
MORE NEW ALGEBRAIC IDENTITIES AND THE FIBONACCI

SUMMATIONS DERIVED FROM THEM

R. S. MELHAM

Abstract. In this paper, we introduce certain algebraic identities that we believe are new.
For each of these algebraic identities, one side telescopes when summed. A link to the Fi-
bonacci/Lucas numbers then facilitates the derivation of closed forms for reciprocal series
that involve the Fibonacci/Lucas numbers. The term that defines the denominator of each
summand contains squares of Fibonacci related numbers, with subscripts in arithmetic pro-
gression.

1. Introduction

The Fibonacci and Lucas numbers are defined, respectively, for all integers n, by

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

With α = (1 +
√
5)/2, the Binet (closed) forms for Fn and Ln are

Fn =
(

αn + (−1)n+1α−n
)

/
√
5,

Ln = αn + (−1)nα−n,

and these closed forms are valid for all integers n.
In the recent paper [3], we present closed forms for Fibonacci related reciprocal sums. For

instance, we give closed forms, both finite and infinite, for summands of the form

L2ai+b

(F2ai+b + c)2
and

F2ai+b

(L2ai+b + c)2
,

for certain values of the constants a, b, and c. We first establish algebraic identities that
telescope when summed, and then transform the telescoping sums derived from these algebraic
identities into Fibonacci/Lucas numbers.

One of the algebraic identities that appears in [3] is

(ta − t−a)
(

t2an+b − t−2an−b
)

(t2an+b + t−2an−b + ta + t−a)
2 =

t2an+b−a

(1 + t2an+b−a)
2 − t2an+b+a

(1 + t2an+b+a)
2 ,

in which t > 1 is a real number, and n, a, and b are integers. Interestingly, the algebraic
identity in question, together with the telescoping sum derived from it, have nothing to do
with Fibonacci/Lucas numbers. The Fibonacci connection comes about when we replace t by
α.

In this paper, we continue the line of research described above. For instance, with the use
of algebraic identities that telescope when summed, we present closed forms for sums (both
finite and infinite) associated with the summands

1

F 2
2ai+b

+ c
and

F2ai+b

F 2
2ai+b

+ c
,
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for certain values of the constants a, b, and c. We also consider other summands, including
summands that alternate with the running variable i.

2. Finite Sums I

In this section, we present the first of our results on finite sums. Throughout the paper, n,
a, b, and s are taken to be integers, and henceforth we do not restate this. Precisely which
integers these parameters represent will be made clear in each situation. In Lemma 2.1, the
condition a 6= b is imposed to exclude the possibility of vanishing denominators when n = 0.

We now present our first algebraic identity. This algebraic identity, that we believe to be
new, is the source of all the results in this section.

Lemma 2.1. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0, with a 6= b. Then

(ta − t−a)
(

t2an+b + t−2an−b
)

(t2an+b + t−2an−b)
2 − (ta + t−a)2

=
1

ta(2n−1)+b − t−a(2n−1)−b
− 1

ta(2n+1)+b − t−a(2n+1)−b
. (2.1)

Proof. The product of the denominators of the algebraic fractions on the right side of (2.1)
equals the denominator of the algebraic fraction on the left side of (2.1). The proof of (2.1)
now follows by simple algebra. �

The main results in this section, which we present in Theorem 2.2, follow from Lemma 2.1.

Theorem 2.2. Let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

La

n
∑

i=0

F2ai+b

F 2
2ai+b

− F 2
a

=
1

Fb−a

− 1

Fa(2n+1)+b

, if a 6= b are both odd, (2.2)

5Fa

n
∑

i=0

L2ai+b

L2
2ai+b

− L2
a

=
1

Fb−a

− 1

Fa(2n+1)+b

, if a 6= b are both even, (2.3)

5Fa

n
∑

i=0

F2ai+b

5F 2
2ai+b

− L2
a

=
1

Lb−a

− 1

La(2n+1)+b

, if a is even and b is odd, (2.4)

La

n
∑

i=0

L2ai+b

L2
2ai+b

− 5F 2
a

=
1

Lb−a

− 1

La(2n+1)+b

, if a is odd and b is even. (2.5)

