
CLOSED FORM EVALUATIONS OF SOME SERIES COMPRISING SUMS

OF EXPONENTIATED MULTIPLES OF TWO-TERM AND THREE-TERM

CATALAN NUMBER LINEAR COMBINATIONS

PETER J. LARCOMBE

Abstract. Closed form evaluations of some infinite series comprising sums of exponentiated
multiples of two-term and three-term Catalan number linear combinations are presented using
three contrasting approaches. Known power series expansions of the trigonometric functions
sin(4α) and sin(6α) each readily give a set of (four) results which are re-formulated via a
hypergeometric route and, additionally, using only the generating function for the Catalan
sequence; the latter two methods are shown to be connected.

1. Introduction

Let {c0, c1, c2, c3, c4, . . .} = {1, 1, 2, 5, 14, . . .} be the Catalan sequence, with cn = 1
n+1

(

2n
n

)

the closed form of its (n + 1)th term (n ≥ 0) and (ordinary) generating function

G(x) =
1

2x
(1−

√
1− 4x) =

∑

n≥0

cnx
n (1.1)

familiar as a solution to the quadratic equation

xG2(x)−G(x) + 1 = 0. (1.2)

This paper continues the theme of [2] and presents new closed form evaluations of infinite series
comprising certain sums of exponentiated multiples of two-term and three-term Catalan num-
ber linear combinations, in that order. The first set of (four) results is obtained conveniently,
and very simply, as a direct consequence of a known expansion (in odd powers of sin(α)) of the
trigonometric function sin(4α), after which two alternative formulations are given—first from
the hypergeometric consideration of a generalized sum whose particular instances we seek,
and then more directly by appeal to the Catalan sequence generating function. The deriva-
tion process is repeated for a further set of identities in which a three-term Catalan number
combination appears instead, the series evaluations necessarily described only in brief. Those
series examined here and previously are but cases lying within a complete class of series whose
general form is known but for which theory leading to its evaluation has yet to be produced;
this, at present, poses an open problem.

Four series evaluations—of similar type but of simpler structure—were detailed in [2] through
an expansion of sin(2α) and also, separately, using the known form of G(x) in an elementary
manner. The reader will see that the increased level of complexity of the results here in this
paper is reflected more so in the hypergeometric routes employed. Collectively all three con-
trasting evaluation techniques offer analysis which is interesting, and they provide, of course,
a means of cross-verification. Two of them can in fact be connected, and this is explained
after the results sections.

On a more general point, we mention that the wider class of series expansions for sin(2pα)
(integer p ≥ 1) has its roots in the 18th century geometric work of a Chinese scholar, Antu
Ming, through which the first discovery of the Catalan numbers was made. This author has
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written extensively on the subject, and the interested reader is referred to [1], and to other
citations in another related publication [3], for further information.

2. Results Set 1

2.1. Method I: Evaluation of Known Series. The aforementioned series expansion of
sin(4α) is (see, for example, [1, Result II, p. 42] or [3, Eq. (1.3), p. 236])

sin(4α)/2 = 2sin(α)− 5sin3(α) +

∞
∑

n=1

[

8cn−1 − cn
4n

]

sin2n+3(α); (2.1)

it is the appearance of the linear combination 8cn−1 − cn of Catalan terms that forms an
essential element of our first set of series evaluations. Substituting values α = π

2 ,
π
3 ,

π
4 and π

6
into (2.1) delivers, after a little work in each case, respective results as follows:

∑

n≥1

(1/4)n[8cn−1 − cn] = 3,

∑

n≥1

(3/16)n[8cn−1 − cn] =
5

3
,

∑

n≥1

(1/8)n[8cn−1 − cn] = 1,

∑

n≥1

(1/16)n[8cn−1 − cn] = 2
√
3− 3. (2.2)

These values of α each lie within a range of convergence |α| ≤ π
2 which holds for all series

expansions of sin(2pα) (of which (2.1) gives that for p = 2), the issue of convergence in the
general case motivating the article [3] where the natural principal range of convergence |α| < π

2
was extended to |α| ≤ π

2 .
The above, then, is the set of four results that emerge naturally from the expansion (2.1)

and which, as described, we now reformulate by means of two other methods.

