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Abstract. Let (un)n≥0 be a nondegenerate Lucas sequence with characteristic polynomial
X2

− aX − b, for some relatively prime integers a and b. For each prime number p and each
positive integer n, we give simple formulas for the p-adic valuation νp(un), in terms of νp(n)
and the rank of apparition of p in (un)n≥0. This generalizes a previous result of Lengyel
on the p-adic valuation of Fibonacci numbers, and also the folkloristic “lifting-the-exponent
lemma”.

1. Introduction

Fix two relatively prime integers a and b and let (un)n≥0 be the Lucas sequence with
characteristic polynomial f(X) = X2−aX− b, i.e., (un)n≥0 is the integral sequence satisfying
u0 = 0, u1 = 1, and un = aun−1 + bun−2, for all integers n ≥ 2. The purpose of this paper
is to give simple formulas for the p-adic valuation νp(un), for all prime numbers p and all
positive integers n. To this end, we will see that there is no loss of generality in assuming that
the Lucas sequence (un)n≥0 is nondegenerate, i.e., b 6= 0 and the ratio α/β of the two roots
α, β ∈ C of f(X) is not a root of unity. In particular, this implies that α and β are distinct
and hence the discriminant ∆ of f(X) is nonzero.

The p-adic valuation of some special Lucas sequences has been studied before by many
authors. Lengyel [3] considered the sequence of Fibonacci numbers (Fn)n≥0 and proved the
following theorem.

Theorem 1.1. For each positive integer n and each prime number p 6= 2, 5, we have

ν2(Fn) =





0 if n ≡ 1, 2 mod 3,

1 if n ≡ 3 mod 6,

3 if n ≡ 6 mod 12,

ν2(n) + 2 if n ≡ 0 mod 12;

ν5(Fn) = ν5(n);

νp(Fn) =

{
νp(n) + νp(F`(p)) if n ≡ 0 mod `(p),

0 if n 6≡ 0 mod `(p);

where `(p) is the least positive integer such that p | F`(p).

Furthermore, the following lemma, often used in olympic problem solving contests [2], be-
longs to the folklore and is typically attributed to Lucas [4] and Carmichael [1].

Lemma 1.2 (Lifting-the-exponent lemma). For all odd prime numbers p, all integers c and
d such that p - cd and p | c− d, and every positive integer n, we have

νp(c
n − dn) = νp(n) + νp(c− d).
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It is well-known that for all nonnegative integers n, it holds

un =
αn − βn

α− β
. (1.1)

Hence, an immediate consequence of Lemma 1.2 is the following corollary.

Corollary 1.3. If α and β are integers and p is an odd prime number such that p - b and
p | ∆, then νp(un) = νp(n) for each positive integer n.

Ward [6] studied the p-adic valuation of second order linear recurrences over the field of
p-adic numbers Qp. However, his results applied to Lucas sequences are not as much effective
as Theorem 1.1 or Corollary 1.3. Precisely, in the simplest case he obtained the following
theorem.

Theorem 1.4. For each prime p such that p - ab∆, we have

νp(un) =

{
νp(ξp + n/τ(p)) + νp(uτ(p)) if n ≡ 0 mod τ(p)

0 if n 6≡ 0 mod τ(p);

where τ(p) is the least positive integer such that p | uτ(p), and ξp is given by the p-adic logarithm

of (αβ−1)τ(p)−1, with α and β being considered as elements of the quadratic extension Qp

(√
∆
)
.

Our main result is the following theorem, which provides formulas for νp(un) close in the
spirit to Theorem 1.1.

Theorem 1.5. If p is a prime number such that p - b, then

νp(un) =





νp(n) + νp(up)− 1 if p | ∆, p | n,
0 if p | ∆, p - n,

νp(n) + νp(upτ(p))− 1 if p - ∆, τ(p) | n, p | n,
νp(uτ(p)) if p - ∆, τ(p) | n, p - n,

0 if p - ∆, τ(p) - n,

for each positive integer n.

Note that considering only prime numbers p which do not divide b is not a loss of generality.
In fact, it is well-known that if p | b then p - un for each positive integer n. The statement of
Theorem 1.5 is quite complicated, but in the cases p ≥ 3 and p ≥ 5 we show that it can be
simplified.

Corollary 1.6. If p ≥ 3 is a prime number such that p - b, then

νp(un) =





νp(n) + νp(up)− 1 if p | ∆, p | n,
0 if p | ∆, p - n,

νp(n) + νp(uτ(p)) if p - ∆, τ(p) | n,
0 if p - ∆, τ(p) - n,

for each positive integer n.

