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Abstract. We define a new method of measuring the rate of divergence for an increasing
positive sequence of integers. We introduce the growth function for such a sequence and
its associated growth limit. We use these tools to study the divergence rate for the natural
numbers, polynomial and exponential-type sequences, and the prime numbers. We conclude
with a number of open questions concerning general properties and characterizations of growth
functions and the set of possible growth limits.

1. Introduction

The On-Line Encyclopedia of Integer Sequences currently contains about 200,000 sequences
in the database, many of which are strictly increasing sequences of positive integers. In this
paper, we focus on increasing sequences of positive integers which we will simply refer to using
the word sequence.

We propose a new method for describing the rate of divergence of a sequence and then
develop some interesting properties of this description. We will conclude by describing the
growth of the prime numbers and proving some asymptotic properties.

2. The Growth Function

We begin with two definitions that are fundamental to our paper.

Definition 2.1. Let a1, a2, a3, . . . be a sequence, we generalize the factorial function by defining
the product

P (n) :=

n
∏

j=1

aj .

Observe, if an = n, then P (n) = n!.

Definition 2.2. Let a1, a2, a3, . . . be a sequence, we define the growth function f(n) determined
by the sequence to be the largest (non-negative) integer such that

Q(n) :=

n+f(n)
∏

j=n+1

aj ≤ P (n).

The output of the growth function is the number of terms in the product Q(n). The growth
function will give us an interesting tool for comparing different sequences. In the case of the
natural numbers, f(n) is equivalent to

f(n) := max{k ∈ N : (n!)2 ≥ (n+ k)!}.
Table 1 shows the first 8 values for the growth function of the natural numbers.

Our first result studies the behavior of the growth function for an arbitrary sequence.
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Table 1. Growth function for ak = k.

n 1 2 3 4 5 6 7 8
f(n) 0 0 1 1 2 3 3 4

Theorem 2.3. Let a = {ak}∞k=1 be a sequence with growth function f. Then |f(n+ 1)− f(n)| ≤ 1
for all positive integers n.

Proof. We show f(n+ 1) ≤ f(n) + 1. Let k = f(n), so

n
∏

j=1

aj ≥
n+k
∏

j=n+1

aj,

and
n
∏

j=1

aj <
n+k+1
∏

j=n+1

aj.

Observe

an+1

n
∏

j=1

aj < an+1

n+k+1
∏

j=n+1

aj = a2n+1

n+k+1
∏

j=n+2

aj.

This implies that
n+1
∏

j=1

aj = an+1

n
∏

j=1

aj <

n+1+k+2
∏

j=n+2

aj.

Since f(n) = k, it is impossible to have f(n + 1) = k + 2. In other words, the product
∏n+1+f(n)

j=n+1 aj cannot contain two more terms than the product
∏n+f(n)

j=n+1 aj . The other required

inequality f(n + 1) ≥ f(n) − 1 follows directly from the definitions. This establishes the
result. �

Theorem 2.3 naturally leads us to define an asymptotic method of analyzing the growth
rate of a sequence.

3. The Growth Limit

We will begin by comparing the growth function to the number of terms in the sequence.

Definition 3.1. Given the growth function f of a sequence, we define the growth limit of the
sequence as

L = lim
n→∞

f(n)

n
.

It is clear that L, when it exists, satisfies 0 ≤ L ≤ 1. In fact, for the natural numbers we
can compute this limit exactly.

Theorem 3.2. The sequence of natural numbers has growth limit L = 1.

Proof. Let f be the growth function for the sequence of natural numbers. From the definition
of f we have

n! ≥ (n+ 1)(n+ 2) · · · (n+ f(n))

and
n! < (n+ 1)(n + 2) · · · (n+ f(n))(n+ f(n) + 1),
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where each term on the right hand side is less than 2n. It follows that

n! < (2n)f(n)+1,

or equivalently that
ln(n!)

ln(2n)
< f(n) + 1.

We use the inequalities n ln(n)− n < ln(n!) and f(n) < n to obtain

n ln(n)− n

n ln(2n)
<

ln(n!)

n ln(2n)
<

f(n)

n
+

1

n
< 1 +

1

n
.

Taking the limit as n approaches infinity and using the squeeze theorem,

lim
n→∞

f(n)

n
= 1.

Hence, for sequence of natural numbers, L = 1. �

It readily follows from Theorem 3.2 that any polynomial-type sequence of the form ak = ckm,
for c,m ∈ N also has growth limit 1. We leave the details as an exercise for the reader.

In contrast to these polynomial sequences, Sylvester’s sequence, sn =
n−1
∏

i=0
si + 1, for n ≥ 1

and s0 = 2, grows very fast and is known to be doubly exponential, where the nth term of

the sequence is given by bE2n+1

+ 1
2c, and E ≈ 1.26408, see [1]. The growth function, and

hence growth limit, for Sylvester’s sequence is identically zero; each new term in the sequence
is always larger than the product of the preceding terms.

