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Abstract. In this paper, we present identities that are analogous to a classical Fibonacci
identity of Aurifeuille. Aurifeuille’s identity gives certain factors of L5n, n odd. The analogues
of Aurifeuille’s identity that we present involve pairs of sequences that generalize the Fibonacci
and Lucas sequences.

1. Introduction

To present the results in this paper, we require two pairs of integer sequences. For all n, we
define the first pair of sequences by

un = un(r) = run−1 + un−2, u0 = 0, u1 = 1,

vn = vn(r) = rvn−1 + vn−2, v0 = 2, v1 = r,
(1.1)

where r is an integer. We say that r2 + 4 is the discriminant of the pair of sequences (1.1).
For r = 1, un = Fn, and vn = Ln, the Fibonacci and Lucas numbers, respectively. The second
pair of integer sequences is defined, for all integers n, by

Un = Un(r, k) = v2k+1Un−1 + Un−2, U0 = 0, U1 = 1,

Vn = Vn(r, k) = v2k+1Vn−1 + Vn−2, V0 = 2, V1 = v2k+1.
(1.2)

The sequences (1.2) rely for their definition upon the sequences (1.1). Specifically, the multi-
plier v2k+1 is known only after a value of r is stipulated for the sequences (1.1). When k = 0,
the sequences (1.2) reduce to the sequences (1.1).

An old and beautiful identity, attributed by Maxey Brooke [1] to Aurifeuille (1879), states
that

L5n = Ln (L2n + 5Fn + 3) (L2n − 5Fn + 3) , n odd. (1.3)

Identity (1.3) gives certain factors of L5n when n is odd. In order to set the tone of our main
results, we restate (1.3) with the use of the sequences (1.1), and include a generalization, (1.5),
that we proved in [3] with u2k+1 = F2k+1. We have the following theorem.

Theorem 1.1. Let n be odd. For the pair of sequences (1.1), take r = 1. For the pair of
sequences (1.2), take p = v2k+1. Then

v5n = vn

(

(v2n + 3)2 − 52u2n

)

, (1.4)

V5n = Vn

(

(V2n + 3)2 − 52u22k+1U
2
n

)

. (1.5)

Again, (1.4) is simply a restatement of (1.3), where the last two factors are written as the
difference of two squares. Notice that for k = 0, u2k+1 = 1, Un = un, Vn = vn, and (1.5)
reduces to (1.4). Some identities in the sequel are rather lengthy. Therefore, to save space, we
present all identities in a manner that is analogous to (1.4) and (1.5).

It is natural to ask if there are odd primes q, other than 5, for which Lqn factors in a manner
analogous to the right side of (1.3). We have not been able to find such primes. However, in
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Section 2, we show that such primes do exist for sequences other than the Fibonacci/Lucas
sequences. In Section 3, we state a conjecture based on the patterns in our main results, and
in Section 4 we provide a sample proof.

2. The Main Results

Our main results involve the two pairs of integer sequences (1.1) and (1.2), and are analogous
to Theorem 1.1. Specifically, for an odd prime q, we choose a value of r so that vqn and Vqn

factor in a manner analogous to the right sides of (1.4) and (1.5), respectively. The theorem
that follows addresses the case where q = 13.

Theorem 2.1. Let n be odd. For the pair of sequences (1.1), take r = 3. Then

v13n = vn

(

(v6n + 7v4n + 15v2n + 19)2 − 132 (u5n + 3u3n + 5un)
2
)

, (2.1)

V13n = Vn

(

(V6n + 7V4n + 15V2n + 19)2 − 132u22k+1 (U5n + 3U3n + 5Un)
2
)

. (2.2)

In (2.1), the last two factors are written as a difference of two squares. The first square is a
linear combination of terms, with even subscripts, drawn from {vn}, while the second square is
a linear combination of terms, with odd subscripts, drawn from {un}. The situation is similar
for (2.2), and the analogy with the results in Theorem 1.1 is clear.

By virtue of Theorem 1.1 (Theorem 2.1), we say that v5n (v13n) admits an Aurifeuille
identity, and that V5n (V13n ) admits a family (parametrized by k) of Aurifeuille identities.

In the theorems that follow, we give only the family of Aurifeuille identities associated with
the sequences (1.2). In each case, the first member (corresponding to k = 0) of the family in
question is the Aurifeuille identity associated with the sequences (1.1).

Theorem 2.2. Let n be odd. For the pair of sequences (1.1), take r = 8. Then

V17n = Vn

(

(V8n + 9V6n + 11V4n − 5V2n − 15)2

− 17222u22k+1 (U7n + 3U5n + U3n − 3Un)
2
)

. (2.3)

Theorem 2.3. Let n be odd. For the pair of sequences (1.1), take r = 5. Then

V29n = Vn

(

(V14n + 15V12n + 33V10n + 13V8n + 15V6n + 57V4n + 45V2n + 19)2

− 292u22k+1 (U13n + 5U11n + 5U9n + U7n + 7U5n + 11U3n + 5Un)
2
)

. (2.4)

We have discovered more Aurifeuille identities analogous to those presented in the theorems
of this section. Before stating some of these identities, we present a conjecture on the existence
and form of such identities. We do this in the next section.

