SOME IDENTITIES INVOLVING POLYNOMIAL COEFFICIENTS
NOUR-EDDINE FAHSSI

ABSTRACT. By polynomial (or extended binomial) coefficients, we mean the coefficients in
the expansion of integral powers, positive and negative, of the polynomial 1 4+ ¢+ --- 4+ ¢t™;
m > 1 being a fixed integer. We will establish several identities and summation formulas
parallel to those of the usual binomial coefficients.

1. INTRODUCTION AND PRELIMINARIES

Definition 1.1. Let m > 1 be an integer and let py,(t) = 1+t + -+ t™. The coefficients
defined by !

(")m d:ef{ ("] (pm ()", if kEZ>, mEL (1)

k 0, if k¢ Z> or k> mn whenevern € Z,

are called polynomial coefficients [10] or extended binomial coefficients. When the rows are
indexed by n and the columns by k, the polynomial coefficients form an array called polynomial
array of degree m and denoted by T,,. The sub-array corresponding to positive n is termed
extended Pascal triangle of degree m, or Pascal-De Moivre triangle, and denoted by T.}. For
instance, the array T3 begins as shown in Table 1.

The study of the coefficients of T} is an old problem. Its history dates back at least to
De Moivre [4,11] and Euler [15]. In modern times, they have been studied in many papers,
including several in The Fibonacci Quarterly. See [16] for a systematic treatise on the subject
and an extensive bibliography.

As well as being of interest for their own right, the polynomial coefficients have applications
in number theory and combinatorics [16,18]. For this reason, the search for identities involving
them is important. This paper presents several identities, summations and generating func-
tions that generalize those fulfilled by the binomial coefficients. The author believes that most
of the results in this paper are new.

In Section 2 we will prove extensions of some of the most well-known binomial coefficient
identities (Table 2). In Section 3 we provide two types of generating functions (GF). To go
further in the extension, we prove in Section 4 a dozen identities, and give five non-trivial
summation formulas involving trinomial (m = 2) coefficients. In Section 5, we conclude with
some remarks and suggestions for further research.

It is well-known that (see [18] and [22, p.104])

(1), - <k§ ) () Gt o)
<Z>m -2 (/c ' i>m_1 (?) (3)

i=[k/m]

1We make use of the conventional notation for coefficients of the entire series : ">, a;it' = an.
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TABLE 1. The beginning of the array Tg

-3 3 -1 3 -9 9 -3 6 -18
-2 -4 2 0 3 -6
-1 0 O 1 -1 0 0o 1 -1

—_
=)
[\

1 1 1 1
2 2 3 3 2 1
3

3
«—
} o |
—
= e e

where |-] and [-] denote, respectively, the floor and ceiling functions. By using the upper
negation property of binomial coefficients : (_k") = (—1)’“("“,;_1), it is easy to check that the
four-term recurrence (2) and the equation (3) also hold true for negative n.

The sequence {(_kl)m}k will be involved in many identities. It is easy to show that (_kl)o =
[k =0] 2 (_kl)1 = (=1)*, and generally

1 1, if k=0 (modm+1)
< L > =< —1, if k=1 (modm—+1) (4)
m 0; otherwise.

2. EXTENSION OF MosT KNOWN BINOMIAL COEFFICIENT IDENTITIES
Proposition-Lemma 2.1. The extended binomial coefficient identities in Table 2 hold true.

Proof. (sketch) The factorial expansion (i) for positive n and finite m is known [7]; it is
established by an application of the usual multinomial theorem; the sum runs over all m-tuples
such that Zigm in; = k. The polynomial symmetry (ii) is a consequence of the fact that the
polynomial p,, is self-reciprocal: p,,(t) = t™p,,(t~!). The absorption/extraction identity (iii)
follows from taking the derivatives of both sides of p, ()" = >~ (Z)mtk , and equating the
coefficients of t*. The Vandermonde convolution (iv) is obtained by equating the coefficients
of t* in the sides of pF*(t) = p (t)ps,(t). The addition/induction (v) is a particular case of
Vandermonde convolution with » = 1 and s = n — 1. The generalized binomial theorem (vi) is
an obvious consequence of the definition (1). We prove the upper summation (vii) as follows :