Corollary 1.7. If p ≥ 5 is a prime number such that p - b, then

νp(un) =





νp(n) if p | ∆,

νp(n) + νp(uτ(p)) if p - ∆, τ(p) | n,
0 if p - ∆, τ(p) - n,

for each positive integer n.
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With a little computation, it follows quite easily that Theorem 1.5, Corollary 1.6, and
Corollary 1.7 are indeed generalizations of Theorem 1.1 and Corollary 1.3.

It is worth mentioning that some results of a paper by Young [7, Corollary 1 and Proposi-
tion 2] can be used to prove Theorem 1.5. However, we think that our proof has the peculiarity
to use much more elementary tools (integer congruences) than those of Young’s proofs (p-adic
analysis in the ring of integers of a quadratic extension of Qp), so it might be interesting per
se.

2. Preliminaries on Lucas Sequences

In this section we collect some basic facts about Lucas sequences. First of all, we have to
justify our claim that in order to study νp(un) there is no loss of generality in assuming that
(un)n≥0 is nondegenerate. If (un)n≥0 is a degenerate Lucas sequence, then it is known [5, pp. 5–
6] that (a, b) ∈ {(±2,−1), (±1,−1), (0,±1), (±1, 0)} and in each of such cases (un)n≥0 is either
definitely periodic with values in {0,−1,+1}, or equal to (n)n≥0, or equal to ((−1)n−1n)n≥0,
so in conclusion the study of νp(un) is trivial.

We recall that the companion sequence of (un)n≥0 is the sequence of integers (vn)n≥0 defined
by v0 = 1, v1 = a, and vn = avn−1 + bvn−2 for all integers n ≥ 2. Moreover, it holds
vn = αn + βn, for all nonnegative integers n. Note that, assuming (un)n≥0 nondegenerate, we
have un 6= 0 and vn 6= 0, for all positive integers n. In particular, νp(un) is always finite.

The next lemma summarizes some basic divisibility properties of (un)n≥0 and (vn)n≥0.

Lemma 2.1. Let p be a prime number.

(i) If p | b, then p - un and p - vn, for each positive integer n.
(ii) up ≡

(
∆
p

)
mod p, where

(
·
p

)
is the Legendre symbol.

(iii) If p - b, then it is well-defined τ(p) := min{k ≥ 1 : p | uk}, which is called the rank of
apparition of p in (un)n≥0.

(iv) If p - b, then for each positive integer n it holds p | un if and only if τ(p) | n.
(v) If p - b, then τ(p) = p if and only if p | τ(p) if and only if p | ∆.

Now we state a well-known formula relating un to binomial coefficients.

Lemma 2.2. For each positive integer n,

2n−1un =

b(n−1)/2c∑

k=0

(
n

2k + 1

)
an−(2k+1)∆k.

Proof. The claim follows easily from (1.1), the binomial theorem, and the fact that we can

take α = (a+
√
∆)/2 and β = (a−

√
∆)/2. �

We conclude this section with a kind of “multiplication formula”, which will be fundamental
in our next arguments.

Lemma 2.3. For all positive integers k and n, we have ukn = ũkun, where (ũm)m≥0 is

the Lucas sequence with characteristic polynomial f̃(X) = X2 − vnX + (−b)n. Moreover,

gcd(vn, (−b)n) = 1, (ũm)m≥0 is nondegenerate, and the discriminant of f̃ is ∆̃ = u2n∆.

Proof. We have vn = αn + βn and (−b)n = (αβ)n = αnβn. Therefore, α̃ := αn and β̃ := βn

are the two roots of f̃ , so that (ũm)m≥0 is nondegenerate and

∆̃ =
(
α̃− β̃

)2
=

(
αn − βn

α− β
· (α− β)

)2

= u2n∆.

120 VOLUME 54, NUMBER 2



THE P -ADIC VALUATION OF LUCAS SEQUENCES

In particular ∆̃ 6= 0, so that

ukn =
αkn − βkn

α− β
=

α̃k − β̃k

α̃− β̃
· α

n − βn

α− β
= ũkun.

Finally, gcd(vn, (−b)n) = 1, in the light of Lemma 2.1(i). �

3. Preliminaries for the Proof of Theorem 1.5

In this section, we derive some basic properties of the p-adic valuation of (un)n≥0, that will
be used later to prove Theorem 1.5.

Lemma 3.1. If p ≥ 5 is a prime number such that p - b and p | ∆, then νp(up) = 1.

Proof. From Lemma 2.2 it follows that

2p−1up ≡
b(p−1)/2c∑

k=0

(
p

2k + 1

)
ap−(2k+1)∆k (3.1)

≡ pap−1 +

(
p

3

)
ap−3∆+ · · · ≡ pap−1 (mod p2),

since p | ∆ and p ≥ 5 yields p |
(p
3

)
. Moreover, having assumed that p - b and p ≥ 5, we get from

p | ∆ = a2 + 4b that p - a, which, together with (3.1), implies νp(up) = νp(2
p−1up) = 1. �

Lemma 3.2. If p is a prime number such that p - b, then

νp(upτ(p)) ≥ νp(uτ(p)) + 1, (3.2)

with equality if either p ≥ 5, or p = 3 and 3 - ∆.

