THE PASCAL RHOMBUS AND THE GENERALIZED
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ABSTRACT. In the present article, we find a closed expression for the entries of the Pascal
rhombus. Moreover, we show a relation between the entries of the Pascal rhombus and a
family of generalized grand Motzkin paths.

1. INTRODUCTION

The Pascal rhombus was introduced by Klostermeyer et al. [6] as a variation of the well-
known Pascal triangle. It is an infinite array R = [Tiyj]?ig;:—oo defined by

Tij =Ti—1j tric1j—1 +ricj—2 + ric2j—2, =2, jeEZ, (1.1)
with the initial conditions
roo=rio=ri1=ri2=1 1o;=0(#0), r,;=0 (j#0,1,2).
The first few rows of R are

TABLE 1. Pascal Rhombus.

13 8 9 8 3 1
1 4 13 22 29 22 13 4 1
1 5 19 42 72 82 72 42 19 5 1

Klostermeyer et al. [6] studied several identities of the Pascal rhombus. Goldwasser et al.
[4] proved that the limiting ratio of the number of ones to the number of zeros in R, taken
modulo 2, approaches zero. This result was generalized by Mosche [7]. Recently, Stockmeyer
[9] proved four conjectures about the Pascal rhombus modulo 2 given in [6].

The Pascal rhombus corresponds with the entry A059317 in the On-Line Encyclopedia of
Integer Sequences (OEIS) [8], where it is possible to read: There does not seem to be a simple
expression for r; ;.

In the present article, we find an explicit expression for 7; ;. In particular, we prove that

i 1—j—2m . .
o 2m+j\ [l +j+2m l
=2, < m )( l ><z’—j—2m—l>'

m=0 [=0

For this we show that 7; ; is equal to the number of 2-generalized grand Motzkin paths.
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2. THE MAIN RESULT

A Motzkin path of length n is a lattice path of Z x Z running from (0, 0) to (n,0) that never
passes below the z-axis and whose permitted steps are the up diagonal step U = (1, 1), the
down diagonal step D = (1,—1) and the horizontal step H = (1,0), called rise, fall and level
step, respectively. The number of Motzkin paths of length n is the nth Motzkin number m.,,
(sequence A001006). Many other examples of bijections between Motzkin numbers and others
combinatorial objects can be found in [1]. A grand Motzkin path of length n is a Motzkin path
without the condition that never passes below the z-axis. The number of grand Motzkin paths
of length n is the nth grand Motzkin number g,, sequence A002426. A 2-generalized Motzkin
path is a Motzkin path with an additional step Ha = (2,0). The number of 2-generalized

Motzkin paths of length n is denoted by mg). Analogously, we have 2-grand generalized

Motzkin paths, and the number of these paths of length n is denoted by g,(f).

Lemma 2.1. The generating function of the 2-generalized Motzkin numbers is given by

o0 2 2 3L 4
9 ; l—x—2—V1-22—522+213 +2 F(z)
B(z) =Y mPa’ = 52 = —ZOF@?)  (21)
i=0
where F(xz) and C(x) are the generating functions of the Fibonacci numbers and Catalan
numbers, i.e.,
x

F(z) = —, C(z) =

1z — 2%

1—+1—-4x

2

Proof. From the first return decomposition any nonempty 2-generalized Motzkin path T" may
be decomposed as either UT'DT”, HT’, or HyT', where T',T" are 2-generalized Motzkin
paths (possible empty). Making use of the Flajolet’s symbolic method (cf. [3]) we obtain

B(z) =1+ (z + 2*)B(x) 4+ 2*B(z)%

Therefore equation (2.1) follows. Moreover,

2
€T
Cl-z—a?— /(1 -z —2?)? —4a? 1_\/1_4<1—x—1‘2>

B(Z’) - 22 = 2x2
1—z—z2
B 1 1 —+/1-4F(z)> F(x)
Cl—2—a? 2F(x)? oz C(F(@)).

O

The height of a 2-generalized grand Motzkin path is defined as the final height of the path,

i.e., the stopping y-coordinate. The number of 2-generalized grand Motzkin paths of length n

and height j is denoted by ggg

Theorem 2.2. The generating function of the 2-generalized grand Motzkin paths of height j
18
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where F(z) and C(x) are the generating function of the Fibonacci numbers and Catalan num-
bers. Moreover,

i 1—j—2m . .
2 _ 2m+ g\ (1 +7+2m ! <i<q
= X (I, ) 0=isa)

m=0 [=0

Proof. Consider any 2-generalized grand Motzkin path P. Then any nonempty path P may
be decomposed as either

UMDP', DMUP', HP', HyP', or UMUM,---UM,,

where M, M, ..., M; are 2-generalized Motzkin paths (possible empty), P’ is a 2-generalized
grand Motzkin path (possible empty).
Schematically,

FIGURE 1. Factorizations of any 2-generalized grand Motzkin path.

From the Flajolet’s symbolic method we obtain

MY (z) = 222 B(z)M Y (z) + (z + 2>)MY)(z) + 27 (B(z))?, j > 0.
Therefore,

. asz(m)j
M) = 1—2—22—-22°B(z)’

From Lemma 2.1 we get

;L'j <@C(F({L’)2)>] - F(m)j+1C(F(gc)2)j
l—x—a22— 2w2MC(F(a¢)2) 21 - 2F(2)?C(F(2)?)