22(9 :wq§:@Mmh4m&ﬁﬁi;i:Hﬂ 1 pm()"t -1

0<i<n 0<i<n pm(t) =1 Pm—1(t) t
k k
| ()T — 1 -1 1
N I e B i I (SRS
" pm-1(t) t N \E—i+ 1),
To prove the parallel summation (viii), we write Zog k<n (7;:15 )m = }:: (rrlLr)m = ;:On (WlLr)m’

and then, apply Identity (vii) and the symmetry (ii). To prove the horizontal recurrence (ix),

2Throughout the paper we use the Iverson bracket notation to indicate that [P] = 1 if the proposition P is
true and 0; otherwise.
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TABLE 2. Extensions of the most important binomial coefficient identities.

Identity Binomial [19] Polynomial
(i) Factorial expansion (Z) = (Z)m = nzgn i = _n;m TR . [szmz = k} integer n > 0
(ii) Symmetry (Z) = ( ) (Z)m = (mnn_ k)m integer n > 0
(ili)  Absorption/Extraction (Z) (n a 1) (Z)m = % i ) (Z : i)m integer n; k # 0
w e S (O0-03) Z0.0.-03), negerr and s
it =

(v)  Addition/Induction <Z>

n—1 n—1 n -1 .
( >—|— (k—1> k)m_Z;(k—i)m integer n

. . n n _ U lpm(z/y) — 1] <1
B | th n k,mn—k _ T, M—1
(vi) inomial theorem zz: (k) (x+y) Z (k)mx Y (Zx Yy ) ifn<0

k>0 i=0
k
1 l -1 1
(vii)  Upper summation ( ) (Z::: 1) (k) = E ( ; ) B (k: 71;:_ 1) integer n > 0
0<i<n 0<i<n m i=0 m m
1 k mr _1 1
(viii) Parallel summation < > = <T Tt ) (T N > = ( . ) < T n.—i— > integer r > 0
n mk — v ) \mr—i+1
0<k<n 0<k<n m i=0 m m

(ix)  Horizontal recurrence k<z> =Mn+1-k) (k i 1> k <k> = Z ((n+1)yi—k) (kﬁ 2) integer n
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we combine Identity (iii) with Identity (v). O

3. GENERATING FUNCTIONS
Let
o o
+ n n _ —-n n
Fk(az):z<k>x, and Fk(az):z<k>x
n=0 m n=1 m

be, respectively, the series generating the kth column of the triangle T,} and the kth column
of the upper negated sub-array T,,.

Theorem 3.1 (Vertical generating functions). The functions F,;" and Fy~ take the forms

k+1 x k+1
Fl(z)= <1 i x) P,gm)(x)a and F_ () = (—1)* ( > Plgm)(x—l), (5)

1—=x

where P,gm) are polynomials generated by

S P @)yt Lt (- Ly (6)
k=0

T 1- y+ z(1 — x)mymtl’
or, alternatively, derived from the recurrence relation
F™(@) = B)(2) - 21 - 2)"B), (@), (7)

with Po(m) (x) =1, Pl(m) (x) =z, and P,gm) () =0 for k < 0. In particular, P,gm) (x) =z for
alll <k <m.

