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Abstract. We show that the p-adic valuation of the sequence of Fibonacci numbers is a p-
regular sequence for every prime p. For p 6= 2, 5, we determine that the rank of this sequence
is α(p) + 1, where α(m) is the restricted period length of the Fibonacci sequence modulo m.

1. Introduction

Let Fn be the nth Fibonacci number. The sequence (Fn)n≥1 is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . . .

Let a mod m denote the least nonnegative integer b such that a ≡ b mod m. It is easy to see
that for a fixed m ≥ 1 the sequence (Fn mod m)n≥1 is eventually periodic. Namely, there are
only m2 possible pairs of consecutive terms, so some pair must occur more than once. Since
the Fibonacci numbers modulo m satisfy a recurrence of order 2, the sequences beginning at
two different positions with the same initial pair coincide.

The sequence (Fn mod m)n≥1 is not just eventually periodic but in fact periodic. This
is because the nth term can be determined from terms n + 1 and n + 2, so the recurrence
can be run backward uniquely as well as forward. We denote the (minimal) period length of
(Fn mod m)n≥1 by π(m). Let α(m) be the smallest value of n ≥ 1 such that Fn ≡ 0 mod m.

Example 1.1. The sequence (Fn mod 3)n≥1 of Fibonacci numbers modulo 3 is

1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, . . . .

It is periodic with π(3) = 8 and α(3) = 4.

The quantities π(m) and α(m) are called, respectively, the period length and the restricted

period length of the Fibonacci sequence modulo m. It is known that α(m) divides π(m) [18,
Theorem 3]. For m ≥ 2, note that α(m) > 1 since F1 = 1 6≡ 0 mod m. Throughout the paper
we will use the following result [14, 7], where

(

a
b

)

is the Legendre symbol.

Theorem 1.2. Let p be a prime. Then α(p) | p−
(

5
p

)

.

For p ≡ 1, 4 (mod 5) this implies α(p) | p−1, and for p ≡ 2, 3 (mod 5) it implies α(p) | p+1.
Consider integers k ≥ 2 and n ≥ 1. The exponent of the highest power of k that divides n

is denoted by νk(n). For example, ν2(144) = 4. If k = p is prime, νp(n) is called the p-adic

valuation of n.

Example 1.3. The sequence ν3(Fn)n≥1 of 3-adic valuations of the Fibonacci numbers is

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, . . . .

Lengyel [9] discovered the structure of νp(Fn)n≥1 for prime p.
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Theorem 1.4 (Lengyel). Let p 6= 2, 5 be a prime and n ≥ 1. Then

ν5(Fn) = ν5(n),

ν2(Fn) =











ν2(n) + 2 if n ≡ 0 mod 6

1 if n ≡ 3 mod 6

0 if n ≡ 1, 2, 4, 5 mod 6,

νp(Fn) =

{

νp(n) + νp(Fα(p)) if n ≡ 0 mod α(p)

0 if n 6≡ 0 mod α(p).

Initial computations reveal that the constant term νp(Fα(p)) is equal to 1 for the first few

primes. The statement νp(Fα(p)) = 1 is equivalent to π(p2) 6= π(p) [13, Corollary 3.33].
A prime p such that νp(Fα(p)) 6= 1 is called a Wall–Sun–Sun prime (sometimes also called
a Fibonacci–Wieferich prime). It is not known if any Wall–Sun–Sun primes exist. In 2007,
McIntosh and Roettger [10] showed that there are no Wall–Sun–Sun primes p with p < 2×1014.
Dorais and Klyve [6] extended this bound to 9.7× 1014. The current bound, provided by the
PrimeGrid project [12], is 2.8× 1016.

Valuations of various combinatorial sequences have been studied by a number of researchers [2,
3, 5, 8, 11, 16, 17]. In this paper we study the p-adic valuation of the Fibonacci sequence from
the perspective of regular sequences, which we now define.

For k ≥ 2, the k-kernel of a sequence s(n)n≥0 is the set of subsequences

kerk s(n)n≥0 := {s(ken+ i)n≥0 : e ≥ 0, 0 ≤ i ≤ ke − 1}.

A sequence s(n)n≥0 is k-regular if the Z-module 〈kerk s(n)n≥0〉 generated by its k-kernel is
finitely generated. The rank of a k-regular sequence is the rank of this Z-module. The rank
of a k-regular sequence is analogous to the order of a sequence satisfying a linear recurrence
with constant coefficients. For example, since the Fibonacci sequence satisfies the recurrence
Fn+2 = Fn+1+Fn of order 2, the rank of the Z-module generated by the set {(Fn+i)n≥1 : i ≥ 0}
is also 2.

