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Abstract. Infinite series comprising exponentiated multiples of p-term linear combinations
of Catalan numbers arise naturally from a related power series expansion for sin(2pα) (in
odd powers of sin(α)) which itself has an interesting history. In this article some explicit
results generated previously by the author (for p = 1, 2, 3) are discussed in the context of
this general problem of series summation, and new evaluations made for the cases p = 4, 5 by
way of further examples. A powerful hypergeometric approach is adopted which offers, from
the analytical formulation developed, a means to achieve these particular evaluations and in
principle many others for even greater values of p.

1. Introduction

1.1. Background. Consider the following expansion, in odd powers of sin(α), of the trigono-
metric function sin(2pα) for integer p ≥ 1:

sin(2pα)/2 =

p
∑

n=1

α(p)
n sin2n−1(α) +

∞
∑

n=1

hp(cn−1, . . . , cn+p−2)

22(n+p)−3
sin2(n+p)−1(α), (1.1)

where cn = 1
n+1

(2n
n

)

is the (n+1)th term (n ≥ 0) of the Catalan sequence {c0, c1, c2, c3, c4, . . .} =

{1, 1, 2, 5, 14, . . .} with (ordinary) generating function

G(x) =
1

2x
(1−

√
1− 4x) =

∑

n≥0

cnx
n. (1.2)

This standardized form of expansion was chosen by Xinrong [6] who showed in 2004 (us-
ing umbral calculus) that—beyond an initial p stand-alone terms with individual numerical
coefficients, the functional coefficient hp(cn−1, . . . , cn+p−2) of each remaining term in the ex-
pansion (1.1) comprises a specific and identifiable linear combination of the p Catalan elements
cn−1, . . . , cn+p−2. Low order cases had already been formulated (in a slightly different, non-
standard form) by Larcombe [2] in which such linearity was discerned and further postulated
as a definitive feature of this type of expansion for sin(2pα). By way of example, note that
the p = 1 version of (1.1) reads

sin(2α)/2 = sin(α)−
∞
∑

n=1

[ cn−1

22n−1

]

sin2n+1(α) (1.3)

(for which α
(1)
1 = 1, h1(cn−1) = −cn−1 ), while p = 2 (with α

(2)
1 = 2, α

(2)
2 = −5, h2(cn−1, cn) =

2(8cn−1 − cn)) gives

sin(4α)/2 = 2sin(α)− 5sin3(α) +
∞
∑

n=1

[

8cn−1 − cn
4n

]

sin2n+3(α), (1.4)
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and (with α
(3)
1 = 3, α

(3)
2 = −35/2, α

(3)
3 = 189/8, h3(cn−1, cn, cn+1) = −(256cn−1 − 64cn +

3cn+1)) for p = 3 we have

sin(6α)/2 = 3sin(α)− (35/2)sin3(α) + (189/8)sin5(α)

−
∞
∑

n=1

[

256cn−1 − 64cn + 3cn+1

22n+3

]

sin2n+5(α); (1.5)

the next two functions h4 and h5 are

h4(cn−1, . . . , cn+2) = 4(1024cn−1 − 384cn + 40cn+1 − cn+2),

h5(cn−1, . . . , cn+3) = −(65536cn−1 − 32768cn + 5376cn+1 − 320cn+2 + 5cn+3), (1.6)

and so the process continues with h6, h7, h8, . . . , becoming ever more lengthy and complex.
Before we present our analysis, we outline the remit of the paper and give some results

established already within the context of a generalized problem.

1.2. Remit and Previous Results. As shown in [2], beginning with a first principles formu-
lation of sin(2α) as the power series (1.3), those expansions for sin(4α), sin(6α), sin(8α), . . . ,
build on one another sequentially and functions h2, h3, h4, . . . , are duly determined explicitly
(the manner in which series are developed becomes intractable beyond the first few values of
p, however, due to the level of algebraic manipulation involved). Since that 2000 article it has
been shown that every coefficient within the linear function hp has, for arbitrary p, a known
closed form following analysis elsewhere—an overview of such work is given in a more recent
article [5], where convergence of the generic expansion (1.1) is dealt with as its main theme
and the natural principal interval of convergence |α| < π

2 extended to |α| ≤ π
2 analytically.