Proof. From Lemma 2.3 we know that upτ(p) = ũpuτ(p), where (ũn)n≥0 is the Lucas sequence

with characteristic polynomial f̃(X) = X2 − vτ(p)X + (−b)τ(p). Hence,

νp(upτ(p)) = νp(uτ(p)) + νp(ũp).

Clearly p | uτ(p), so a fortiori p | ∆̃ = u2τ(p)∆, where ∆̃ is the discriminant of f̃(X). From

Lemma 2.1(ii) we obtain that p | ũp, and hence (3.2) holds.
As for the rest, we get from Lemma 3.1 that if p ≥ 5 then νp(ũp) = 1 and thus in (3.2) we have

equality. So suppose from now on that p ≥ 3 and 3 - ∆. We have, ũp = ũ3 = v2τ(3) − (−b)τ(3).

On the one hand, if 3 | a, then τ(3) = 2, hence,

ũ3 = (a2 + 2b)2 − b2 = (a2 + b)(a2 + 3b),

and ν3(ũ3) = 1, since 3 - a2 + b and 3 || a2 + 3b. On the other hand, if 3 - a, then

b ≡ 4b 6≡ −a2 ≡ −1 (mod 3),

hence b ≡ 1 (mod 3), and τ(3) = 4. Thus,

ũ3 = (a4 + 4a2b+ 2b2)2 − b4 = (a2 + b)(a2 + 3b)(a4 + 4a2b+ b2),

and again ν3(ũ3) = 1, since 3 - (a2 + b)(a2 + 3b) and

3 || a4 + 4a2b+ b2 = (a2 + 2b)2 − 3b2.

Putting it all together, the proof is thus complete. �

We conclude this section with an easy lemma regarding the p-adic valuation of general
linearly recurring sequences of integers.
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Lemma 3.3. Let (rn)n≥0 be a linearly recurring sequence of order k ≥ 2 given by

rn = a1rn−1 + · · ·+ akrn−k, (3.3)

for each integer n ≥ k, where r0, . . . , rk−1 and a1, . . . , ak are all integers. Suppose that there
exists a prime number p such that p - ak and

min{νp(aj) : 1 ≤ j < k} > max{νp(rm)− νp(rn) : 0 ≤ m,n < k}. (3.4)

Then νp(rn) = νp(r(n mod k)), for each nonnegative integer n.

Proof. We proceed by induction on n. For n = 0, . . . , k− 1 the claim is obvious. Thus assume
n ≥ k and that the claim holds for all the nonnegative integers less than n. By (3.4) and by
induction hypothesis, for each j = 1, . . . , k − 1 we have

νp(ajrn−j) = νp(aj) + νp(rn−j)

= νp(aj) + νp(r(n−j mod k))

> νp(r(n−k mod k))− νp(r(n−j mod k)) + νp(r(n−j mod k))

= νp(r(n−k mod k))

= νp(rn−k) = νp(akrn−k).

Therefore, from (3.3) and from induction hypothesis, it follows that

νp(rn) = νp(akrn−k) = νp(akr(n−k mod k)) = νp(r(n mod k)),

which is our claim. �

4. Proof of Theorem 1.5 and Corollaries 1.6, 1.7

We are now ready to prove Theorem 1.5. The proof is substantially split in four lemmas.

Lemma 4.1. If p is a prime number such that p - b and p | ∆, then

νp(upn) = νp(un) +

{
1 if p | n,
νp(up) if p - n,

for each positive integer n.

Proof. From Lemma 2.3, we know that upn = ũpun, where (ũm)m≥0 is the Lucas sequence
with characteristic polynomial X2 − vnX + (−b)n. Hence, νp(upn) = νp(un) + νp(ũp), and
we need to compute νp(ũp). Note that ũp = ũp(n) depends on n. If p ≥ 5, since p | ∆ and

consequently p | ∆̃ = u2n∆, we get from Lemma 3.1 that νp(ũp) = νp(up) = 1, thus the claim
follows. Therefore, assume p = 2 or p = 3, and define r0 := p and rn := ũp(n), for each
positive integer n. Suppose first that p = 2. Hence, rn = ũ2 = vn, for each integer n ≥ 0, so
that

rn = arn−1 + brn−2,

for all the integers n ≥ 2. Furthermore, 2 | a, since 2 | ∆ = a2 + 4b, and 2 - b, by hypothesis.
Therefore, one can easily check that (rn)n≥0 satisfies the hypotheses of Lemma 3.3, and so

ν2(rn) = ν2(rn mod 2) =

{
ν2(r0) if 2 | n,
ν2(r1) if 2 - n.

