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Abstract. The Diophantine equation x2 = 5y2 − 4 and its three classes of solutions for
automorphs will be discussed. For n an odd positive integer, any ordered pair (x, y) =
(L2n−1, F2n−1) is a solution to the equation and all of the solutions are (±L2n−1,±F2n−1).
We will demonstrate how to create a parameter k linking k3+3k to the terms x and y of such
a solution (x, y). This will produce some new identities involving the Fibonacci numbers and
Lucas numbers.

1. Introduction

This article deals with the solutions of the Diophantine equation

x2 = 5y2 − 4. (1.1)

These solutions are well-known [6, Vol. 1, Theorem 8.7, p. 148] and will be classified using a
group of automorphs of the form x2 − 5y2 [13, p. 165]. With the help of the number theory
program [8], we will find three classes of solutions, one improper solution (gcd(x,y)=2) and
two proper solutions (gcd(x,y)=1), to (1.1) with

(x, y) = (4, 2), (x, y) = (1, 1), (x, y) = (−1, 1). (1.2)

For each class, the solutions can be described by the automorph
[

xn+1

yn+1

]

= ±

[

9 20
4 9

] [

xn
yn

]

. (1.3)

More information on this classical subject can be found at [6, Vol. 1, Chapter 8], [13, Sec-
tion 9.3, p. 161–168], [4, Theorem 2.2.9, p. 44], [5, 11, 12]. In order to explain the concept of
attached number to each class, as defined by [13, p. 165], we will use a parameter kn∈ Z linking
k3n + 3kn to xn and yn. To accomplish this task, we will make use of Sloane’s On-line Ency-
clopedia of Integer Sequences (OEIS) [9]. In particular, we will use extensively the Fibonacci
and Lucas sequences. It is well-known [7, Theorem 7, p. 91], [15, Fundamental identity], [3,
p. 29], [14, p. 30] that for all n ∈ N

L2
n = 5F 2

n + 4(−1)n. (1.4)

Thus, for any odd positive integer, the solutions of equation (1.1) are obtained. We will explore
the three cases given in (1.2) using (Ln, Fn) = (xn, yn).

2. Observations Within The Class Of (4, 2)

Let (x1, y1) = (4, 2). If we set x1 = k31 + 3k1, k1 = 1. Using (1.3), (x2, y2) = (76, 34). If we
set x2 = k32 +3k2, k2 = 4. Using (1.3), (x3, y3) = (1364, 610). If we set x3 = k33 +3k3, k3 = 11.
Continuing this process using (1.3), we have the following table.
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n 1 2 3 4 5 . . .

xn 4 76 1364 24476 439204 . . .

yn 2 34 610 10946 196418 . . .

kn 1 4 11 29 76 . . .

From [9], {kn} is the sequence A002878 defined by k1 = 1, k2 = 4, and for n ≥ 1,

kn+2 = 3kn+1 − kn.

The {kn} sequence is just the odd indexed terms of the Lucas sequence and the {xn} sequence
is every sixth Lucas number starting at L3 = 4. These relationships are stated and proved in
the following proposition.

Proposition 2.1. Let n be a positive integer. Then

xn = L6n−3 = L3
2n−1 + 3L2n−1 = k3n + 3kn. (2.1)

Proof. If j is a positive integer, the combination of the two conditions from [1, p. 41, p. 37]

L3j = Lj(L2j + (−1)j−1) and L2j = L2
j + 2(−1)j+1.

produces
L3j = L3

j + 3(−1)j+1Lj . (2.2)

If j = 2n− 1, the relation (2.1) is established. �

It should be noted that the {yn} sequence is just every sixth Fibonacci number starting
with F3 = 2.

3. Observations Within The Class Of (1, 1)

Let (x1, y1) = (1, 1) = (L1, F1). Extending the Fibonacci numbers to negative indices, we
set k1 = 1 = F

−1. Using (1.3), (x2, y2) = (29, 13) = (L7, F7). Set k2 = 5 = F5. Using (1.3),
(x3, y3) = (1364, 610) = (L13, F13). Set k3 = 89 = F11. Continuing this process using (1.3),
we have the following table.

n 1 2 3 4 5 . . .

xn 1 29 521 9349 167761 . . .

yn 1 13 233 4181 75025 . . .

kn 1 5 89 1597 28657 . . .