The history of power series of type (1.1) is an interesting one—dating back to initial work in
China from well over two hundred years ago—and the reader who seeks further information
on it is referred to relevant citations also in [5]. We emphasize that for p ≥ 1 the appear-
ance of p-term linear combinations of the celebrated Catalan numbers in such expansions is
a remarkable phenomenon, and yet further evidence of their mathematical ubiquity which in
this instance affords the opportunity to evaluate a suite of derivative infinite series containing
them.

Following on from publications [3, 4] by the author, we wish here to extend these works and
consider the evaluation of series of general form

Ip(β) = (−1)p
∞
∑

n=1

βnhp(cn−1, . . . , cn+p−2) (1.7)

for arbitrary p (and non-zero β), taking a hypergeometric route. We are interested particularly
in those values β = 1

4 ,
3
16 ,

1
8 and 1

16 associated with evaluations of (1.1) at α = π
2 ,

π
3 ,

π
4 and

π
6 , respectively. The latter have been undertaken for the p = 1 instance in [3] and for the
p = 2, 3 instances in [4], values of α having been chosen since each one (i) lies within the
interval of convergence of (1.1) and (ii) has the property that sin(α) can be written in exact
(that is, error-free) form; these are important in so far as (i) guarantees that those particular
series produced are actually summable, and (ii) means that corresponding β values realized
are rationals (displaying a linearity in their progression). Actual results already obtained are,
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in terms of the series (1.7),

I1(1/4) = 1/2,

I1(3/16) = 1/4,

I1(1/8) = (1− 1/
√
2)/2,

I1(1/16) = (1−
√
3/2)/2, (1.8)

from [3], and

I2(1/4) = 6,

I2(3/16) = 10/3,

I2(1/8) = 2,

I2(1/16) = 2(2
√
3− 3),

I3(1/4) = 73,

I3(3/16) = 45,

I3(1/8) = 5 + 16
√
2,

I3(1/16) = 13, (1.9)

from [4], containing a mix of integers, rationals and irrationals between them.
In the next section we recall some existing results in detail, and clarify what is required in

order that Ip(β) be recast in a form suitable for direct evaluation. It becomes evident that it
is instructive to effect the transformation of a certain 3F2(4x/(1 + x)2) hypergeometric series
to a (finite) polynomial in x of degree p, which is described fully in Section 3. Special case
results follow thereafter, in Section 4, where evaluations are made accordingly for the two par-
ticular series I4(β) =

∑

n≥1 β
nh4(cn−1, . . . , cn+2) and I5(β) = −∑n≥1 β

nh5(cn−1, . . . , cn+3)
as representative examples of the general analysis developed; these results are new, and give
a flavor of how such series may be handled. It is believed that no series of type Ip(β) has
been summed before, and as such the topic presented here—in combination with the forerun-
ner works [2, 3, 4] and others by the author—together constitute an interesting modern day
chapter in the timeline of the Catalan sequence.

2. The Hypergeometric Approach

2.1. Hypergeometric Form of Ip(β). It is no surprise that, for arbitrary p, the series Ip(β)
has an accessible hypergeometric representation that reflects the deep influence of the Catalan
numbers within (1.1) and whose structure is informed by previous studies. What initially
drives the formulation here is the recursion

cn+1 = 2
(2n + 1)

(n + 2)
cn (2.1)

(valid for n ≥ 0, given c0 = 1) established originally by Euler. This permits, in principle,
the reduction of (Catalan) variable dependency in hp so that it becomes a functional multiple
of the single Catalan number cn−1 for p > 1. For a few small values of p, hypergeometric
conversion of Ip(β) is relatively straightforward by hand and gives a useful indication of the
general form sought. It is seen, for example, that in addition to h1(cn−1) = −cn−1 we may
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write

h2(cn−1) = h2(cn−1, cn(cn−1))

= 2[8cn−1 − cn(cn−1)]