2.2. Method II: Hypergeometric Formulation. We begin by considering a generalized
sum T (β) of form

T (β) =
∞
∑

n=1

βn[8cn−1 − cn] (2.3)

for β 6= 0, with (2.2) comprising those evaluations for values β = 1
4 ,

3
16 ,

1
8 and 1

16 . The relation
cn+1 = [2(2n + 1)/(n+ 2)]cn between neighboring terms of the Catalan sequence allows us to
write1

T (β) = 2

∞
∑

n=1

βn

(

2n+ 5

n+ 1

)

cn−1, (2.4)

and the form of the summand now lends itself to a straightforward conversion

T (β) = 7β 3F2

(

9
2 ,

1
2 , 1

3, 72

∣

∣

∣

∣

4β

)

(2.5)

1Thus, the series of (2.2) could each have been expressed as sums of exponentiated multiples of single Catalan
numbers, as in [2], but inclusive now of an additional rational (coefficient) term involving the summing index.
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of T (β) to a hypergeometric representation by hand—this is the basis of our formulation here,
in combination with a result whose proof is given in Appendix A (the author is indebted to
Professor Ira Gessel for his proof outline which was communicated privately).

Lemma 2.1. The following hypergeometric identity holds for all values of x:

3F2

(

9
2 ,

1
2 , 1

3, 72

∣

∣

∣

∣

4x

(1 + x)2

)

=
1

7
(1 + x)(7− x).

In the first instance we seek

T

(

1

4

)

=
7

4
3F2

(

9
2 ,

1
2 , 1

3, 72

∣

∣

∣

∣

1

)

. (2.6)

To evaluate the 3F2(1) series then, in view of Lemma 2.1, we set 1 = 4x/(1+x)2 which returns
just one (repeated) solution x = 1 and gives T (14 ) =

7
4 · 1

7(1 + 1)(7 − 1) = 3 as required.
Secondly, we look for

T

(

3

16

)

=
21

16
3F2

(

9
2 ,

1
2 , 1

3, 72

∣

∣

∣

∣

3

4

)

. (2.7)

Putting 3/4 = 4x/(1 + x)2 and using the solution x = 1
3 (rather than x = 3) we see that

Lemma 2.1 gives T ( 3
16 ) =

21
16 · 1

7 (1 +
1
3)(7− 1

3) =
5
3 .

We leave the third result of (2.2) as a small reader exercise, and finish with the final one
which necessitates the evaluation of

T

(

1

16

)

=
7

16
3F2

(

9
2 ,

1
2 , 1

3, 72

∣

∣

∣

∣

1

4

)

. (2.8)

The roots of the equation 1/4 = 4x/(1 + x)2 are x = 7 ± 4
√
3, and it is x = 7 − 4

√
3 which

correctly delivers T ( 1
16 ) =

7
16 · 1

7 [1 + (7− 4
√
3)][7 − (7− 4

√
3)] = 2

√
3− 3.

2.3. Method III: Generating Function Formulation. We write, for β 6= 0,

T (β) =
∞
∑

n=1

βn[8cn−1 − cn]

= 8

∞
∑

n=1

βncn−1 −
∞
∑

n=1

βncn

= 8β

∞
∑

n=0

βncn −
∞
∑

n=1

βncn

= 8β

∞
∑

n=0

βncn −
(

∞
∑

n=0

βncn − 1

)

= (8β − 1)G(β) + 1 (2.9)
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in terms of the generating function for the Catalan sequence. Noting from (1.1) that G(14 ) = 2,

G( 3
16 ) =

4
3 and G( 1

16 ) = 8(1−
√
3/2), our required results follow immediately:

T (1/4) = G(1/4) + 1 = 2 + 1 = 3,

T (3/16) = (1/2)G(3/16) + 1 = (1/2) · (4/3) + 1 = 5/3,

T (1/8) = 1,

T (1/16) = 1− (1/2)G(1/16) = 1− (1/2) · 8(1−
√
3/2) = 2

√
3− 3. (2.10)

We finish the section with a word on convergence. As β assumes values β = 1
16 ,

1
8 ,

3
16 ,

1
4

(corresponding to α = π
6 ,

π
4 ,

π
3 ,

π
2 in the series (2.1), and moving from a more central position

within the convergence interval [−π
2 ,

π
2 ] to the edge), the convergence rates of the series (2.2)

decrease as the listing is read upwards—exponentially so between the final two; this latter
behavior is to be expected (see [2, Remark 2, p. 119] for an explanation in the context of
results there), and is exhibited also in the suite of evaluations given below.