Regular sequences were introduced by Allouche and Shallit [1] and are a natural class of
sequences for the study of valuations. For example, consider the sequence νk(n+1)n≥0 (where
we index terms beginning with 0 to match the definition).

Theorem 1.5. Let k ≥ 2. Then νk(n+ 1)n≥0 is a k-regular sequence of rank 2.

Proof. Let B = {νk(n+1)n≥0, νk(k(n+1))n≥0}. We show that for each sequence s(n)n≥0 ∈ B,
the subsequence s(kn+ i)n≥0 for each 0 ≤ i ≤ k − 1 can be written as a Z-linear combination
of elements of B. Indeed, we have

νk(kn + i+ 1) =

{

0 if 0 ≤ i ≤ k − 2

νk(k(n+ 1)) if i = k − 1,

νk(k(kn + i+ 1)) =

{

−νk(n + 1) + νk(k(n + 1)) if 0 ≤ i ≤ k − 2

−νk(n + 1) + 2νk(k(n + 1)) if i = k − 1.

By an induction argument, this implies that every sequence in the k-kernel of νk(n + 1)n≥0

is a Z-linear combination of elements of B. Therefore νk(n + 1)n≥0 is k-regular with rank at
most 2. The two sequences in B are linearly independent, since −νk(n+1)+ νk(k(n+1)) = 1
for all n ≥ 0. Since both sequences belong to the k-kernel, the rank is exactly 2. �
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More generally, for a polynomial f(x) ∈ Q[x], Bell [4] showed that νp(f(n))n≥0 is p-regular
if and only if f(x) factors as a product of linear polynomials in Q[x], times a polynomial with
no root in the p-adic integers.

The main purpose of this paper is to prove the following.

Theorem 1.6. Let p 6= 2, 5 be a prime. Then νp(Fn+1)n≥0 is a p-regular sequence of rank

α(p) + 1.

The sequence νp(Fn+1)n≥0 is p-regular for the primes 2 and 5 as well. In Section 3 we prove
Theorem 1.6 and show that for p = 2 the rank is 5 and for p = 5 the rank is 2. First, in Section
2, we discuss some closure properties of regular sequences and show that the p-regularity of
νp(Fn+1)n≥0 follows from these properties, although the upper bound we obtain for the rank
is not sharp.

In an unpublished note (with the same title as the current manuscript), we were able to
show the p-regularity of the p-adic valuation of the Fibonacci sequence, although we did not
establish the rank. In [15], Shu and Yao also proved the p-regularity of νp(Fn+1)n≥0, using
p-adic analytic methods. More generally, they characterized sequences satisfying a linear
recurrence of order 2 with constant coefficients for which the sequence of p-adic valuations is
p-regular. In particular, not every such sequence of p-adic valuations is p-regular.

2. Closure Properties

For a fixed k, k-regular sequences satisfy several closure properties. We shall make use of
two of these closure properties. Since we are interested in the rank of νp(Fn+1)n≥0, we will
record the bound we obtain on the rank of each resulting sequence in terms of the ranks of
the initial sequences. The first property is closure under termwise addition [1, Theorem 2.5].

Theorem 2.1. Let k ≥ 2, and let s(n)n≥0 and t(n)n≥0 be k-regular sequences. Then (s(n) +
t(n))n≥0 is a k-regular sequence of rank at most rank s+ rank t.

Proof. Let B be a finite set of sequences that generate 〈kerk s(n)n≥0〉, and let C be a finite set
of sequences that generate 〈kerk t(n)n≥0〉. Then B ∪C generates 〈kerk(s(n) + t(n))n≥0〉. �

The second closure property states that riffling together a number of k-regular sequences
produces a k-regular sequence.

Theorem 2.2. Let s(n)n≥0 be a sequence. Let k ≥ 2 and a ≥ 1 be relatively prime integers

such that s(an+b)n≥0 is k-regular for each 0 ≤ b ≤ a−1. Let sb(n) = s(an+b). Then s(n)n≥0

is k-regular of rank at most a ·
∑a−1

b=0 rank sb.

Allouche and Shallit [1, Theorem 2.7] state this closure property without the condition that
k and a are relatively prime, although the proof is incomplete in the case gcd(k, a) ≥ 2.

Proof. For each 0 ≤ b ≤ a− 1, let

tb(n) =

{

s(n) if n ≡ b mod a

0 if n 6≡ b mod a.

