SOME IDENTITIES FOR SEQUENCES OF BINOMIAL SUMS OF
GENERALIZED FIBONACCI NUMBERS

CHARLES K. COOK AND TAKAO KOMATSU

ABSTRACT. In [2] Komatsu obtained several sequences of binomial sums of generalized Fi-
bonacci numbers. Using a technique involving matrices used in [1] by Hoggatt and Bicknell-
Johnson a variety of binomial summation identities of these sequences are obtained.

1. INTRODUCTION

In [2] some binomial sums of generalized Fibonacci numbers satisfying u,, = au,—1 + buy—o
(n > 2) with up = 0 and u; = 1, where a and b are nonzero integers, were explored. The
author used power series and generating functions to expand the database of identities for the
generalized Fibonacci numbers. Not only were many new summation identities obtained but
some new recurrence relations arose suggesting that the opportunity for further exploration
was indicated. This paper intends to explore some of the new recurrences presented there
and using the technique of matrices and the Caley-Hamilton Theorem are able to provide
additional generalized Fibonacci number sums.

These sequences and the recurrence relations are

k=0

where ¢ is a nonzero real number, satisfies the recurrence
Tn = (ac+2)rp_1 + (b2 —ac—D)rp_o (0 >2) (1.1)
with initial conditions rg = 0 and r; = ¢;

Z (Z) R ARy, = A,

k=0

where d is a nonzero real number, satisfies the recurrence
A = (ad + 26)\p_1 + (bd® — acd — *)N\y_a  (n > 2) (1.2)

with initial conditions A9 = 0 and A\; = d [2, Theorem 2.2, 2.3].
Similar sequences were obtained for the Tribonacci numbers defined as

Tn =Up-1+ Tn—2 + Tn—3 (n > 3)

with Tp = 0 and 77 = T, = 1. The summation sequences and recurrences analogous to (1.1)
and (1.2) are as follows:
n
n\ k
> () =t
k=0
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satisfying
tn=(c+3)tn1+ (> —2c =3ty o+ (- +c+ Dtz (n>3)
and
e
Z < >c"_kdka = Sn,
k
k=0
satisfying

$n = (d+3¢)sp_1 + (d* = 2¢d — 3¢*)sp_o + (d° — cd* + d + P)s,3 (0 >3),

respectively [2, Theorem 3.2, 3.3].

2. SECOND ORDER SEQUENCES

Consider the sequence described in (1.1). To generate some summation identities the matrix
technique used in [1] and many other papers will be employed. To this end, let

A_[ac—l—Z bc2—ac—1]

1 0
so that
A [ n ] _ {7‘;:1 ] (2.1)

While the characteristic equation for A is not found to be helpful, that of A2 is, with

42— (ac+2)% + (b2 —ac—1) (ac+2)(bc®> —ac—1)
B ac+ 2 be? —ac—1 '

The characteristic equation, after simplification, is found to be
(A= (bc® — ac — 1))2 = (ac+2)%\
and
2 2 2
(A + (bc® —ac—1))" = (a® + 4b)A.
So, by the Caley-Hamilton Theorem for A2
(A% = (b —ac—1)E)* = (ac + 2)? A (2.2)

and
(A% + (b — ac— 1)E)* = (a® + 4b) A2. (2.3)

Using the binomial expansion on the left side of (2.2) and (2.3), multiplying by the initial
column vector in (2.1), from (2.2) and (2.3)

T T
=0 2k 2n

and
2n m , ,

b 2 1 2n—k 2k+1 | _ (.2 4b 2n 2n+1
Z < p >( ¢ —ac—1) [ oL (a® + 4b) o |
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respectively. Several identities follow from these relationships. For example, from the alter-
nating case

2n
2n _ .
> ( . ) (—1)F(be® = ac = 1) Fropsr = (ac+2)* a1, (2.4)
k=0
2n m
Z < I > (=1)*(bc? — ac — 1)2" Fry, = (ac + 2)*"rgy,. (2.5)
k=0

Multiplying (2.4) by (ac + 2) and (2.5) by (bc? — ac — 1) the adding yields

2n

2n
> < i ) (—1)F(be® — ac = 1)*" Fropis = (ac+ 2)* ronys - (2.6)
k=0

Similar identities can be obtained for the second case.