This data suggests the following congruence to be true. Let n be a positive integer. Then

xn ≡ y2n − k3n − 3kn (mod 2y2n).

We will now prove this congruence with the following proposition.

Proposition 3.1. Let n be a positive integer. Then

L6n−5 ≡ F 2
6n−5 − F 3

6n−7 − 3F6n−7 (mod 2F 2
6n−5). (3.1)

Before proving Proposition 3.1 we consider the values of expression

y2n − k3n − 3kn − xn

2y2n
.

We obtain the following table.
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Table 1

n 1 2 3 4 5
y2
n
−k3

n
−3kn−xn

2y2
n

−2 0 −6 −116 −2090

All the numbers in the above expression are even. Using [9] to find the sequence A049661, we
have the following lemma.

Lemma 3.2.
F 2
6n−5 − F 3

6n−7 − 3F6n−7 − L6n−5

2F 2
6n−5

= −2
F6n−11 − 1

4
. (3.2)

Proof. The two conditions to demonstrate, implying the former relation, are

4 | (F6n−11 − 1) and L6n−5 = F6n−11F
2
6n−5 − F 3

6n−7 − 3F6n−7.

For the divisibility by 4, use [3, p. 56 and Theorem III, p. 39] to state the following for all
positive integers j.

F6j+1 = F 2
3j+1 + F 2

3j , F3 = 2 | F3j even, F3j+1 odd, F6j+1 ≡ 1 (mod 4).

This proves the divisibility by 4. Using L6n−5 = F6n−3 −F6n−7 from [3, Problem 11, p. 29] or
[15], the above equality is equivalent to

0 = F6n−11F
2
6n−5 − F 3

6n−7 − 2F6n−7 − F6n−3.

Now we use (1.3) to establish the equality. We begin with
[

L6n−5

F6n−5

]

=

[

9 20
4 9

] [

L6n−11

F6n−11

]

=

[

20F6n−11 + 9L6n−11

9F6n−11 + 4L6n−11

]

.

Again, using L6n−5 = F6n−3 − F6n−7, gives
[

F6n−3 − F6n−7

F6n−5

]

=

[

9F6n−9 + 20F6n−11 − 9F6n−13

4F6n−9 + 9F6n−11 − 4F6n−13

]

.

Eliminating F6n−13, we obtain

F6n−11 = −4F6n−3 + 9F6n−5 + 4F6n−7. (3.3)

But adding

F6n−5 + F6n−4 = F6n−3, F6n−6 + F6n−5 = F6n−4, −F6n−7 − F6n−6 = −F6n−5,

we have
3F6n−5 − F6n−7 = F6n−3. (3.4)

Hence, combining 3.3) and (3.4), we obtain

F6n−11F
2
6n−5 − F 3

6n−7 − 2F6n−7 − F6n−3

= (−4F6n−3 + 9F6n−5 + 4F6n−7)F
2
6n−5 − F 3

6n−7 − 2F6n−7 − F6n−3

= (−4(3F6n−5 − F6n−7) + 9F6n−5 + 4F6n−7)F
2
6n−5 − F 3

6n−7 − 2F6n−7 − (3F6n−5 − F6n−7)

= −3F 3
6n−5 + 8F 2

6n−5F6n−7 − F 3
6n−7 − 3F6n−5 − F6n−7

= − (3F6n−5 + F6n−7)
(

F 2
6n−5 + F 2

6n−7 + 1− 3F6n−5F6n−7

)

.

This expression is 0, justified by the Markoff relation [2, Ch. 11],

F 2
6n−5 + F 2

6n−7 + 1 = 3F6n−5F6n−7.
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This last relation is true from the statements

F 2
3 + F 2

1 + 1− 3F3F1 = 22 + 12 + 1− 3× 2× 1 = 0,

and using (3.4), for all positive integers n

F 2
6n−3 + F 2

6n−5 + 1− 3F6n−3F6n−5

= F 2
6n−5 + (3F6n−5 − F6n−3)

2 + 1− 3F6n−5(3F6n−5 − F6n−3)

= F 2
6n−5 + F 2

6n−7 + 1− 3F6n−5F6n−7.