We claim that tb(n)n≥0 is k-regular for each b. Consider the element tb(k
jn + c)n≥0 of the

k-kernel of tb(n)n≥0. If kjn + c ≡ b mod a then n ≡ k−j(b − c) mod a since gcd(k, a) = 1.
Therefore tb(k

jn+ c)n≥0 is the sequence

s
(

kj
(

an+
(

k−j(b− c) mod a
))

+ c
)

n≥0
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interspersed with blocks of a−1 zeros, beginning at some offset. In other words, tb(k
jn+c)n≥0

is the sequence

sb

(

kjn+
kj
(

k−j(b− c) mod a
)

+ c− b

a

)

n≥0

interspersed with blocks of a− 1 zeros, beginning at some offset. There are a possible offsets.
The module generated by all elements in the k-kernel of tb(n)n≥0 with a given offset has
rank at most rank sb. Therefore, tb(n)n≥0 is k-regular with rank tb ≤ a rank sb. Since s(n) =
∑a−1

b=0 tb(n), it follows from Theorem 2.1 that s(n)n≥0 is k-regular with rank s ≤ a
∑a−1

b=0 rank sb.
�

The p-regularity of νp(Fn+1)n≥0 follows from these closure properties.

Theorem 2.3. Let p 6= 2, 5 be a prime. Then νp(Fn+1)n≥0 is a p-regular sequence of rank at

most 3α(p).

Proof. By Theorem 1.4 we have

νp(Fn) =

{

νp(n) + νp(Fα(p)) if n ≡ 0 mod α(p)

0 if n 6≡ 0 mod α(p)

for n ≥ 1. Therefore νp(Fn+1)n≥0 is a riffle of the sequence
(

νp(α(p) · (n+ 1)) + νp(Fα(p))
)

n≥0

and α(p)−1 zero sequences. It follows from Theorem 1.2 that p and α(p) are relatively prime,
so νp(α(p) · (n+1)) = νp(n+1). We have shown in Theorem 1.5 that the rank of νk(n+1)n≥0

is 2, and the constant sequence νp(Fα(p))n≥0 has rank 1, so by Theorem 2.1 their sum has rank
at most 3. Since the rank of the zero sequence is 0, Theorem 2.2 now implies that νp(Fn+1)n≥0

is p-regular with rank at most 3α(p). �

3. Determining the Rank

In this section we prove Theorem 1.6, showing that the rank of νp(Fn+1)n≥0 is less than the
bound 3α(p) given by Theorem 2.3. As in the proof of Theorem 1.5, we exhibit generators
and relations for the Z-module generated by the p-kernel of νp(Fn+1)n≥0. First, however, we
address the primes 2 and 5.

Theorem 3.1. The sequence ν5(Fn+1)n≥0 is a 5-regular sequence of rank 2.

Proof. This follows immediately from Theorem 1.4 and Theorem 1.5. �

Theorem 3.2. The sequence ν2(Fn+1)n≥0 is a 2-regular sequence of rank 5.

Proof. Let B be the set

{ν2(Fn+1)n≥0, ν2(F2n+1)n≥0, ν2(F2n+2)n≥0, ν2(F4n+1)n≥0, ν2(F4n+3)n≥0} .

We claim 〈B〉 = 〈ker2 ν2(Fn+1)n≥0〉. The identities

ν2(F(2n+0)+1) = ν2(F2n+1) ν2(F(2n+1)+1) = ν2(F2n+2)

ν2(F2(2n+0)+1) = ν2(F4n+1) ν2(F2(2n+1)+1) = ν2(F4n+3)

ν2(F2(2n+0)+2) = 3ν2(F2n+1) ν2(F2(2n+1)+2) = ν2(F4n+1) + ν2(F2n+2)

ν2(F4(2n+0)+1) = ν2(F2n+1) ν2(F4(2n+1)+1) = ν2(F4n+1)

ν2(F4(2n+0)+3) = ν2(F4n+3) ν2(F4(2n+1)+3) = ν2(F2n+1)
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follow from applications of Theorem 1.4 and show that for each sequence s(n)n≥0 ∈ B, s(2n+
i)n≥0 ∈ 〈B〉 for each 0 ≤ i ≤ 1. Finally, one checks that the sequences in B are linearly
independent (for example, by computing the first 16 terms of each). �

We now prove Theorem 1.6. To make use of Theorem 1.2, we break the remaining primes
into equivalence classes modulo 5.

Theorem 3.3. Let p be a prime such that p ≡ 1, 4 mod 5. Then the p-regular rank of

νp(Fn+1)n≥0 is α(p) + 1.

Proof. Recall that p ≡ 1 mod α(p) by Theorem 1.2. For n ≥ 0 and 0 ≤ j ≤ α(p) − 1, let
sj(n) =

1
νp(Fα(p))

νp(Fpn+j+1). By Theorem 1.4,

sj(n) =
1

νp(Fα(p))

{

νp(pn+ j + 1) + νp(Fα(p)) if pn+ j + 1 ≡ 0 mod α(p)

0 if pn+ j + 1 6≡ 0 mod α(p).