= 2

[

8cn−1 − 2
(2n − 1)

(n+ 1)
cn−1

]

= 4
(2n + 5)

(n+ 1)
cn−1, (2.2)

and, further,

h3(cn−1) = h3(cn−1, cn(cn−1), cn+1(cn−1))

= −[256cn−1 − 64cn(cn−1) + 3cn+1(cn−1)]

= −
[

256cn−1 − 64 · 2(2n − 1)

(n+ 1)
cn−1 + 3 · 2(2n + 1)

(n+ 2)
· 2(2n − 1)

(n+ 1)
cn−1

]

= −12
(2n + 7)(2n + 9)

(n+ 1)(n + 2)
cn−1, (2.3)

with

h4(cn−1) = h4(cn−1, cn(cn−1), cn+1(cn−1), cn+2(cn−1))

= 4[1024cn−1 − 384cn(cn−1) + 40cn+1(cn−1)− cn+2(cn−1)]

...

= 32
(2n + 9)(2n + 11)(2n + 13)

(n+ 1)(n + 2)(n + 3)
cn−1, (2.4)

and so on, from which a clear and encouraging pattern emerges. Thus we see, in the first
instance of (1.7), that I1(β) = −∑n≥1 β

nh1(cn−1) =
∑

n≥1 β
ncn−1 which hypergeometrically

has form

I1(β) = β 2F1

( 1
2 , 1

2

∣

∣

∣

∣

4β

)

, (2.5)

while looking at the next two cases we find, utilizing (2.2) and (2.3),

I2(β) =
∑

n≥1

βnh2(cn−1, cn)

= 2
∑

n≥1

βn[8cn−1 − cn]

= 14β 3F2

(

9
2 ,

1
2 , 1

3, 72

∣

∣

∣

∣

4β

)

, (2.6)
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and

I3(β) = −
∑

n≥1

βnh3(cn−1, cn, cn+1)

=
∑

n≥1

βn[256cn−1 − 64cn + 3cn+1]

= 198β 3F2

(

13
2 ,

1
2 , 1

4, 92

∣

∣

∣

∣

4β

)

. (2.7)

Equations (2.2)–(2.4) are, in fact, merely special cases of the result

hp(cn−1) = (−1)pp(n+ p)
[2(n + 2p− 1)]!n!

(n+ 2p− 1)![2(n + p)]!
cn−1, p, n ≥ 1 (2.8)

(see, for example, [5, Eq. (1.10), p. 237]; it also gives h1(cn−1) = −cn−1), through which,
as will be shown, a general hypergeometric form of Ip(β) can be obtained that recovers the
p = 1, 2, 3 cases of (2.5)–(2.7).

Theorem 2.1. For integer p ≥ 1,

Ip(β) = (pc2p/2)β 3F2

(

2p+ 1
2 ,

1
2 , 1

p+ 1, p+ 3
2

∣

∣

∣

∣

4β

)

.

Proof. Consider, using the form (2.8) of the function hp = hp(cn−1),

Ip(β) = (−1)p
∞
∑

n=1

βnhp(cn−1) = (−1)p
∞
∑

n=1

βnhp(n), (P.1)

denoting hp(cn−1) by hp(n) for convenience. Rewriting,

Ip(β) = (−1)pβ

∞
∑

n=0

βnhp(n+ 1), (P.2)

and we establish a hypergeometric form for the series Z(β; p) =
∑∞

n=0 β
nhp(n+ 1) by appeal

solely to (2.8). First, we note that the initial term in the series (and so a hypergeometric
multiplier) is

hp(1) = (−1)pp(p+ 1)
(4p)!1!