By raising A? to higher powers, matrix equations analogous to (2.2) and (2.3) yield a
plethora of binomial identities for the {r,} sequence. For example, A* A% and A® yield the
following:

(A4 — (bc? — ac — 1)2E)2 = ?(ac+ 2)*(a® + 4b) AL,
It follows that
2n
2
Z < ;) (=D)*(be? — ac — 1) Ry = 2 (ac + 2)*"(a® + 4b) " raps,
k=0

2n

5 (%) 1406 — ac = 1P Py = ac + 2 4+ 40 ran,
k=0

2n
2
Z < ;) (=D)*(be? — ac — 1)2@ By 0 = ™ (ac + 2)% (a? + 4b) " Fanta.
k=0

If a=b=1 and ¢ = 2 in the first two of these identities, by r, = F3,, we obtain

2n

2n
Z < i ) (—1)* Fiopss = (2° - 5)" Fionys,
k=0

2n

3 (%:) (—1)F Fiop = (25 - 5)" Fian,.

k=0
Similar binomial sums are obtained for each of the following cases:

(A* + (bc® — ac — 1)2E)2 = ((ac +2)* + 2(bc* — ac — 1))2A4,
= (ac+ 2)%(a®c® + 3bc® + ac +1)2 A5,
= ((ac +2)%(a>* + 3b¢® + ac+ 1)? + 4(bc — ac — 1)%)%4°,
= c?(ac+ 2)*(a® + 4b)(ac® + 2bc® + 2ac + 2)2 A8,
= (*(ac + 2)*(a® + 4b)(a®c* + 2bc* + 2ac + 2)*
+ 4(bc® — ac — 1)2)2A8.
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No particular pattern emerges for generalization, but it is interesting to note that if
P=ac+2 and Q=0bc%®—ac—1

the coefficients of A% on the right-hand side of the identities are respectively the minus and
plus cases P?(P?+4Q) and (P?+2Q)?; those of A% are P?(P?+3Q)? and P?(P?+3Q?%)+4Q?3;
and those of A% are P?(P? +4Q)(P? + 2Q)? and P%(P? + 4Q)(P? + 2Q)? + 4Q%.

Next, if these sequence are extended to the left, the inverse of A,

1 0 b —ac—1
b2 —ac—1|1 —(ac+2)

(A—l)n |: 1 :| _ |: Tl—n :| )
To T—n
Recalling that the eigenvalues of the inverse matrix are the inverses of the eigenvalues of the

given matrix, it follows, again using the Cayley-Hamilton Theorem, that the inverse of A2
yields

A7l =

yields

(b — ac — 1)(A™1)? = B)™" = (ac +2)*(A71)>", (2.7)
(b = ac—1)(A")2 + BE)™ = (a® + 4b)>" (A7), (2.8)

Again by the binomial expansion and applying (2.7) and (2.8), it follows that
2 (om r r
k2 o k| Ti—2k | o | T1-2n

Z(k:)( 1)¥(be® —ac—1) [ o }—(ac+2) [ . },
k=0

2n m,

Z( >(bc2_ac_1)k|:rl—2k:|:(a2+4b)2n|:741—2n:|‘

— k T2k r—2n

So for examples analogous to (2.4), (2.5), and (2.6), the following are obtained:

2n
Z:(—l)k(bc2 —ac— 1)*ri_g, = (a® 4 4b)*"r gy,
k=0
2n
Z(—l)k(bc2 —ac—1)Fr_op = (a® 4 4b)*"r_gp,
k=0
2n
Z:(—l)k(bc2 —ac—1)2""Fry o = (a® +4b)*"ry_oy,.
k=0

As above, if a = b =1 and ¢ = 2 in the first two of these identities and r,, = F3,, then