Proof. By the telescoping effect, it follows from (2.1) that
n
∑

i=0

(ta − t−a)
(

t2ai+b + t−2ai−b
)

(t2ai+b + t−2ai−b)
2 − (ta + t−a)2

=
1

tb−a − t−(b−a)
− 1

ta(2n+1)+b − t−a(2n+1)−b
. (2.6)

In (2.6), let t = α. There are four cases that arise from the possible parities of a and b. For
each of these cases, we use the Binet forms to transform (2.6) into Fibonacci/Lucas numbers.
The four different sums that arise are those given in Theorem 2.2. �

Four infinite sums follow immediately from Theorem 2.2, and we leave these to the reader
to write down.

Before proceeding, we issue a note of caution. If, in the denominator of the fraction on the
left side of (2.1), we replace t2an+b + t−2an−b by t2an+b − t−2an−b, and ta + t−a by ta − t−a,
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we obtain an identity similar to (2.1). From this identity, four finite sums similar to those in
Theorem 2.2 can be written down. However, these four sums are merely equivalent versions
of (2.2)–(2.5). This can be explained with the use of the well known identity

L2
n − 5F 2

n = 4(−1)n. (2.7)

From (2.7) it is seen that

L2
m − L2

n = 5
(

F 2
m − F 2

n

)

(2.8)

if m and n have the same parity, while

L2
m − 5F 2

n = 5F 2
m − L2

n (2.9)

if m and n have different parities.
Identity (2.8) shows that equivalent versions of (2.2) and (2.3) are, respectively,

5La

n
∑

i=0

F2ai+b

L2
2ai+b

− L2
a

=
1

Fb−a

− 1

Fa(2n+1)+b

, if a 6= b are both odd,

Fa

n
∑

i=0

L2ai+b

F 2
2ai+b

− F 2
a

=
1

Fb−a

− 1

Fa(2n+1)+b

, if a 6= b are both even.

With the use of (2.9), it is easy to write down equivalent versions of (2.4) and (2.5).
The observations that we have made in the previous two paragraphs apply to all the sums

that we present in this paper.

3. Finite Sums II

In this section, we give closed forms for four alternating finite sums. These sums are derived
from the algebraic identity contained in Lemma 3.1. We do not present a proof Lemma 3.1
since its proof is similar to that of Lemma 2.1.

Lemma 3.1. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0, with a 6= b. Then

(ta + t−a)
(

t2an+b − t−2an−b
)

(t2an+b − t−2an−b)
2 − (ta − t−a)2

=
1

ta(2n−1)+b − t−a(2n−1)−b

+
1

ta(2n+1)+b − t−a(2n+1)−b
. (3.1)

Theorem 3.2, the main result of this section, gives the alternating counterparts of (2.2)-(2.5).

Theorem 3.2. Let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

La

n
∑

i=0

(−1)iF2ai+b

F 2
2ai+b

− F 2
a

=
1

Fb−a

+
(−1)n

Fa(2n+1)+b

, if a 6= b are both even, (3.2)

5Fa

n
∑

i=0

(−1)iL2ai+b

L2
2ai+b

− L2
a

=
1

Fb−a

+
(−1)n

Fa(2n+1)+b

, if a 6= b are both odd, (3.3)

5Fa

n
∑

i=0

(−1)iF2ai+b

5F 2
2ai+b

− L2
a

=
1

Lb−a

+
(−1)n

La(2n+1)+b

, if a is odd and b is even, (3.4)

La

n
∑

i=0

(−1)iL2ai+b

L2
2ai+b

− 5F 2
a

=
1

Lb−a

+
(−1)n

La(2n+1)+b

, if a is even and b is odd. (3.5)
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Proof. In order for the right side of (3.1) to telescope when summed, alternating signs are
needed. We then have

n
∑

i=0

(−1)i (ta + t−a)
(

t2ai+b − t−2ai−b
)

(t2ai+b − t−2ai−b)
2 − (ta − t−a)2

=

n
∑

i=0

(−1)i
(

1

ta(2i−1)+b − t−a(2i−1)−b
+

1

ta(2i+1)+b − t−a(2i+1)−b

)

=
1

tb−a − t−(b−a)
+

(−1)n

ta(2n+1)+b − t−a(2n+1)−b
. (3.6)

In (3.6), put t = α. The proof of Theorem 3.2 now follows along the same lines as the proof
of Theorem 2.2. �

Four infinite sums follow from (3.2)–(3.5), and we leave the task of writing these down to
the interested reader.