3. Results Set 2

3.1. Method I: Evaluation of Known Series. Our starting point is the series expansion
[1, p. 43]

sin(6α)/2 = 3sin(α) − (35/2)sin3(α) + (189/8)sin5(α)

−
∞
∑

n=1

[

256cn−1 − 64cn + 3cn+1

22n+3

]

sin2n+5(α) (3.1)

for sin(6α), into which we again substitute α = π
2 ,

π
3 ,

π
4 and π

6 ; this leads eventually to the
following (resp.) series evaluations:

∑

n≥1

(1/4)n[256cn−1 − 64cn + 3cn+1] = 73,

∑

n≥1

(3/16)n[256cn−1 − 64cn + 3cn+1] = 45,

∑

n≥1

(1/8)n[256cn−1 − 64cn + 3cn+1] = 5 + 16
√
2,

∑

n≥1

(1/16)n[256cn−1 − 64cn + 3cn+1] = 13. (3.2)

3.2. Method II: Hypergeometric Formulation. We write

U(β) =

∞
∑

n=1

βn[256cn−1 − 64cn + 3cn+1]

= 198β3F2

(

13
2 ,

1
2 , 1

4, 92

∣

∣

∣

∣

4β

)

(3.3)

in hypergeometric form (β 6= 0). The evaluations of U(14), U( 3
16 ), U(18 ) and U( 1

16 ) are made in
an analogous fashion to that seen in Section 2.2, this time utilizing a different requisite lemma
(whose proof, likewise, follows the same line of argument and is left as an exercise: after some
algebra (and with reference to Appendix A for notation) it is seen to reduce simply to showing
that, for n ≥ 0, [yn]{256G(y) − 61G2(y) + 3G3(y)} = 198 · 4n(132 )n(12 )n/[(4)n(92)n] which is
straightforward, though tedious, by hand).
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Lemma 3.1. The following hypergeometric identity holds for all values of x:

3F2

(

13
2 ,

1
2 , 1

4, 92

∣

∣

∣

∣

4x

(1 + x)2

)

=
1

198
(1 + x)(198 − 55x+ 3x2).

3.3. Method III: Generating Function Formulation. Consider, for β 6= 0, a general sum

F (β; a, b, c) =
∞
∑

n=1

βn[acn−1 + bcn + ccn+1] = a
∞
∑

n=1

βncn−1 + b
∞
∑

n=1

βncn + c
∞
∑

n=1

βncn+1, (3.4)

with a, b, c arbitrary constants. Rewriting the individual sums as

∞
∑

n=1

βncn−1 = β

∞
∑

n=0

βncn = βG(β),

∞
∑

n=1

βncn =
∞
∑

n=0

βncn − 1 = G(β) − 1,

∞
∑

n=1

βncn+1 = β−1
∞
∑

n=2

βncn

= β−1

(

∞
∑

n=0

βncn − 1− β

)

= β−1[G(β)− (1 + β)], (3.5)

then (3.4) reads

F (β; a, b, c) = (aβ + b+ cβ−1)G(β) − (b+ c)− cβ−1, (3.6)

so that

U(β) = F (β; 256,−64, 3) = (256β − 64 + 3β−1)G(β) + 61− 3β−1, (3.7)

from which correct values for U(14), U( 3
16 ), U(18 ) and U( 1

16 ) are duly delivered as the reader is

invited to check (note that the function 256β − 64 + 3β−1 is identically zero at β = 3
16 and 1

16

so that G( 3
16 ) and G( 1

16 ) are not required; G(18 ) = 4(1 − 1/
√
2) is needed here, however, as

seen in the example below).

Example. We illustrate further Methods II and III with an example from one of the iden-
tities (3.2)—that for U(18). Using the value x = 3 − 2

√
2 (a solution of 4x/(1 + x)2 = 1

2),

then by (3.3) and Lemma 3.1 Method II offers the evaluation U(18) =
198
8 3F2(

13
2 ,

1
2 , 1; 4,

9
2 |12) =

198
8 · 1

198 [1 + (3 − 2
√
2)][198 − 55(3 − 2

√
2) + 3(3 − 2

√
2)2] = 5 + 16

√
2 when simplified. This

value is given by (3.7) according to Method III, on the other hand, as U(18 ) = [256(18 )− 64 +

3(8)]G(18 ) + 61− 3(8) = 37− 8G(18 ) = 37− 8 · 4(1− 1/
√
2) = 5 + 16

√
2.