3. A Conjecture on the Existence and Form of Aurifeuille Identities

Theorems 1.1, 2.1, and 2.3 give Aurifeuille identities admitted by vqn for q = 5, 13, and
29, respectively. In each case, for the stated value of r, q = r2 + 4 is the discriminant of the
sequences (1.1). In Theorem 2.2, r2+4 = 17× 22, so that q = 17 is the square free part of the
discriminant in question. Indeed, any odd prime q ≡ 1 (mod 4) is the square free part of the
discriminant of a pair of integer sequences (1.1). This is guaranteed by a well-known result
concerning a particular class of second order Diophantine equations. Specifically, if q ≡ 1
(mod 4) is prime, the Diophantine equation

r2 − qs2 = −4 (3.1)

20 VOLUME 54, NUMBER 1



ON A CLASSICAL FIBONACCI IDENTITY OF AURIFEUILLE

has solutions in integers r and s. This result, which we require for the conjecture that follows,
is an immediate consequence of Theorem 107 in the book of Nagell [4]. Among all solutions
with positive r and s, if r0 + s0

√
q is least, then (r0, s0) is called the fundamental solution of

(3.1).

Conjecture 3.1. Suppose q ≡ 1 (mod 4) is a prime. Let (r0, s0) be the fundamental solution
of the Diophantine equation r2 − qs2 = −4. For the pair of sequences (1.1) take r = r0. Then
there exist integers ai, 0 ≤ i ≤ (q − 1)/4, and bi, 1 ≤ i ≤ (q − 1)/4, such that

Vqn = Vn







a0 +

(q−1)/4
∑

i=1

aiV2in





2

− q2s20u
2
2k+1





(q−1)/4
∑

i=1

biU(2i−1)n





2

 ,n odd. (3.2)

For instance, in Theorem 2.2, q = 17, and (r0, s0) = (8, 2). Also, with the subscripts in
increasing order, the ai are −15, −5, 11, 9, 1, and the bi are −3, 1, 3, 1.

We now give two additional Aurifeuille identities that we have discovered. Due to the length
of these identities, it is convenient to state them with the notation in Conjecture 3.1. In each
case, we state the ai and bi with subscripts in increasing order.

Theorem 3.2. Let q = 37, and take (r0, s0) = (12, 2). Then 3.2 is true if the ai are
627, 579, 477, 397, 349, 285, 183, 79, 19, 1, and the bi are 101, 87, 71, 61, 53, 39, 21, 7, 1.

Theorem 3.3. Let q = 41, and take (r0, s0) = (64, 10). Then 3.2 is true if the ai are
−31,−65,−23, 11, 15, 35, 7, 49, 67, 21, 1, and the bi are −7,−9, 1, 1, 5, 3, 3, 11, 7, 1.

4. A Sample Proof

It is impractical to prove our theorems with the method that we employ in [3] to prove
Theorem 1.1. Instead, we have managed to prove each of our theorems with the Verification
Theorem of Dresel [2, page 171]. Although Dresel’s Theorem is stated for Fibonacci/Lucas
identities, it also applies to the sequences in the present paper. To illustrate, we prove Theorem
2.2.

In order to use Dresel’s Theorem, we first need to express (2.3) as a homogeneous identity in
the variables n and k. As Dresel explains, since (−1)n = (αβ)n, where α and β are the roots of
x2−px−1 = 0, then (−1)n is of degree 2 in the variable n. Therefore, (−1)2n is of degree 4 in
the variable n, and so on. The same is true for the variable k. Now put L(k, n) = (−1)2kV17n,
and set R(k, n) equal to

Vn

(

(−1)2k
(

V8n − 9(−1)nV6n + 11(−1)2nV4n + 5(−1)3nV2n − 15(−1)4n
)2

+ 17222u22k+1(−1)n
(

U7n − 3(−1)nU5n + (−1)2nU3n + 3(−1)3nUn

)2
)

.

We now prove that
L(k, n)−R(k, n) = 0, (4.1)

for all values of k and n.
Since (4.1) is an identity that is homogeneous of degree 4 in the variable k, to prove it with

the Verification Theorem of Dresel, we need only verify its validity for five distinct values of k.
Accordingly, we write down the cases that correspond to k = 1, 2, 3, 4, 5. Now, each of these
five cases is an identity that is homogeneous of degree 18 in the variable n. Therefore, to prove
any one of the five cases of (4.1), we need only verify its validity for eighteen distinct values
of n; say n = 1, 2, . . . , 18. With the use of the computer algebra system Mathematica 8.0, we
managed to perform these 5 × 18 verifications with two nested “For” loops, thereby proving
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the validity of (4.1) for all k and n. Finally, the validity of (4.1) for all k and n implies the
validity of (2.3) for odd n. This proves Theorem 2.2.

5. Concluding Comments and a Possible Direction for Research

We have managed to write down results, analogous to those presented in our theorems, for
q = 53, 61, 73, 89, and 97. Since the identities in question are quite lengthy, we have chosen
not to present them here.

If q ≡ 3 (mod 4) is prime, it is easily shown that (3.1) has no solutions in integers r and
s. One simply considers the four cases corresponding to the parities of r and s. Accordingly,
we have been unable to find any prime q ≡ 3 (mod 4) such that vqn admits an Aurifeuille
identity. However, we cannot prove that no such prime exists.

Since our method of discovery was computational, we can provide no information about any
patterns in the ai and bi of Conjecture 3.1. Therefore, an investigation into any such patterns
may provide a direction for future research.
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