Proof. Using the recurrence (3), we write

k . 00
- % (L E0)
i=[k/m] m—1p=0
So, from the GF of binomial coefficients : Y 7% ) (})u" = #, the function F," (z) can be
displayed in the form (5) with
k . k
P (z) = > (k ! > d1-a) = Y k) (8)
i=lk/m] \© /m=1 i=[k/m]
where «;(k) are computable coefficients. Moreover,
o o) kN k1 k l-= 1+ (z—1)y
kZ:OP]g o - kzz;)(l TR = epm((L—2)y)  1—y+a(l —z)mymi

where we have used the fact that an (Z)ma:"yk = (1 —x pm(y))_l. As for the recurrence
relation (7), we use the GF of equation (2) with respect to n to get

-1 -1
F,;"(x) = F,;"_l(:n) + ( i >m - <I<: o 1>m + :EF]:_(JJ) - xF,:'_m_l(x)
= F];"_l(:n) + :EF,j(:z:) — :EF,:r_m_l(:n),
because (_kl)m = (k_;nl_l)m for all k. So, (1 — 2)F;f(z) = F (z) — 2F  _ (x), with
Fif(z) = (1 —2)7!, and F; (z) = 2(1 — z)~2. Multiplying both sides of the last recurrence
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by (1 —x)*, we get the desired result. The expression of F, " (x) follows in the same way by
employing the formula: Y07 ) (7")u" = (—1)ZW O

n=0

Example 3.2. In the special case m = 2, the polynomials P}gz) can be explicitly determined
by partial fraction decomposition of (6). This yields

<3: + x4 — 3:13))k+1 - <:E — V- 33:))
2k+1, /2 (4 — 3z)

A different generating function is given by the following proposition.

k+1

P (z) = )

Proposition 3.3 (Carlitz Generating Functions). For any integers a and b, we have the

following GF
. (a+ Dbk (pm(y
Gm(a,b;x) := ( ) ok = 7
(@52) kzzo ko Jw Pm(y) = bypi(y)

))a-i-l

(10)

where the indeterminates x and y are related by y = x (pm(y))b.

Proof. The proposition is a special case of a theorem of Carlitz [9] on generating functions of the
form A(z)B(x)", where A(x) and B(z) are formal power series satisfying A(0) = B(0) =1. O

Remark 3.4. Closed-form expressions for Carlitz GF can be obtained for —3 < mb < 4. In
particular, we recover the known Euler GF for central trinomial coefficients:

1
VA +2)(1—3z)

4. SOME EXTENDED COMBINATORIAL IDENTITIES

G2(07 1) 33‘) =

Now we prove more identities involving polynomial coefficients.
Identity 1 (Extended entry 1.5 in [19]). Forn € Z,
b1 n _(n—1
2 ().65), - (),
Proof. The identity follows from the Vandermonde convolution. O

Identity 2 (Extended entry 1.23 in [19]). For n >0,

= n+k)/m\ __ipm n im
3 <( k;)/ > gk/m _ g+ plm).
k=0 m

m|n+k

where f,(Lm) are integers satisfying the recurrence fr(lm) =2 fr(L"_q — fr(:f) _, with fém) =1 and

m
flm) = 0 whenever n < 0.

Proof. We have, from equations (5) and (8),

— ((n+ k‘)/m> k) c- <l> Y /m o+ 142 ¢(m)
9—k/m _ g=lHn/m _ on/mpt(1 /9) = ol+i f(m)
Z( P l_%jm] n) /2) it
m|n+k N
where f,(Lm) = 2”P£m)(1 /2). The recurrence f,(Lm) =2 fy(ff)l - fr(:fzn_l follows from (7). O
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Remark 4.1. Forn > 0, fr(Lz) = Fp1+1, where Fy,4q is the (n + 1)st Fibonacci number.

Identity 3 (Extended Identity 175 in [5]). Forn >0,

R T PO

Proof. The proof is most easily carried out by using the Herb Wilf’s Snake-Oil method [25].
We will prove that the GF of the sum in LHS is equal to 1/pp,+1(z):