Remark 3.1. T (β) is the instance T (β) = F (β; 8,−1, 0), in which case (3.6) reads as (2.9).
In [2] the sum S(β) =

∑∞
n=1 β

ncn−1 was considered, with S(β) = βG(β) recovered trivially as
S(β) = F (β; 1, 0, 0) by (3.6).
Remark 3.2. We remark that the forerunner article [2] gives only two evaluation methods
for the sum S(β) =

∑∞
n=1 β

ncn−1, corresponding to Methods I and III here. Due to the very
simple nature of S(β) a hypergeometric approach was felt unnecessary (note, however, that
the result S(14 )(=

1
4G(14 )) =

1
2 can be reproduced directly as a stand-alone one by applying a

routine hypergeometric result, as alluded to in Remark 1 therein—see Appendix B here). For
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consistency, we state the counterpart to Lemmas 2.1 and 3.1 which could have been applied—
this may be written as 2F1(

1
2 , 1; 2|4x/(1 + x)2) = G(x/(1 + x)2) = 1 + x, and is immediate

from Appendix A (note the term 1 + x common to all three results).
Remark 3.3. We know that convergence of the infinite series T (β) and U(β) (and S(β)
examined in [2]) is guaranteed over the interval β ∈ (0, 14 ]. Aside from the four values β =
1
16 ,

1
8 ,

3
16 ,

1
4 of particular interest, other evaluations can of course be made, examples of which

are T ( 1
32 ) = 3

√
14 − 11, T ( 5

32 ) =
1
5 (9 −

√
6), U( 3

32 ) =
1
3(32

√
10 − 41) and U( 7

32 ) =
1
49 (2957 −

160
√
2) (together with, for instance, S( 9

128 ) =
1
16 (8−

√
46) and S( 21

128 ) =
1
16 (8−

√
22)). These,

and those of (2.2) and (3.2), have all been confirmed numerically by calculating actual sums
to a high degree of computational convergence accuracy.
Remark 3.4. Graphs of S(β), T (β) and U(β) are (increasing) monotonic ones, and over
a relatively small β range exhibit strong linearity. Accordingly, data points generated for
β ∈ [ 1

128 ,
3
32 ] result in the following relations via linear regression: S(β) = 1.1249β − 0.0024,

T (β) = 7.7357β − 0.0142, U(β) = 215.1569β − 0.3297. Linearity strength is confirmed by a
minimum value of 0.9995 for the Pearson correlation coefficient across all three data fits.

4. Connecting Methods II and III

We end the paper with an observation which enables Methods II and III to be linked, and
demonstrate this in relation to the sum T (β). The perceptive reader might have noticed that
the values of x used in the applications of Lemma 2.1 to evaluate T (β) are, in each case, linked
to those corresponding values of β (from which they have been calculated) according to simply
x(β) = G(β)− 1. For example, x(14 ) = G(14 )− 1 = 2− 1 = 1, x( 3

16 ) = G( 3
16 )− 1 = 4

3 − 1 = 1
3 ,

and so on. This insight follows from the proof methodology adopted for Lemma 2.1 and
means that, while Methods II and III are different, the evaluating formulas (2.5) and (2.9) are
connected through Lemma 2.1 and we can in principle move from one to the other; this proves
to be so using merely the quadratic equation (1.2) governing G(x), as illustrated: we write,
beginning with (2.5), T (β) = 7β 3F2(

9
2 ,

1
2 , 1; 3,

7
2 |4β) = 7β 3F2(

9
2 ,

1
2 , 1; 3,

7
2 |4x(β)/(1+x(β))2) =

7β · 1
7 [1 + x(β)][7 − x(β)] = βG(β)[8 −G(β)] = 8βG(β) − βG2(β) = 8βG(β) − [G(β) − 1] (by

(1.2)) = (8β − 1)G(β) + 1, which is (2.9).
In a similar fashion the expression (3.7) for U(β), though requiring more algebra, can be

deduced directly from (3.3) via Lemma 3.1 (the details of which are omitted here but set out
in Appendix C for completeness).

5. Summary

Following on from previous work [2], further closed form evaluations of some series involving
Catalan numbers have been detailed. The two sets of results presented are new, and each has
been formulated using three different approaches which the author hopes will be of interest
along with the series evaluations themselves—on the latter, one feature of the eight closed
forms across (2.2) and (3.2) is the mixture of integers, irrationals and a rational.

The evaluation of a p-term sum
∑

n≥1 β
n[a

(p)
0 cn−1 + a

(p)
1 cn + a

(p)
2 cn+1 + · · · + a

(p)
p−1cn+p−2]

defining a general class of series (of which this paper and [2] address the cases p = 1, 2, 3) is a
natural one to examine in the future, as mentioned briefly in the Introduction. As a piece of
extension analysis it certainly looks to be non-trivial, with Methods II and III each contenders
for a solution to this broader problem.
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Dedication

This article is dedicated to the memory of David R. French (‘Frenchy’) who passed away
February 2014, at the age of 71, after a prolonged period of illness. A good friend, a great
colleague and an inspirational educator, sadly missed.

Appendix A

Here we prove Lemma 2.1.