4. Finite Sums III

In this section, we present closed forms for two finite sums. In each of these sums, the
numerator of the summand is constant, while the denominator involves certain squared terms
with subscripts in arithmetic progression. The sums that we present are derived from the
algebraic identity contained in Lemma 4.1. We do not present a proof Lemma 4.1 since its
proof is similar to that of Lemma 2.1.

Lemma 4.1. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0, with a 6= b. Then

t2a − t−2a

(t2an+b − t−2an−b)
2 − (ta − t−a)2

=
ta(2n−1)+b

ta(2n−1)+b − t−a(2n−1)−b

− ta(2n+1)+b

ta(2n+1)+b − t−a(2n+1)−b
. (4.1)

Theorem 4.2. Let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

2F2a

n
∑

i=0

1

F 2
2ai+b

− F 2
a

=
Lb−a

Fb−a

−
La(2n+1)+b

Fa(2n+1)+b

, if a 6= b have the same parity, (4.2)

2F2a

n
∑

i=0

1

5F 2
2ai+b

− L2
a

=
Fb−a

Lb−a

−
Fa(2n+1)+b

La(2n+1)+b

, if a and b have different parities. (4.3)

Proof. Upon summing both sides of (4.1), we see that the right side telescopes to yield

n
∑

i=0

t2a − t−2a

(t2ai+b − t−2ai−b)
2 − (ta − t−a)2

=
tb−a

tb−a − t−(b−a)
− ta(2n+1)+b

ta(2n+1)+b − t−a(2n+1)−b
. (4.4)

The two identities αn = αFn +Fn−1, and Ln = Fn+1 +Fn−1, are well-known. With the use
of these two identities, it is shown that

αn

Fn

=
Ln

2Fn

+

√
5

2
, for all integers n 6= 0, (4.5)

αn

Ln

=

√
5Fn

2Ln

+
1

2
, for all integers n. (4.6)
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With t = α, and under the assumption that a and b have the same parities, we use the Binet
forms, together with (4.5), to transform (4.4) into (4.2). Similarly, under the assumption
that a and b have different parities, we make use of (4.6) to transform (4.4) into (4.3). This
completes the proof of Theorem 4.2. �

5. Infinite Sums I

The algebraic identities that occur in Lemmas 2.1, 3.1, and 4.1 produce closed forms for
certain finite sums. Beginning in this section, we give closed forms for infinite sums that are
not readily obtained from the finite sums in Theorems 2.2, 3.2, and 4.2. The infinite sums in
question arise from algebraic identities that are more general in nature than those in Sections
2-4. The first of these algebraic identities is stated in Lemma 5.2, the proof of which is similar
to the proof of Lemma 2.1. Before stating Lemma 5.2, we specify a condition that excludes
the possibility of vanishing denominators.

Condition 5.1. Let a 6= 0, b, and s be integers. Then we say that a, b, and s satisfy Condition

5.1 if 2a|(as − b) implies that as− b < 0.

Lemma 5.2. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0, and s ≥ 1 satisfy

Condition 5.1. Then

(tas − t−as)
(

t2an+b + t−2an−b
)

(t2an+b + t−2an−b)
2 − (tas + t−as)2

=
1

ta(2n−s)+b − t−a(2n−s)−b
− 1

ta(2n+s)+b − t−a(2n+s)−b
. (5.1)

As a consequence of Lemma 5.2, we have

Lemma 5.3. Let t > 1 be a real number. Let a ≥ 1, b ≥ 0, and s ≥ 1 satisfy Condition 5.1.