T

M(j)(ac) =

On the other hand, from the following identity (see equation 2.5.15 of [10])

P () 5 ()

MAY 2016 101

m=0



THE FIBONACCI QUARTERLY

we obtain

C(z?)! = 2m+ 5\ am
1-— a:2C z?) E:o ( > '
Therefore,

(@) — PO @) i <2m +j> Pl = i <2m +j>F($)2m+j

.2
T = m l—x—=x = m
o0 . 2 : o0 o0 . .
m (1 —xz — x2)2mti+l m l
m=0 m=0 (=0
l ) )
_ iiz 2m+ g\ (1+7+2m\ (1 L2m s
m l s ’
m=0 [=0 s=0

00 X2 PR fom 4 N (14§ + 2m !
=2 S ()TN )

m=0 [=0 t=2m++j+I
The result follows by comparing the coefficients. O

Theorem 2.3. The number of 2-generalized grand Motzkin paths of length n and height j is
equal to the entry (n,j) in the Pascal rhombus, i.e.,

2)

T”ﬂj = gn,j‘
Proof. The sequence gg; satisfies the recurrence (1.1) and the same initial values. It is clear,
by considering the positions preceding to the last step of any 2-generalized grand Motzkin
path. O

Corollary 2.4. The generating function of the jth column of the Pascal rhombus is

Li(x) = —F@ICWE @)Y
T a(1=2F(2)2C(F(2)?))
where F(z) and C(z) are the generating function of the Fibonacci numbers and Catalan num-
bers. Moreover,

i 1—j—2m .
2m+ 5\ [l + 5+ 2m l .
= <9 <7).
e ;0 Z < )( l ><z‘—j—2m—l> 0=7=1

r)

The convolved Fibonacci numbers F; ™) are defined by

(1—z—a?)" ZF("la:j, rezt

If r = 1 we have the classical Fibonacci sequence.
Note that

(r _
Foh = E : Fj +1Fjy41 - Fj41.
]1+]2++]7‘:m
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Moreover, using a result of Gould [5, p. 699] on Humbert polynomials (with n = j,m = 2,2 =
1/2,y = —1,p = —r and C = 1), we have

Li/2l . .
(r) jHr—=01-1\(7-1
F = .
Jj+1 lzzg < ] —1 l
Corollary 2.5. The following equality holds

i—j
15

2m+J\ L(+2m+1)
Tij = Z ( m >F’iij_72nm+17

m=0

where Fl(r) are the convolved Fibonacci numbers.

Proof.

o0
2m +n 2m+n 2m+n (n+2m+1) 2m-+n—+7j
L= 3 () e = 3 (P

m=0 m=0 j=0

Lett=2m+n+j
= 2m+n (n+2m+1) 2t
Z > AP
m=0t=2m+n
The result follows by comparing the coefficients. O

Example 2.6. The generating function of the central column of the Pascal rhombus (sequence
A059345) is
Lo(z) = Nii _2x_5i2+2x3+x4 =1+ 2+ 422 + 923 + 292 + 822° + 25520 + - -
The generating function of the first few columns (j = 1,2,3) of the Pascal rhombus are:
Li(z) = z 4 222 + 823 + 222% 4 722° 4 2182% 4 69127 4 21582% + ..., (A106053)
Lo(x) = 2% 4 323 + 132" + 422° + 14625 + 47627 + 15742% +--- | (A106050)

L3(z) = 2 + 42* + 1925 4 702° + 26127 + 9142® + 31772° + - .

Remark: The results of this article were discovered by using the Counting Automata
Methodology [2].

3. ACKNOWLEDGEMENT

The author thanks the anonymous referee for his/her comments and remarks which helped
to improve the article.

REFERENCES

[1] F. Bernhart, Catalan, Motzkin, and Riordan numbers, Discrete Math., 204 (1999), 73-112.

[2] R. De Castro, A. Ramirez, and J. Ramirez, Applications in enumerative combinatorics of infinite weighted
automata and graphs, Sci. Ann. Comput. Sci., 24.1 (2014), 137-171.

[3] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge, 2009.

[4] J. Goldwasser, W. F. Klostermeyer, M. E. Mays, and G. Trapp, The density of ones in Pascal’s rhombus,
Discrete Math., 204 (1999), 231-236.

[5] H. W. Gould, Inverse series relations and other expansions involving Humbert polynomials, Duke Math.
J., 32.4 (1965), 697-711.

MAY 2016 103



THE FIBONACCI QUARTERLY

[6] W. F. Klostermeyer, M. E. Mays, L. Soltes, and G. Trapp, A Pascal rhombus, The Fibonacci Quarterly,
35.4 (1997), 318-328.
[7] Y. Moshe, The density of 0’s in recurrence double sequences, J. Number Theory, 103 (2003), 109-121.
[8] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[9] P. K. Stockmeyer, The Pascal rhombus and the stealth configuration, http://arxiv.org/abs/1504.04404,
(2015).
[10] H. S. Wilf, generatingfunctionology, Academic Press, Second Edition, 1994.

MSC2010: 05A19, 11B39, 11B37.

DEPARTAMENTO DE MATEMATICAS, UNIVERSIDAD SERGIO ARBOLEDA, BOGOTA, COLOMBIA
E-mail address: josel.ramirez@ima.usergioarboleda.edu.co

104 VOLUME 54, NUMBER 2