2n

2n
> < 1 > (=1)*Fi_6x = 5" Fi6n,
k=0
2n
2n n
Z < k )(_1)kF—6k =5"F_¢n-
k=0
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The inverses for A%, A% and A® cases are as follows:
( 2(A™N = B)® = A(ac + 2)%(a® + 4b) (A1),
(( (A7) + )2 ( ac+ 2)2(a® + 4b) + 4(bc® — ac — 1)2)(A_1)4,
(( PP(A™H8 — E)” = (ac + 2)*(a®c® + 3bc® + ac + 1)*(A7H)°,
((bc2 —ac—1)3(A71H0 + E)2 ( ac + 2)*(a®c® + 3bc* 4 ac + 1)? + 4(bc® — ac — 1)3)(A_1)6,
(( YHA™HE — B)” = P(ac + 2)*(a® + 4b)(a® + 2bc? + 2ac + 2)*(A™H)8,
(( )H(AT) )2 ( ac+ 2)%(a® + 4b)(a*c? + 2bc® + 2ac + 2)*
+4(be* —ac — 1)*)(A7H?.

From these several binomial identities can be constructed. All of the identities obtained for the
sequence described in (1 1) can be reproduced for the sequence of (1.2) by replacing (ac + 2)
with (ad + 2¢) and (bc? — ac — 1) with (bd? — acd — c?).

3. THIRD ORDER SEQUENCES

The matrix procedure for determining binomial sums for second order recurrences used in
[1] does not appear to lead to useful Cayley-Hamilton patterns, but some special cases of third
order sequences have been considered in [3] and [4] for some special cases and will be used
here.

Let
c+3 2—2c-3 - +c+1
B= 1 0 0
0 1 0
Then for n > 0 we have
to tnt2
B"| t1 | = | thss
tO tn

Since the characteristic equation of B? is given by

(@ - +c+1—z)P =22+ 1)(c—3)(?+5c—2)x — 4% (c + 3)z?

we have
/30
< L > (_1)k(c3 _ C2 +e+ 1)3n—kB3k
k=0
_ n 22 _ 2 _ kB3k _4nk nkBﬁ(TL k)
= K (2¢*(c 4+ 1)(c — 3)(¢” + 5c — 2)) ()" (P (c+3))
k=0
= <Z> (=1 ke2n=k e (e 1) (e — 3)%(? 4 Be — 2)%(c + 3)"F B3k, (3.1)
k=0
If we let ¢ = —1in (3.1), we obtain
3n
Z(_l)k(_2)3n—kB3k — (_2)3nB6n'
k=0
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Thus, we have for i = 0,1, 2

3n

(D)™ 2" Rt = (=2 ton i,
k=0

where t,, = 2t,_1 — 2t,—3 (n > 3) with tyo = 0 and ¢t; = t9 = —1. Since

5 ()

J=0

where T} is the jth Tribonacci number in this case, we get

i g3n—k ?fl <3k7 * Z) (—1)/T; = 2%" Gfsi <6n - Z) (—1)°T;. (3.2)

k=0 i=o N/ =0 J
If we let ¢ =3 in (3.1), we obtain
3n
Z(_l)k223n—kB3k — (_6)3nB6n’
k=0

where t,, = 6t,_1 + 22t,_3 (n > 3) with ty = 0, t; = 3 and t3 = 15. Since
n n .
J
in this case, we get for i =0, 1,2

3n 3k—+i . 6n-+1i .
D (122 h <3k ~+Z> 3Ty = (—6)" <6” -+Z> 3'T;. (3.3)

k=0 i=o N/ =0 J
If we let ¢ = —3 in (3.1), we obtain
3n
Z(_l)k(_38)3n—kB3k — (_26 . 33)3nB3n7
k=0

where t,, = —6t,,_o — 38t,_3 (n > 3) with t) =0, t; = —3 and t2 = 3. Since
w=3 (7)o
=0\
in this case, we get for i = 0,1, 2
3n 3k+i . 3n+i .
3k - 3 .
S tear Y (M) corm = s X (M) carm e

k=0 §=0 J =0 J

4. CONCLUDING REMARKS

It is hoped that the new identities presented in this paper, like so many identities obtained
historically, will be of use to Fibonacci researchers investigating both physical and mathemat-
ical applications. The techniques in this paper and those found in [2] should also be useful in
exploring sequences that do not fit the generalized Fibonacci numbers model.
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