Then

∞
∑

i=0

(tas − t−as)
(

t2ai+b + t−2ai−b
)

(t2ai+b + t−2ai−b)
2 − (tas + t−as)2

=
s−1
∑

i=0

1

ta(2i−s)+b − t−a(2i−s)−b
. (5.2)

Proof. Consider (5.1) for n > s. Then, by the telescoping effect,

n
∑

i=0

(tas − t−as)
(

t2ai+b + t−2ai−b
)

(t2ai+b + t−2ai−b)
2 − (tas + t−as)2

=

s−1
∑

i=0

1

ta(2i−s)+b − t−a(2i−s)−b
−

n
∑

i=n−s+1

1

ta(2i+s)+b − t−a(2i+s)−b
. (5.3)

Upon letting n → ∞ in (5.3) we obtain (5.2). �

In (5.2), let t = α. Then, considering the various parities of a, b, and s, we make use
of the Binet forms to transform (5.2) into Fibonacci/Lucas numbers. We record the various
outcomes in the theorem that follows, which is the main result in this section.
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Theorem 5.4. Let a ≥ 1, b ≥ 0, and s ≥ 1 satisfy Condition 5.1. Then

5Fas

∞
∑

i=0

L2ai+b

L2
2ai+b

− L2
as

=

s−1
∑

i=0

1

Fa(2i−s)+b

, if b is even and a or s is even, (5.4)

Las

∞
∑

i=0

L2ai+b

L2
2ai+b

− 5F 2
as

=

s−1
∑

i=0

1

La(2i−s)+b

, if b is even and a and s are odd, (5.5)

5Fas

∞
∑

i=0

F2ai+b

5F 2
2ai+b

− L2
as

=

s−1
∑

i=0

1

La(2i−s)+b

, if b is odd and a or s is even, (5.6)

Las

∞
∑

i=0

F2ai+b

F 2
2ai+b

− F 2
as

=

s−1
∑

i=0

1

Fa(2i−s)+b

, if b is odd and a and s are odd. (5.7)

The four infinite sums that arise by letting n → ∞ in (2.2)–(2.5) are obtained by putting
s = 1 in (5.4)–(5.7).

The fact that, for n odd, L−n = −Ln, allows us to write down two interesting special cases
of Theorem 5.4. These are

∞
∑

i=0

L2i

L2
2i − 5F 2

s

=
−1

L2
s

, if s ≥ 1 is odd, (5.8)

∞
∑

i=0

F2i+1

5F 2
2i+1 − L2

s

= 0, if s ≥ 2 is even. (5.9)

Here (5.8) arises from (5.5). For instance, with s = 1, (5.8) becomes

∞
∑

i=0

L2i

L2
2i − 5

= −1.

The sum (5.9) is a special case of (5.6). From (5.9) we have

∞
∑

i=0

F2i+1

5F 2
2i+1 − 9

=

∞
∑

i=0

F2i+1

5F 2
2i+1 − 49

=

∞
∑

i=0

F2i+1

5F 2
2i+1 − 324

= · · · 0.

6. Infinite Sums II

In this section, our main result, Theorem 6.3, gives closed forms for infinite sums where, in
each case, the summand alternates in sign. We require a lemma that we state without proof
since its proof is similar to the proofs of previous lemmas.

Lemma 6.1. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0, and s ≥ 1 satisfy

Condition 5.1. Then

(tas + t−as)
(

t2an+b − t−2an−b
)

(t2an+b − t−2an−b)
2 − (tas − t−as)2

=
1

ta(2n−s)+b − t−a(2n−s)−b

+
1

ta(2n+s)+b − t−a(2n+s)−b
. (6.1)

As a consequence of Lemma 6.1, we have the following lemma.
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Lemma 6.2. Let t > 1 be a real number. Let s ≥ 1 be odd, and assume that a ≥ 1, b ≥ 0,
and s satisfy Condition 5.1. Then

∞
∑

i=0

(−1)i (tas + t−as)
(

t2ai+b − t−2ai−b
)

(t2ai+b − t−2ai−b)
2 − (tas − t−as)2

=
s−1
∑

i=0

(−1)i

ta(2i−s)+b − t−a(2i−s)−b
. (6.2)

Proof. Consider (6.1) for n > s. Alternating signs are required for the right side of (6.1) to
telescope when summed. Furthermore, s must be odd. We then have

n
∑

i=0

(−1)i (tas + t−as)
(

t2ai+b − t−2ai−b
)

(t2ai+b − t−2ai−b)
2 − (tas − t−as)2

=

s−1
∑

i=0

(−1)i

ta(2i−s)+b − t−a(2i−s)−b
+

n
∑

i=n−s+1

(−1)i

ta(2i+s)+b − t−a(2i+s)−b
. (6.3)

Upon letting n → ∞ in (6.3) we obtain (6.2). �

Our next theorem, the proof of which is similar to the proof of Theorem 5.4, is an immediate
consequence of (6.2).

