime to all the others. Thus, gL ≤ 171.

Now it is sufficient to show that if one takes 170 or less consecutive Lucas numbers then one
of them must be coprime to all the others. Let 2 ≤ k ≤ 170 and consider k consecutive Lucas
numbers Lt+1, . . . , Lt+k. Observe that there cannot be 86 odd indices among t+ 1, . . . , t+ k.
Thus, by Lemma 4.4 we know that one of the odd indices, say i, is coprime to all the other
odd indices. Hence, from Lemma 4.1 it follows that gcd(Li, Lj) = L1 = 1 for every odd index
j 6= i. Note that if 3 | i would be valid then obviously there can be at most 5 consecutive odd
indices among t + 1, . . . , t + k. On the other hand, if 3 - i then gcd(i, j) = 1 for every j 6= i,
that is Li is coprime to all the other terms. This means that to complete the proof we shall
deal with the cases where k can be at most 11 and 3 must divide i. Using Lemma 4.1, one
can easily check that in such sets of consecutive Lucas numbers there always exists one term
with the property that it is coprime to all the others. �

Proof of Theorem 3.3. First let v̂ = (v̂)∞n=0 be a degenerate associated Lucas sequence corre-
sponding to the parameters (M,N). Recall that gcd(M,N) = 1, and N 6= 0. Let α and β be
the roots of the polynomial x2 −Mx +N . By definition, we have that the quotient of these
roots is a root of unity. This quotient can only be a rational or an algebraic integer of degree
at most two, hence, one of the following:

±1, ±i, ±ε, ±ε2,

where ε = 1+i
√
3

2 . Suppose that α/β = −ε. Then M = (1 − ε)β and N = −εβ2 which gives

us M2 = N . From the coprimality of M and N , we have that (M,N) = (1, 1), because
(M,N) = (−1, 1) would imply α/β 6= −ε. Checking all the possibilities, in an analogous way
we obtain that the parameters of degenerate associated Lucas sequences correspond to one of
the pairs

(M,N) = (0,±1), (±1, 1), (±2, 1).

The related sequences are either periodic, or lead to trivial cases, like the sequences of
positive integers, and can be handled easily; see also the papers [3, 6, 13]. The situation for
degenerate associated Lehmer sequences is similar, so we omit the details. �

Proof of Theorem 3.4. In the proof of Theorem 3.1 we mentioned that if M is even and N is
odd then every term of the associated Lucas sequence v is even. Consider k ≥ 2 consecutive
terms of v, say vt+1, . . . , vt+k. There exists an index i ∈ {t+1, . . . , t+k} such that ν2(i) > ν2(j)
for every i 6= j ∈ {t + 1, . . . , t + k}. Using Lemma 4.1, we have that gcd(vi, vj) = 1 or 2 for
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every i 6= j ∈ {t + 1, . . . , t + k} from which 1 is not possible because all the terms are even.
Thus, if 2 ∈ T then the sequence is not T -Pillai but if 2 6∈ T , then it is. �

Proof of Theorem 3.5. Suppose that M is even and N is odd, ṽ is the corresponding non-
degenerate associated Lehmer sequence and T is an arbitrary set of integers, such that the
elements of T do not have prime divisors outside a given finite set S of primes with s elements.
First, suppose that 2 ∈ T and consider k consecutive terms of ṽ say ṽt+1, . . . , ṽt+k. There
exists an index i ∈ {t+1, . . . , t+k} such that ν2(i) > ν2(j) for every i 6= j ∈ {t+1, . . . , t+k}.
Using Lemma 4.1, we have that gcd(ṽi, ṽj) = 1 or 2. Hence, ṽi is T -coprime to all the the
others and ṽ cannot be T -Pillai.

Now suppose that 2 6∈ T . Take

T ′ = {i : ṽi ∈ T}.
Recall the relation

ṽn =
ũ2n
ũn

and the Primitive Prime Divisor Theorem in [1]. From these we have that T ′ is a finite set
with at most s+15 elements. Recall that the recurrence relation (2.2) means that the parity of
a term is exactly the same as of its index. Taking k consecutive terms of ṽ, say ṽt+1, . . . , ṽt+k

and i with ν2(i) > ν2(j) for every i 6= j ∈ {t + 1, . . . , t + k}, we have that gcd(ṽi, ṽj) = 2 for
every even i 6= j ∈ {t + 1, . . . , t + k}. But since 2 6∈ T the remainder of the proof is exactly
the same as in Case 1.b. in the proof of Theorem 3.1 when v̂ is a non-degenerate associated
Lehmer sequence. We only have to replace T with T ′ there. �

Acknowledgement

We are grateful to the referee for her/his useful comments, in particular for drawing our
attention to the applicability of the Primitive Prime Divisor Theorem from [1].

References

[1] Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J.
Reine Angew. Math, 539 (2001), 75–122.

[2] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic
Comput., 24 (1997), 235-265.

[3] A. T. Brauer, On a property of consecutive integers, Bull. Amer. Math. Soc., 47 (1941), 328–331.
[4] Y. Caro, On a division property of consecutive integers, Israel J. Math., 33 (1979), 32–36.
[5] L. Hajdu and N. Saradha, On a problem of Pillai and its generalizations, Acta Arith., 144 (2010), 323–347.
[6] L. Hajdu and M. Szikszai, On the GCD-s of k consecutive terms of Lucas sequences, J. Number Theory,

132 (2012), 3056–3069.
[7] L. Hajdu and M. Szikszai, On common factors within a series of consecutive terms of an elliptic divisibility

sequence, Math. Debrecen, (to appear).
[8] F. Luca and T. N. Shorey, Diophantine equations with products of consecutive terms in Lucas sequences,

J. Number Theory, 114 (2005), 541–560.
[9] F. Luca and T. N. Shorey, Diophantine equations with products of consecutive terms in Lucas sequences,

II, Acta Arith., 133 (2008), 53–71.
[10] F. Luca and T. N. Shorey, Product of members of Lucas sequences with indices in an interval being a power,

J. Number Theory, 129 (2009), 303–315.
[11] W. L. McDaniel, The G.C.D. in Lucas sequences and Lehmer number sequences, The Fibonacci Quarterly,

29.1 (1991), 24–29.
[12] W. L. McDaniel, On the factorization of Lucas numbers, The Fibonacci Quarterly, 39.3 (2001), 206–210.
[13] M. Ohtomo and F. Tamari, On relative prime number in a sequence of positive integers, J. Stat. Plan. Inf.,

106 (2002), 509–515.
[14] S. S. Pillai, On M consecutive integers - I, Proc. Indian Acad. Sci., Sect. A., 11 (1940), 6–12.

228 VOLUME 53, NUMBER 3



COMMON FACTORS OF CONSECUTIVE TERMS OF LUCAS-LEHMER SEQUENCES

[15] C. Smyth, The terms in Lucas sequences divisible by their indices, J. Integer Sequences, 13 (2010), Article
10.2.4.

[16] L. Somer, Divisibility of terms in Lucas sequences of the second kind by their subscripts, Applications of
Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993.

MSC2010: 11B39

Institute of Mathematics, University of Debrecen, Debrecen, P.O. Box 12., H-4010, Hungary

E-mail address: hajdul@science.unideb.hu

Institute of Mathematics, University of Debrecen, Debrecen, P.O. Box 12., H-4010, Hungary

E-mail address: szikszai.marton@science.unideb.hu

AUGUST 2015 229