This proves relation (3.2) and as a consequence our last proposition. �

4. Observations Within The Class Of (−1, 1)

For this class, we will extend both the Fibonacci and Lucas numbers to negative indices. Let
(x1, y1) = (−1, 1) = (L

−1, F−1). Set k1 = 2 = F
−3. Using (1.3), (x2, y2) = (11, 5) = (L5, F5).

Set k2 = 2 = F3. Using (1.3), (x3, y3) = (199, 89) = (L11, F11). Set k3 = 34 = F9. Continuing
this process using (1.3), we have the following table.

n 1 2 3 4 5 . . .

xn −1 11 199 3571 64079 . . .

yn 1 5 89 1597 28657 . . .

kn 2 2 34 610 10946 . . .

This data suggests the following congruence to be true. Let n be a positive integer. Then

xn ≡ y2n − k3n − 3kn (mod 2y2n).

We will now prove this congruence with the following proposition.

Proposition 4.1. Let n be a positive integer. Then

L6n−7 ≡ F 2
6n−7 − F 3

6n−9 − 3F6n−9 mod 2F 2
6n−7. (4.1)

Before proving Proposition 4.1 we consider the values of expression

y2n − k3n − 3kn − xn

2y2n
.

We obtain the following table.
Table 2

n = 1 2 3 4 5
y2
n
−k3

n
−3kn−xn

2y2
n

−6 0 −2 −44 −798

In fact, we will demonstrate more precisely the following lemma.

Lemma 4.2.

F 2
6n−7 − F 3

6n−9 − 3F6n−9 − L6n−7

2F 2
6n−7

= −2
F6n−13 − 1

4
. (4.2)
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Proof. The derivation is identical to the one used for Lemma 3.2. For all positive integers j

F6j−1 = F 2
3j−1 + F 2

3j , F3 = 2 | F3j even, F3j−1 odd, F6j−1 ≡ 1 (mod 4).

From L6n−7 = F6n−5 − F6n−9 with [3, Problem 11, p. 29] or [15], the equality is found to be
equivalent to (4.2).

F6n−13F
2
6n−7 − F 3

6n−9 − 2F6n−9 − F6n−5 = 0. (4.3)

Relation (1.3) gives
[

L6n−7

F6n−7

]

=

[

9 20
4 9

] [

L6n−13

F6n−13

]

=

[

20F6n−13 + 9L6n−13

9F6n−13 + 4L6n−13

]

.

Eliminating L6n−13, we obtain

F6n−13 = −4F6n−5 + 9F6n−7 + 4F6n−9, (4.4)

and

3F6n−7 − F6n−9 = F6n−5. (4.5)

Combining (4.3), (4.4), and (4.5), then factoring the resulting expression leads to a Markoff
relation. A recurrence easily shows that this relation is true, using (4.3). This proves relation
(4.2) and as a consequence our last proposition. �

5. Conclusion

For equation x2 = 5y2−4 we have considered some ordered pairs of solutions (L6n−3, F6n−3),
(L6n−5, F6n−5), and (L6n−7, F6n−7), from the set of all ordered pairs (L2n−1, F2n−1). These
solutions are distributed into three classes associated to a specific identity between Fibonacci
numbers and Lucas numbers 2.1, 3.2, and 4.2.

Table 3

Improper solution (4, 2) L6n−3 = L3
2n−1 + 3L2n−1 kn = L2n−1

Proper solution (1, 1) L6n−5 = −F 3
6n−7 − 3F6n−7 + F6n−11F

2
6n−5 kn = F6n−7

Proper solution (−1, 1) L6n−7 = −F 3
6n−9 − 3F6n−9 + F6n−13F

2
6n−7 kn = F6n−9

The method we used for proving (3.2) and (4.2) gives the first line of Table 3,

L6n−3 = −F 3
6n−5 − 3F6n−5 + F6n−9F

2
6n−3. (5.1)

This provides a new identity that we could also verify with [10], that is,

(L3
2n−1 + F 3

6n−5) + 3(L2n−1 + F6n−5) = F6n−9F
2
6n−3,

where
L2n−1 + F6n−5

F2n−3

=
F6n−3

F2n−1

= L2
2n−1 + 1.
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