Theorem 6.3. Let s ≥ 1 be odd, and assume that a ≥ 1, b ≥ 0, and s satisfy Condition 5.1.

Then

Las

∞
∑

i=0

(−1)iF2ai+b

F 2
2ai+b

− F 2
as

=
s−1
∑

i=0

(−1)i

Fa(2i−s)+b

, if a and b are both even, (6.4)

5Fas

∞
∑

i=0

(−1)iL2ai+b

L2
2ai+b

− L2
as

=
s−1
∑

i=0

(−1)i

Fa(2i−s)+b

, if a and b are both odd, (6.5)

5Fas

∞
∑

i=0

(−1)iF2ai+b

5F 2
2ai+b

− L2
as

=
s−1
∑

i=0

(−1)i

La(2i−s)+b

, if a is odd and b is even, (6.6)

Las

∞
∑

i=0

(−1)iL2ai+b

L2
2ai+b

− 5F 2
as

=
s−1
∑

i=0

(−1)i

La(2i−s)+b

, if a is even and b is odd. (6.7)

We mention only one consequence of Theorem 6.3. From (6.6), it follows that

∞
∑

i=0

(−1)iF2i

5F 2
2i − L2

s

=
1

5Fs

s−1
∑

i=0

(−1)i

L2i−s

, (6.8)

where s ≥ 1 must be odd. Thus, for s = 1 and s = 3, (6.8) becomes, respectively,
∞
∑

i=0

(−1)iF2i

5F 2
2i − 1

= −1

5
,

∞
∑

i=0

(−1)iF2i

5F 2
2i − 16

=
7

40
.

7. Infinite Sums III

In this section, we give closed forms for two infinite sums where, in each case, the numerator
of the summand is unity. To this end, we require the two lemmas that follow, the first of which
we state without proof.
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Lemma 7.1. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0, and s ≥ 1 satisfy

Condition 5.1. Then

t2as − t−2as

(t2an+b − t−2an−b)
2 − (tas − t−as)2

=
ta(2n−s)+b

ta(2n−s)+b − t−a(2n−s)−b

− ta(2n+s)+b

ta(2n+s)+b − t−a(2n+s)−b
. (7.1)

Lemma 7.2. Let t > 1 be a real number. Let a ≥ 1, b ≥ 0, and s ≥ 1 satisfy Condition 5.1.

Then
∞
∑

i=0

t2as − t−2as

(t2ai+b − t−2ai−b)
2 − (tas − t−as)2

=
s−1
∑

i=0

ta(2i−s)+b

ta(2i−s)+b − t−a(2i−s)−b
− s. (7.2)

Proof. Consider (7.1) for n > s. Then, by the telescoping effect,

n
∑

i=0

t2as − t−2as

(t2ai+b − t−2ai−b)
2 − (tas − t−as)2

=

s−1
∑

i=0

ta(2i−s)+b

ta(2i−s)+b − t−a(2i−s)−b
−

n
∑

i=n−s+1

ta(2i+s)+b

ta(2i+s)+b − t−a(2i+s)−b
. (7.3)

Upon letting n → ∞ in (7.3) we obtain (7.2). �

Letting t = α in (7.2) gives

∞
∑

i=0

α2as − α−2as

(α2ai+b − α−2ai−b)
2 − (αas − α−as)2

=

s−1
∑

i=0

αa(2i−s)+b

αa(2i−s)+b − α−a(2i−s)−b
− s. (7.4)

Based on our discussion at the end of Section 2, the closed forms for only two distinct
infinite sums flow from (7.4). These infinite sums are presented in the theorem that follows.