S-S S ()

k=0n=k k=0 =0
) o0 N 1 k+1 (m)
= P (—
Zaz <1 —|—:E> k()
k=0
x
1 —x—1
© 1 e )1 +x
- 142 T m+1
_ —2(1 m
i e T
1=z 1
C1—am™t2 paa(z)
O
Identity 4 (Extended entry 1.68 in [19]). Forn > 1,
m+1
Lmn/(m+1)] e ,if m+2|n
n—k(T— 1 n
> — =
prrd k J).n—k 1
- ——;  otherwise.
n
Proof. This identity can be cast in the following compact form:
[mn/(m+1)]| n—k n
S (") = D2 - k2 il w1l (D
k=0 m
First, we have by application of the identities (iii) and 3:
[mn/(m+1)]
_ n—k n — k k
> (), (i)
k=0 m
[mn/(m+1)]
3 (—1 net(n—Fk k
= -1
(et & (s
[mn/(m+1)] m
(iii) -1 e (n—k—1
i ( ) Y kzz< k_.)
" Jm+1 k=0 i=1 ? m
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(]

m  |[mn/(m+1)]
-1 n—k—1
<n>m+1+ ' ( ) < k—1 )m

i=1 k=i
m  |mn/(m+1)]—i i
-1 , nel—ifn—1l—i—1
- < > +y i Y (= ( z >
S R 1=0 m

m
Id. 3 —1> < -1 )
= - > i , .
<n m+1 ; n—1-=i/,,

Now, it is easy to show that both the GF of the last term (with respect to n) and the GF of
RHS of equation(11) are given by:

@) (mA2em? @
Pmt1(T) amt2 —1 11—z
This completes the proof of Identity 4. O

Identity 5 (Extended Entries 1.90 and 1.96 in [19]). Forn > 1,

T 1, if m=0 (mod 4)
Z (_1)k<n> _ 2"/2 cos (nm/4), if m=1 (mod 4)
2k),, N cos (nm/2), if m=2 (mod 4)

k=0 0, if m=3 (mod 4)

0, if m=0 (mod 4)

L(mnzé)/%(_l)k< n ) _ 2"/ 2sin (nm/4), if m=1 (mod 4)
— 2k+1) sin (nm/2), if m=2 (mod 4)

a 0, if m=3 (mod 4)

Proof. We observe that the two alternating sums are the real and the imaginary parts of
(pm(1))", (i = /—1). To establish them, we make use of the following formulas, which can be
easily shown by induction on n

Ry~ [ 2T, ifm=2p+1
= 27/2 cos(nr /4), it m=2p

Cx _ sm+1 = )

S(1—i") { 27/2(—1)P*+lsin(nw/4), if m = 2p.

Identity 6 (Extended Identity 5.23, Table 169 in [20]). For r,s >0

T S r+s r+s
20 ()= o e), = ) ez
~\g+ 1 \E+ 1/, mr—q+kj, ms+q—=Fkj,

Proof. This identity follows from the symmetry relation (ii) and the application of Vander-
monde convolution (iv). O
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Identity 7 (Extended Entries 3.78 and 3.79 in [19]). For all n > 0,

S (2). -

mn 2
(3)
>k
k=0

(i),

()

mn [ 2n
2 \mn

m

m

i(m(n — 1) +1) (i@‘_i)m

n2
2n —1 P

Proof. Placing r = s = n and ¢ = k = 0 in Identity 6 we get the first equality. The LHS of
the second equation can be written as

mn

k
nzﬁ

k=0

The third equality is proved in a similar way.

(b)),

(20, (),

2 (L0
= = I ) \l+1i),

(i)

Identity 8 (Extended Entry 3.81 in [19]). For n >0

0,
) bl

=0

n

2 (-

if mn is odd ;

if m is even;

. 2
1)Z<n> < " ) : if m is odd and n even.
i) \mn/2—i m1

Proof. Let A(n) denote the LHS of this identity. First, we observe that

n

<Z>m <mn — k:)m = [t""] (pm (=) pm(2))" .