We now have examples of sequences with growth limits having the extreme values of 1
(polynomial) and 0 (doubly exponential). In searching for a sequence with a growth limit
strictly between 0 and 1, it seemed natural to consider an exponential sequence.

We investigated the sequence {2k}∞k=1. For this sequence we can compute an explicit formula
for the growth function. The base of the exponential is not important and the result holds for
any base greater than one. We observe

P (n) = 2(1+2+3+···+n) = 2n(n+1)/2,

where we have used the well-known formula for the sum of consecutive integers. Again using
the same formula, and setting k = f(n), we have

Q(n) = 2(n+1)+(n+2)+···+(n+k) = 2nk+k(k+1)/2.

To find a formula for f(n), we seek the largest integer k such that

n(n+ 1)/2 ≥ nk + k(k + 1)/2.

This inequality is quadratic in k and yields

k ≤ −(1 + 2n) +
√
8n2 + 8n + 1

2
.

Thus we then set f(n) = bkc, the largest integer less than or equal to k.

Table 2. Growth function for ak = 2k and bk = k.

n 1 2 3 4 5 6 7 8 9 10
fa(n) 0 1 1 1 2 2 3 3 3 4
fb(n) 0 0 1 1 2 3 3 4 5 5
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Table 2 shows the first ten values of the growth function fa for the exponential sequence
and fb for the sequence of natural numbers. Note the slower rate of increase of the growth
function for the exponential sequence compared to the growth function for the sequence of
natural numbers. Also observe that the growth function for the exponential sequence remains
constant for three consecutive inputs, unlike the growth function for N.

We use L’Hopital’s Rule to calculate the growth limit for the exponential sequence.

L = lim
n→∞

f(n)

n
=

√
2− 1 ≈ 0.414213.

The previous example motivates the investigation of other exponential-type sequences. We
consider the family of sequences ak = 2k

m

, where m is a fixed positive integer. Table 3 shows
numerical estimates for the growth limits that were obtained using Mathematica.

Table 3. Growth limits for exponential-type sequences.

m ak Lak

1 2k 0.41421

2 2k
2

0.25992

3 2k
3

0.18921

4 2k
4

0.14870

5 2k
5

0.12246
...

...
...

We note that it is possible to construct subsequences of N for which the growth limit does
not exist. The sequences exhibiting this behavior seem pathological, but, for the sake of
completeness, we describe their construction. In order for a growth function to decrease, the
sequence must have gaps that suddenly become very large relative to the size of the proceeding
gaps. For example, the sequence

1, 2, 3, 4, 5, 6, 7, 8, 8! + 1, 8! + 2, 8! + 3, . . .

has a growth function f shown in Table 4. The 9th term, 8! + 1, is too large to include in
any of the products Q(n) for n = 1, 2, . . . 8. When n = 9 the 9th term is part of the product
P (9), which is now much larger than P (8). This allows subsequent terms in the sequence to be
included in the products Q(n) for n ≥ 9. Thus, the growth function starts to increase again.

Table 4. A non-monotonic growth function.

n 1 2 3 4 5 6 7 8 9 10
f(n) 0 0 1 1 2 2 1 0 0 1

Using the idea of large gaps to cause the growth function to decrease, we believe that it
is possible to construct a sequence for which L does not exist by having the growth function
oscillate between zero and progressively larger positive values.

The essential idea is to construct a sequence that grows like the integers until f(n) > n/2.
At this point we insert a sufficiently large integer to drive the growth function back to zero at
the (n + f(n))th term of the sequence. We then resume growth like that of the integers until
again f(n) > n/2.

We illustrate this construction with the following example:

1, 2, . . . , 13, 14, 14! + 1, 14! + 2, 14! + 3, . . . , 14! + 15, . . . , 14! + 30, 14! + 31, . . . .

68 VOLUME 54, NUMBER 1



COMPARING GROWTH OF PRIME AND NATURAL NUMBERS

Notice f(9) = 5, so f(9)/9 > 1
2 . Observe f(9) steps later the insertion of 14! + 1 forces

f(14) = 0. Next, f(29) = 15, so f(29)/29 > 1
2 . And again f(29) steps later we achieve

f(44) = 0. We conjecture that the construction can be made to meet this criteria infinitely
often resulting in

lim sup
f(n)

n
=

1

2
and lim inf

f(n)

n
= 0,

which would imply the limit L does not exist.