Theorem 7.3. Let a ≥ 1, b ≥ 0, and s ≥ 1 satisfy Condition 5.1. Then

2F2as

∞
∑

i=0

1

F 2
2ai+b

− F 2
as

=
s−1
∑

i=0

La(2i−s)+b

Fa(2i−s)+b

− s
√
5, if as and b have the same parity, (7.5)

2F2as

∞
∑

i=0

1

5F 2
2ai+b

− L2
as

=
s−1
∑

i=0

Fa(2i−s)+b

La(2i−s)+b

− s√
5
, if as and b have different parities. (7.6)

Proof. Under the assumption that as and b have the same parity, we use the Binet forms,
together with (4.5), to transform (7.4) into (7.5). Similarly, under the assumption that as and
b have different parities, we make use of the Binet forms, together with (4.6), to transform
(7.4) into (7.6). �

In (7.6), set (a, b) = (1, 0). Then

2F2s

∞
∑

i=0

1

5F 2
2i − L2

s

=

s−1
∑

i=0

F2i−s

L2i−s

− s√
5
, if s ≥ 1 is odd. (7.7)

With s = 1, (7.7) becomes
∞
∑

i=0

1

5F 2
2i − 1

= −5 +
√
5

10
.
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Again, in (7.6) set (a, b) = (1, 1). Then

2F2s

∞
∑

i=0

1

5F 2
2i+1 − L2

s

=
s−1
∑

i=0

F2i+1−s

L2i+1−s

− s√
5
, if s ≥ 2 is even. (7.8)

With s = 2, (7.8) becomes
∞
∑

i=0

1

5F 2
2i+1 − 9

= −
√
5

15
.

8. Analogues of Theorem 2.2, Theorem 3.2, and Theorem 4.2

In this section, we present three algebraic identities together with the finite sums that they
produce. Indeed, the finite sums produced are analogous to the finite sums given in Theorems
2.2, 3.2, and 4.2. Once again, identities (2.8) and (2.9), with terms transposed, can be used
to prevent the duplication of identities. In this section, and the next, the condition t > 1
is enough to prevent the occurrence of vanishing denominators. Since our methods are now
clear, we state our results without proof, and invite the interested reader to supply the details.

Lemma 8.1. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

(ta − t−a)
(

t2an+b − t−2an−b
)

(t2an+b − t−2an−b)
2
+ (ta + t−a)2

=
1

ta(2n−1)+b + t−a(2n−1)−b

− 1

ta(2n+1)+b + t−a(2n+1)−b
. (8.1)

Lemma 8.1 yields the following theorem.

Theorem 8.2. Let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

La

n
∑

i=0

L2ai+b

L2
2ai+b

+ 5F 2
a

=
1

Lb−a

− 1

La(2n+1)+b

, if a and b are both odd, (8.2)

5Fa

n
∑

i=0

F2ai+b

5F 2
2ai+b

+ L2
a

=
1

Lb−a

− 1

La(2n+1)+b

, if a and b are both even, (8.3)

5Fa

n
∑

i=0

L2ai+b

L2
2ai+b

+ L2
a

=
1

Fb−a

− 1

Fa(2n+1)+b

, if a is even and b is odd, (8.4)

La

n
∑

i=0

F2ai+b

F 2
2ai+b

+ F 2
a

=
1

Fb−a

− 1

Fa(2n+1)+b

, if a is odd and b is even. (8.5)

Lemma 8.3. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

(ta + t−a)
(

t2an+b + t−2an−b
)

(t2an+b + t−2an−b)
2
+ (ta − t−a)2

=
1

ta(2n−1)+b + t−a(2n−1)−b

+
1

ta(2n+1)+b + t−a(2n+1)−b
. (8.6)

Upon multiplying (8.6) by (−1)i, we see that the right side telescopes when summed. The
outcome leads to the following theorem.
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Theorem 8.4. Let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

La

n
∑

i=0

(−1)iL2ai+b

L2
2ai+b

+ 5F 2
a

=
1

Lb−a

+
(−1)n

La(2n+1)+b

, if a and b are both even, (8.7)

5Fa

n
∑

i=0

(−1)iF2ai+b

5F 2
2ai+b

+ L2
a

=
1

Lb−a

+
(−1)n

La(2n+1)+b

, if a and b are both odd, (8.8)