Proof. Let y = x/(1 + x)2. The resulting quadratic equation 0 = yx2 + (2y − 1)x+ y in x(y)
has solutions x(y) = (1 ± √

1− 4y)/2y − 1. Taking the negative sign for the radical we use
x(y) = (1−√

1− 4y)/2y − 1 = G(y)− 1. Thus, Lemma 2.1 holds if

3F2

(

9
2 ,

1
2 , 1

3, 72

∣

∣

∣

∣

4y

)

=
1

7
[1 + (G(y) − 1)][7 − (G(y) − 1)] =

1

7
G(y)[8 −G(y)], (P.1)

which is to say (equating coefficients of yn across the equation), for n ≥ 0,

[yn]{8G(y) −G2(y)} = 7 · 4n (
9
2 )n(

1
2)n

(3)n(
7
2 )n

, (P.2)

where the rising factorial function (with (w)0 = 1)

(w)k = w(w + 1)(w + 2)(w + 3) · · · (w + k − 1) (P.3)

has been used in standard fashion (integer k ≥ 0). Now it is well-known that, for positive
integer r, the rth power of the Catalan sequence generating function G(x) takes the power
series form

Gr(x) =
∞
∑

n=0

r

2n + r

(

2n+ r
n

)

xn, (P.4)

so that we can write

[yn]{8G(y) −G2(y)} = 8
1

2n+ 1

(

2n+ 1
n

)

− 2

2n+ 2

(

2n+ 2
n

)

= 2(2n + 7)
(2n)!

n!(n + 2)!
, (P.5)

from which (P.2) follows readily, as required, using the sub-results (92)n/(
7
2 )n = (2n + 7)/7,

(3)n = (n+ 2)!/2 and (12)n = 4−n(2n)!/n! as appropriate in (P.5). �

We remark, by way of a point of interest, that the idea behind consideration of the 3F2(
9
2 ,

1
2 , 1;

3, 72 |4x/(1 +x)2) hypergeometric series of Lemma 2.1 is motivated by the fact that (i) the up-
per parameter 9/2 and lower parameter 7/2 ‘almost’ cancel, and if they were removed the
resulting 2F1 series would have parameters close to those of the hypergeometric form of the
Catalan sequence generating function G(x) = 2F1(

1
2 , 1; 2|4x), and (ii) G(x) has the property

that G(x/(1 + x)2) = 1 + x.

AUGUST 2015 259



THE FIBONACCI QUARTERLY

Appendix B

In this appendix we evaluate S(14) by appeal to a well-known theorem of Gauss. The result
states that any 2F1 hypergeometric function (with possible complex parameters and argument)
of general form

2F1

(

a1, a2
b1

∣

∣

∣

∣

z

)

(B.1)

converges for |z| < 1, and moreover at the radius of convergence z = 1 it converges if and only
if Re{b1 − (a1 + a2)} > 0 to a value

Γ(b1)Γ(b1 − a1 − a2)

Γ(b1 − a1)Γ(b1 − a2)
(B.2)

given in terms of the Gamma function. With S(β) = β 2F1(
1
2 , 1; 2|4β) we thus have (noting

convergence is assured since Re{2 − (12 + 1)} = Re{1
2} = 1

2 > 0) S(14 ) = 1
4 2F1(

1
2 , 1; 2|1) =

1
4 · Γ(2)Γ(12 )/[Γ(32 )Γ(1)]. Writing Γ(32 ) =

1
2Γ(

1
2), and noting that Γ(2) = 1! = 1 = 0! = Γ(1),

then S(14) =
1
4/

1
2 = 1

2 .

Appendix C

Here we establish the connection between those evaluating formulas of Sections 3.2 and 3.3
(under Methods II and III) for the general series U(β).

Consider, from (3.3), U(β) = 198β 3F2(
13
2 ,

1
2 , 1; 4,

9
2 |4β) = 198β 3F2(

13
2 ,

1
2 , 1; 4,

9
2 |

4x(β)
(1+x(β))2

) =

(by Lemma 3.1) 198β · 1
198 [1 + x(β)][198 − 55x(β) + 3x2(β)] = · · · = 256βG(β) − 61βG2(β) +

3βG3(β). Now, using (1.2), we replace βG2(β) with G(β)− 1, and so in turn write βG3(β) =

G(β)[βG2(β)] = G(β)[G(β) − 1] = G2(β)−G(β) = G(β)−1
β

−G(β) = ( 1
β
− 1)G(β) − 1

β
, giving

U(β) = 256βG(β)− 61[G(β)− 1]+ 3[( 1
β
− 1)G(β)− 1

β
] = (256β− 64+ 3

β
)G(β)+ 61− 3

β
, which

is (3.7).
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