Since p - j + 1, we have νp(pn+ j + 1) = 0, and therefore

sj(n) =

{

1 if n ≡ −(j + 1) mod α(p)

0 if n 6≡ −(j + 1) mod α(p).

In particular, each sequence sj(n)n≥0 is a sequence of integers. Consider the set B of size
α(p) + 1 consisting of the original sequence νp(Fn+1)n≥0 and the sequences sj(n)n≥0 for 0 ≤
j ≤ α(p)− 1.

First we show that the p subsequences of νp(Fn+1)n≥0 are Z-linear combinations of elements
of B. We claim for n ≥ 0 that

νp(Fpn+i+1) =

{

νp(Fα(p))si mod α(p)(n) if 0 ≤ i ≤ p− 2

νp(Fn+1) + s0(n) if i = p− 1.

To see that this holds for 0 ≤ i ≤ p−2, apply Theorem 1.4 to the left side and use the fact that
νp(pn+ i+1) = 0 since p - i+1. For i = p− 1, both sides are equal (again by Theorem 1.4) to

{

νp(n+ 1) + νp(Fα(p)) + 1 if n+ 1 ≡ 0 mod α(p)

0 if n+ 1 6≡ 0 mod α(p).

Next we show that the p subsequences of sj(n)n≥0 for each 0 ≤ j ≤ α(p) − 1 are Z-linear
combinations of elements of B. We claim

sj(pn+ i) = si+j mod α(p)(n)

for n ≥ 0 and 0 ≤ i ≤ p− 1. Indeed, both sides are equal to
{

1 if n+ i+ j + 1 ≡ 0 mod α(p)

0 if n+ i+ j + 1 6≡ 0 mod α(p).

We have shown that the rank of νp(Fn+1)n≥0 is at most α(p) + 1. It remains to show
that there are α(p) + 1 linearly independent sequences in the p-kernel of νp(Fn+1)n≥0. Since
each sequence in B is a scalar multiple of a sequence in the p-kernel, it suffices to show
that B is linearly independent. Clearly the sj(n)n≥0 for 0 ≤ j ≤ α(p) − 1 are linearly
independent, and the sequence νp(Fn+1)n≥0 is not a linear combination of the sj(n)n≥0 since
νp(Fpα(p)) = 1 + νp(Fα(p)) 6= νp(Fα(p)) even though pα(p) ≡ α(p) mod α(p). �
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Note that in the proof of Theorem 3.3 some effort was required to accommodate the pos-
sibility that νp(Fα(p)) > 1. If no Wall–Sun–Sun primes exist, then νp(Fα(p)) = 1 for all p
and some of the details could be simplified. The same is true for the proof of the following
theorem.

Theorem 3.4. Let p 6= 2 be a prime such that p ≡ 2, 3 mod 5. Then the p-regular rank of

νp(Fn+1)n≥0 is α(p) + 1.

Proof. By Theorem 1.2, we have p ≡ −1 mod α(p). We construct a basis as in the proof of
Theorem 3.3. However, there is a minor case distinction to be made. If α(p) < p + 1, let
sj(n) = 1

νp(Fα(p))
νp(Fpn+j+1) for 0 ≤ j ≤ α(p) − 1 as before. If α(p) = p + 1, let sj(n) =

1
νp(Fα(p))

νp(Fpn+j+1) only for 0 ≤ j ≤ α(p) − 3; then let sα(p)−2(n) =
1

νp(Fα(p))
νp(Fp2n+1) and

sα(p)−1(n) =
1

νp(Fα(p))
νp(Fp2n+p+1). Then by Theorem 1.4 (using the fact that p 6= 2)

sj(n) =

{

1 if n ≡ j + 1 mod α(p)

0 if n 6≡ j + 1 mod α(p)

for 0 ≤ j ≤ α(p)− 1.
Let the set B consist of the original sequence νp(Fn+1)n≥0 and the sequences sj(n)n≥0 for

0 ≤ j ≤ α(p)− 1. One checks that the relations

νp(Fpn+i+1) =

{

νp(Fα(p))si mod α(p)(n) if 0 ≤ i ≤ p− 2

νp(Fn+1) + sα(p)−2(n) if i = p− 1,

sj(pn+ i) = si−j−2 mod α(p)(n)

for 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ α(p) − 1 follow from Theorem 1.4. We omit the details. The
proof that B is linearly independent is identical to that in the proof of Theorem 3.3. �

We have now proved Theorem 1.6.
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