5Fa

n
∑

i=0

(−1)iL2ai+b

L2
2ai+b

+ L2
a

=
1

Fb−a

+
(−1)n

Fa(2n+1)+b

, if a is odd and b is even, (8.9)

La

n
∑

i=0

(−1)iF2ai+b

F 2
2ai+b

+ F 2
a

=
1

Fb−a

+
(−1)n

Fa(2n+1)+b

, if a is even and b is odd. (8.10)

Lemma 8.5. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

t2a − t−2a

(t2an+b − t−2an−b)
2
+ (ta + t−a)2

=
t−a(2n−1)−b

ta(2n−1)+b + t−a(2n−1)−b

− t−a(2n+1)−b

ta(2n+1)+b + t−a(2n+1)−b
. (8.11)

Finally, for this section, keeping in mind that F−n = (−1)n+1Fn, and L−n = (−1)nLn, we
make use of (4.5) and (4.6), together with Lemma 8.5, to obtain the following theorem.

Theorem 8.6. Let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

2F2a

n
∑

i=0

1

5F 2
2ai+b

+ L2
a

=
Fa(2n+1)+b

La(2n+1)+b

− Fb−a

Lb−a

, if a and b have the same parity, (8.12)

2F2a

n
∑

i=0

1

F 2
2ai+b

+ F 2
a

=
La(2n+1)+b

Fa(2n+1)+b

− Lb−a

Fb−a

, if a and b have different parities. (8.13)

9. Analogues of Theorem 5.4, Theorem 6.3, and Theorem 7.3

In this section, we present three theorems that are analogous to Theorems 5.4, 6.3, and 7.3.
The results stated in these three theorems are achieved via the introduction of three algebraic
identities that can be considered as counterparts to those proved in Lemmas 5.2, 6.1, and 7.1.
As in the previous section, since our methods are now clear, we state the results of this section
with minimal commentary.

Lemma 9.1. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0, and s ≥ 1. Then

(tas − t−as)
(

t2an+b − t−2an−b
)

(t2an+b − t−2an−b)
2
+ (tas + t−as)2

=
1

ta(2n−s)+b + t−a(2n−s)−b

− 1

ta(2n+s)+b + t−a(2n+s)−b
. (9.1)

Lemma 9.1 yields

∞
∑

i=0

(tas − t−as)
(

t2ai+b − t−2ai−b
)

(t2ai+b − t−2ai−b)
2
+ (tas + t−as)2

=
s−1
∑

i=0

1

ta(2i−s)+b + t−a(2i−s)−b
, (9.2)

from which Theorem 9.2 follows.
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Theorem 9.2. Let a ≥ 1, b ≥ 0, and s ≥ 1. Then

5Fas

∞
∑

i=0

F2ai+b

5F 2
2ai+b

+ L2
as

=
s−1
∑

i=0

1

La(2i−s)+b

, if b is even and a or s is even, (9.3)

Las

∞
∑

i=0

F2ai+b

F 2
2ai+b

+ F 2
as

=
s−1
∑

i=0

1

Fa(2i−s)+b

, if b is even and a and s are odd, (9.4)

5Fas

∞
∑

i=0

L2ai+b

L2
2ai+b

+ L2
as

=
s−1
∑

i=0

1

Fa(2i−s)+b

, if b is odd and a or s is even, (9.5)

Las

∞
∑

i=0

L2ai+b

L2
2ai+b

+ 5F 2
as

=
s−1
∑

i=0

1

La(2i−s)+b

, if b is odd and a and s are odd. (9.6)

Lemma 9.3. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0, and s ≥ 1. Then

(tas + t−as)
(

t2an+b + t−2an−b
)

(t2an+b + t−2an−b)
2
+ (tas − t−as)2

=
1

ta(2n−s)+b + t−a(2n−s)−b

+
1

ta(2n+s)+b + t−a(2n+s)−b
. (9.7)

Alternating signs are required for the right side of (9.7) to telescope when summed, and
also s must be odd. It then follows from Lemma 9.3 that, for s odd,

∞
∑

i=0

(−1)i (tas + t−as)
(

t2ai+b + t−2ai−b
)

(t2ai+b + t−2ai−b)
2
+ (tas − t−as)2

=

s−1
∑

i=0

(−1)i

ta(2i−s)+b + t−a(2i−s)−b
. (9.8)

Equation (9.8) leads to the following theorem.