=

{
1 if 2 | n,
ν2(u2) if 2 - n.

Suppose now that p = 3. Then from (1.1) we obtain

rn =
u3n
un

=
α3n − β3n

αn − βn
= α2n + β2n + (αβ)n, (4.1)
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for all positive integers n. In fact, since r0 = 3, it turns out that (4.1) holds also for n = 0.
Hence, from (4.1) it follows that (rn)n≥0 is a third order linearly recurrent sequence with
characteristic polynomial

(X − α2)(X − β2)(X − αβ) = X3 − u3X
2 − bu3X + b3,

so that rn = u3rn−1 + bu3rn−2 − b3rn−3, for each integer n ≥ 3. Moreover, r0 = 3, r1 = u3,
and r2 = (a2 + 3b)u3. Note that 3 - a, since 3 | ∆ = a2 + 4b and 3 - b. Thus,

ν3(r1) = ν3(r2) = ν3(u3).

Now (rn)n≥0 satisfies the hypotheses of Lemma 3.3, hence,

ν3(rn) = ν3(rn mod 3) =





ν2(r0) if n ≡ 0 (mod 3),

ν2(r1) if n ≡ 1 (mod 3),

ν2(r2) if n ≡ 2 (mod 3).

=

{
1 if 3 | n,
ν3(u3) if 3 - n.

This completes the proof. �

Lemma 4.2. If p is a prime number such that p - b and p | ∆, then

νp(upv ) =

{
0 if v = 0,

v + νp(up)− 1 if v > 0,

for each nonnegative integer v.

Proof. We proceed by induction on v. For v = 0 and v = 1, the claim is trivial. Suppose v ≥ 2
and that the claim is true for v − 1. Since p | pv−1, by Lemma 4.1 we get

νp(upv) = νp(up·pv−1) = νp(upv−1) + 1 = (v − 1) + νp(up)− 1 + 1 = v + νp(up)− 1,

which is our claim. �

Lemma 4.3. If p is a prime number such that p - b and p | ∆, then

νp(un) =

{
νp(n) + νp(up)− 1 if p | n,
0 if p - n,

for each positive integer n.

Proof. Write n = mpv, where v ≥ 0 is an integer and m is a positive integer such that p - m.
Let (ũ`)`≥0 be the Lucas sequence with characteristic polynomial X2 − vmX + (−b)m. From

Lemma 2.3, we know that un = ũpvum, upm = ũpum, and p | ∆̃ = u2m∆. Moreover, since p | ∆,
we obtain from Lemma 2.1(v) that τ(p) = p - m. From Lemma 2.1(iv) it follows that p - um,
hence, νp(un) = νp(ũpv). If v = 0 then, obviously, νp(un) = νp(ũ1) = νp(1) = 0. If v ≥ 1 then
we obtain from Lemmas 4.2 and 4.1 that

νp(un) = νp(ũpv ) = v + νp(ũp)− 1 = v + νp(upm)− νp(um)− 1

= v + νp(up)− 1 = νp(n) + νp(up)− 1,

which is our claim. �
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Lemma 4.4. If p is a prime number such that p - b, p - ∆, and τ(p) | n, then

νp(n) =

{
νp(n) + νp(upτ(p))− 1 if p | n,
νp(uτ(p)) if p - n,

for each positive integer n.

Proof. Write n = mτ(p), where m is a positive integer. Let (ũ`)`≥0 be the Lucas sequence with

characteristic polynomialX2−vτ(p)X+(−b)τ(p). From Lemma 2.3, we know that un = ũmuτ(p),

upτ(p) = ũpuτ(p), and p | ∆̃ = u2τ(p)∆. Since p - ∆, it follows from Lemma 2.1(v) that p - τ(p)

and νp(m) = νp(n). On the one hand, if p | n then p | m and by Lemma 4.3 we get

νp(un) = νp(ũm) + νp(uτ(p))

= νp(m) + νp(ũp)− 1 + νp(uτ(p))

= νp(m) + νp(upτ(p))− νp(uτ(p))− 1 + νp(uτ(p))

= νp(n) + νp(upτ(p))− 1.

On the other hand, if p - n then p - m, and again by Lemma 4.3 we get

νp(un) = νp(ũm) + νp(uτ(p)) = νp(uτ(p)),

as claimed. �

At this point, Theorem 1.5 follows immediately from Lemmas 4.3, 4.4, and 2.1(iv). More-
over, Corollaries 1.6 and 1.7 are direct consequences of Theorem 1.5 and Lemmas 3.1 and
3.2.
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