4. Comparing the Growth Function for the Natural Numbers and Prime

Numbers

We now consider the growth function and growth limit for the sequence of prime numbers.
Experiments show a remarkable similarity between the growth function for the primes and the
growth function for the natural numbers. Table 4 shows some values for the growth functions
of both sequences. The growth function for the primes appears to be greater than the growth
function for the natural numbers. Numerical experiments show this relationship persists as n
increases. If this property holds for all n > N , for some integer N , then it follows immediately
from Theorem 3.2 that the primes have growth limit L = 1.

Table 5. Comparison of growth functions for the natural numbers and the primes.

n Natural numbers Prime numbers

10 5 6
100 74 75
1000 817 834
10000 8595 8741
100000 88616 89790
1000000 904290 913844

For ease of understanding, let p(n) denote the growth function for the prime numbers. We
claim that growth function for the primes is strictly greater than the growth function for the
natural numbers. Our claim would easily follow from Legendre’s conjecture that there always
exists a prime number between n2 and (n + 1)2. In the absence of a proof of Legendre’s
conjecture, we have pursued a different avenue of proof using the Chebyshev function. In
particular p(n) is the largest integer such that

2θ(pn) ≥ θ(pn+p(n))

where the Chebyshev function is θ(n) =
∑

p≤n log p, and pn is the nth prime number. Using

this description of p(n) we state and prove the following theorem.

Theorem 4.1. The sequence of prime numbers has growth limit L = 1.

Proof. Let f be the growth function for the sequence of natural numbers.
In [2] it is shown that, for sufficiently large n, the Chebyshev function θ(n) satisfies

θ(pk) ≥ k

(

log k + log log k +
log log k − 2.04

log k

)

(4.1)

θ(pk) ≤ k

(

log k + log log k +
log log k − 2

log k

)

. (4.2)
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This allows the following bounds to be established.

2θ(pn) < θ(pn+p(n)+1)

≤ (n + p(n) + 1)

(

log(n+ p(n) + 1) + log log(n+ p(n) + 1)

+
log log(n+ p(n) + 1)− 2

log(n+ p(n) + 1)

)

.

Furthermore, one can see that in general p(n) < n, and so in particular

n+ p(n) + 1 ≤ 2n.

2θ(pn) ≤ (n+ p(n) + 1)

(

log(2n) + log log(2n) +
log log(2n)− 2

log(n)

)

= (n)

(

log(2n) + log log(2n) +
log log(2n)− 2

log(n)

)

+ (p(n) + 1)

(

log(2n) + log log(2n) +
log log(2n)− 2

log(n)

)

.

Therefore,

2θ(pn)

n log n
<

n
(

log(2n) + log log(2n) + log log(2n)−2
log(n)

)

n log n

+
(p(n) + 1)

(

log(2n) + log log(2n) + log log(2n)−2
log(n)

)

n log n

=

(

log(2n) + log log(2n) + log log(2n)−2
log(n)

)

log n

+
(p(n) + 1)

n

(

log(2n) + log log(2n) + log log(2n)−2
log(n)

)

log n

=

(

log(2n) + log log(2n) + log log(2n)−2
log(n)

)

log n

(

1 +
p(n)

n
+

1

n

)

.

We also note that p(n)
n < 1. Hence,

(

1 + p(n)
n

)

< 2.

Thus,

2θ(pn)

n log n

log n
(

log(2n) + log log(2n) + log log(2n)−2
log(n)

) − 1

n
<

(

1 +
p(n)

n

)

< 2. (4.3)

Equation 4.3 gives us an upper and lower bound. One can see that the limit of the upper
bound is 2. However, less obvious is that the limit of the lower bound is also two.

In order to show that the limit of the lower bound is 2 we apply the squeeze theorem to
equations (4.1) and (4.2),

lim
n→∞

2θ(pn)

n log n
= 2.
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We also note that

lim
n→∞

log n
(

log(2n) + log log(2n) + log log(2n)−2
log(n)

) = 1.

Combining these results yields

lim
n→∞

2θ(pn)

n log n

log n
(

log(2n) + log log(2n) + log log(2n)−2
log(n)

) = 2.

Therefore, we can apply the squeeze theorem to equation 4.3, and

2 ≤ lim
n→∞

(

1 +
p(n)

n

)

≤ 2.

Therefore,

lim
n→∞

p(n)

n
= 1.

�

5. Conclusion

We have introduced the idea of a growth function and an associated growth limit for an
increasing sequence of positive integers. Our results and numerical experiments lead to a
number of open questions. In particular, is there a categorization of families of sequences
that share a common growth limit? We seek a complete classification of all sequences with
growth limit L. Also of interest is the question of characterizing growth functions in general.
Specifically, given a function g : N → N ∪ {0} such that g(n) < n and |g(n + 1) − g(n)| ≤ 1,
what other conditions (if any) are required to ensure that g is the growth function of some
sequence? Determining if growth limits are rational or irrational is also an open problem.
Ultimately, we are interested in determining the complete set of all possible growth limits in
the interval [0, 1].
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