Theorem 9.4. Let a ≥ 1, b ≥ 0. Also let s ≥ 1 be odd. Then

Las

∞
∑

i=0

(−1)iL2ai+b

L2
2ai+b

+ 5F 2
as

=

s−1
∑

i=0

(−1)i

La(2i−s)+b

, if a and b are both even, (9.9)

5Fas

∞
∑

i=0

(−1)iF2ai+b

5F 2
2ai+b

+ L2
as

=

s−1
∑

i=0

(−1)i

La(2i−s)+b

, if a and b are both odd, (9.10)

5Fas

∞
∑

i=0

(−1)iL2ai+b

L2
2ai+b

+ L2
as

=

s−1
∑

i=0

(−1)i

Fa(2i−s)+b

, if a is odd and b is even, (9.11)

Las

∞
∑

i=0

(−1)iF2ai+b

F 2
2ai+b

+ F 2
as

=

s−1
∑

i=0

(−1)i

Fa(2i−s)+b

, if a is even and b is odd. (9.12)

The lemma that follows leads to Theorem 9.6.

Lemma 9.5. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0, and s ≥ 1. Then

t2as − t−2as

(t2an+b − t−2an−b)
2
+ (tas + t−as)2

=
t−a(2n−s)−b

ta(2n−s)+b + t−a(2n−s)−b

− t−a(2n+s)−b

ta(2n+s)+b + t−a(2n+s)−b
. (9.13)
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From Lemma 9.5, we have

∞
∑

i=0

t2as − t−2as

(t2ai+b − t−2ai−b)
2
+ (tas + t−as)2

=

s−1
∑

i=0

t−a(2i−s)−b

ta(2i−s)+b + t−a(2i−s)−b
. (9.14)

Equation (9.14) implies our final theorem, which, as in Theorem 7.3, contains two cases that
depend upon the parities of as and b.

Theorem 9.6. Let a ≥ 1, b ≥ 0, and s ≥ 1. Then

2F2as

∞
∑

i=0

1

5F 2
2ai+b

+ L2
as

=
s√
5
−

s−1
∑

i=0

Fa(2i−s)+b

La(2i−s)+b

, if as and b have the same parity, (9.15)

2F2as

∞
∑

i=0

1

F 2
2ai+b

+ F 2
as

= s
√
5−

s−1
∑

i=0

La(2i−s)+b

Fa(2i−s)+b

, if as and b have different parities. (9.16)

Equations (9.15) and (9.16) yield, respectively,

2F2s

∞
∑

i=0

1

5F 2
2i+1 + L2

s

=
s√
5
−

s−1
∑

i=0

F2i+1−s

L2i+1−s

, if s ≥ 1 is odd, (9.17)

2F2s

∞
∑

i=0

1

F 2
2i + F 2

s

= s
√
5−

s−1
∑

i=0

L2i−s

F2i−s

, if s ≥ 1 is odd. (9.18)

Let s = 1. Then (9.17) and (9.18) become, respectively,

2

∞
∑

i=0

1

5F 2
2i+1 + 1

=
1√
5
, (9.19)

2
∞
∑

i=0

1

F 2
2i + 1

= 1 +
√
5. (9.20)

10. Concluding Comments

In this paper we present closed forms for sums, both finite and infinite, where the summand
contains Fibonacci/Lucas numbers. We achieve this by first introducing certain algebraic
identities. Those algebraic identities that contain only the parameters a and b produce closed
forms for finite sums. Upon letting the upper limit n → ∞ in each of these finite sums,
we obtain infinite sums, which, to conserve space, we have not written down. The algebraic
identities that contain the parameters a, b, and s produce closed forms for infinite sums of a
more general nature than those described in the previous sentence.

Our interest in this research was sparked by the response of Almkvist [1] to the ground
breaking paper of Backstrom [2]. For more details and references, see [3], where there are also
hints regarding how our work might be adapted to more general sequences.
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