Since the polynomial (p,,(—t) p,(t))" is an even function, A(n) vanishes if mn is odd.
If m is even, the equality p,(—t) pm(t) = pm(t?) does hold. Thus,

A(n) =

132

mn

[tmn] Z

k=0

(6 = (o)
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If m is odd and n is even, we use the equality py,(—t) pm(t) = (1 — t2) pm_1 (¢?)? and write

A = ) -1 (), = §<—1>" () o —i) 2

proving Identity 8. U

i(—l)k(z,: ): - (7).

k=0

Identity 9. Forr > 0,

Proof. Write the last term of equation (12) for m = 3 and n = 2r as

g(_l)i <2;~> (rﬁi)'

Employing the formula (Entry 3.57 in [19]):

(7)) = () g

=0 r

with x = r, Identity 8 simplifies to Identity 9. O
Identity 10 (Extended Identity 155 in [5]). For alln >0,

2, 06,2 0)6)

£0.0)- 2o ()52

J=0

Proof. The GF with respect to k of both sides of the first equation is straightforwardly given
by (1+ pm(t))™. Moreover, the GF of the LHS of the second equation is (py,(1 4+ ¢))". On the
other hand,

(1 +6)" = EFe ((L+ )™t —1)"

_ [tk-l-n] <n (—1)"_j(t+ 1)j(m+1)
=0

<.
<

proving Identity 10. U

4.1. Some non-trivial identities for trinomial coefficients. The trinomial coefficients
(m = 2) can be written in terms of the Gegenbauer polynomials® as

<Z> = M (=1/2) = (~1)FCL(1/2). (13)
2

3The Gegenbauer polynomials Cﬁza)(x) are defined by (1 — 2zt +¢)™* =320 | O ()t [1, p.783).
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Through this connection, many properties of Gegenbauer polynomials can be specialized to
give non-trivial identities for trinomial coefficients. We list some of them with the belief that
they may stimulate further extensions.

Identity 11 (Dilcher formula [12]). Ifn > 1, then

TN gk T\ JkT
<k‘>2_( 1) Z <1+2cosn+k> <1+2cosn+k>.

1<1< <gp<n+k—1

Proof. Identity 11 is a specialization of a formula for Gegenbauer polynomials due to Dilcher [12].
O

Remark 4.2. The original formula in [12] contains a minor typographical error. The correct
one s

() () — on am o\ o JkT S
CY(x) =2 Z <x+cosn+k> <$+cosn+k>, k> 0.

1<51<...<Jn <n+k—1

Identity 12 (see [21], formula 32, p.282). For p > 0,

kiO (n— k) (k (Jr:—];(f):r(;pzz ﬁJlr ”) <_k7p>2 - m <Z>n7

where the Pochhammer symbol (x), is defined by (z), = x(x +1)---(x +n—1).
Identity 13 (see [21], formula 36, p.283). For p >0,

Z +Tl—2k —p _(—1)”
k' n—2/<;2_ nl

n+1 k

Identity 14 (A series of products of three trinomial coefficients [8]). Forn >1,
i(—l)k (k+n)K'%2 [—n 3_ 2"/3  om
P (k+2n—1)I12\ k Jy, 331 (n—1)14"
Identity 15 (see [21], formula 31, p.282). Forn >0 and |t| < 1,

o —
1/2 _ 2n—1/2 t n+1/2
Z("+ _/)’f< ")tk:7<1+—+ 1+t+t2> :
= @ \ Kk VI+t+t2 2
For more formulas involving Gegenbauer polynomials, we refer the reader to the Dougall’s
linearization formula [3, p.39], the Gegenbauer connection formula [3, p.59] and to others

in [2, equation (1.4)], [23, equation (19)], [24]. It would be instructive to generalize the above
trinomial identities for arbitrary order m.

5. CONCLUDING REMARKS

In this paper, we have proved a selection of extended binomial coefficient identities; a
more ambitious task is obviously to extend all the known properties of the Pascal triangle, as
suggested by Comtet [10].

It is well-known that [10, p. 77]

<Z>m B %/om (%)n cos ((nm — 2k)t) dt.
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Through this integral representation, one possibly may establish combinatorial identities in
the manner of Egorychev [14]. A natural extension for real values of n, k and m can also be
considered.

We stress, finally, that several combinatorial interpretations for the polynomial coefficients
are known [16]; an instructive exercice would be to seek, & la Benjamin and Quinn [5], combi-
natorial proofs of the above identities.
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