(2p)!(2p + 2)!
c0

=
(−1)pp

2

1

2p + 1

(

4p

2p

)

=
(−1)pp

2
c2p. (P.3)

Then we form the summand term ratio
βn+1hp(n+2)
βnhp(n+1) = βhp(n + 2)/hp(n + 1), which simplifies

algebraically to

β
hp(n+ 2)

hp(n+ 1)
= 2β

(2n + 4p+ 1)(2n + 1)

(n + p+ 1)(2n + 2p+ 3)
= 4β

(n+ 2p+ 1
2)(n + 1

2)

(n + p+ 1)(n + p+ 3
2 )

, (P.4)

so that by (P.3), (P.4),

Z(β; p) =
(−1)pp

2
c2p 3F2

(

2p+ 1
2 ,

1
2 , 1

p+ 1, p + 3
2

∣

∣

∣

∣

4β

)

, (P.5)
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and Ip(β) = (−1)pβZ(β; p) is immediate. �

2.2. Formalizing the Problem. In [4] a hypergeometric approach to the evaluations of
T (β) = 1

2I2(β) and U(β) = I3(β) was based on application of the individual (respective)
results

3F2

(

9
2 ,

1
2 , 1

3, 72

∣

∣

∣

∣

4x

(1 + x)2

)

=
1

7
(1 + x)(7 − x) (2.9)

and

3F2

(

13
2 ,

1
2 , 1

4, 92

∣

∣

∣

∣

4x

(1 + x)2

)

=
1

198
(1 + x)(198 − 55x+ 3x2). (2.10)

Although not used in [3] (due to the very simple nature of S(β) = I1(β) examined therein),
the corresponding result is

2F1

( 1
2 , 1

2

∣

∣

∣

∣

4x

(1 + x)2

)

= 1 + x, (2.11)

as was noted in Remark 3.2 of [4, p. 258]. Having arrived at Theorem 2.1, therefore, we wish
to find the equivalent closed form polynomial in x for the hypergeometric series

Fp(x) = 3F2

(

2p + 1
2 ,

1
2 , 1

p+ 1, p + 3
2

∣

∣

∣

∣

4x

(1 + x)2

)

(2.12)

that recovers (2.9)–(2.11) and allows evaluations of Ip(β) to be made for new values of p > 3
in routine fashion on simply setting x(β) = G(β) − 1 (as the solution x(β) to the quadratic
equation formed by equating β with x/(1 + x)2; see the Appendix A proof of Lemma 2.1 in
[4, p. 259]). This, as we shall see, is no trivial task analytically.

3. Transformation Analysis

While it is possible, for any value of p ≥ 1, to compute Fp(x) via (2.12) algebraically by
computer, there is little in its form to suggest that (rather than being an infinite power series)
it is in fact a finite polynomial for arbitrary p, and an alternating sign one. The following
theorem provides a transformation that reveals both of these properties, through which low
order cases may be validated and hitherto unseen evaluations for I4(β) and I5(β) given for the
first time.

Theorem 3.1. For integer p ≥ 1,

Fp(x) = 1 +
2(4p + 1)

(p+ 1)(2p + 3)
x 3F2

(

−(p− 1
2),−(p − 1), 2

p+ 2, p + 5
2

∣

∣

∣

∣

−x

)

.

As alluded to above, the proof process is a multi-step one which is characteristic of the kind
of task in hand and will be familiar to anyone working in this particular field. It is, though,
useful to arrive at an alternative hypergeometric description of Fp(x) that offers more insight
into its structure than (2.12), and re-assuring to see previous results recovered, too, as a check.

Proof. Writing

(u)k = u(u+ 1)(u + 2)(u+ 3) · · · (u+ k − 1) (P.6)
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to denote the rising factorial function defined for integer k ≥ 0 (where (u)0 = 1), then

Fp(x) =
∞
∑

i=0

(2p + 1
2)i(

1
2 )i(1)i

(p + 1)i(p +
3
2)i

· [4x/(1 + x)2]i

i!

=

∞
∑

i=0

(2p+ 1
2 )i(

1
2 )i

(p+ 1)i(p+
3
2 )i

(4x)i(1 + x)−2i. (P.7)

Since (1 + x)−α =
∑∞

j=0

(

−α
j

)

xj =
∑∞

j=0

(

α+j−1
j

)

(−x)j (by negation) =
∑∞

j=0
(α)j
j! (−x)j , (P.7)

becomes

Fp(x) =

∞
∑

i=0

(2p + 1
2)i(

1
2)i

(p + 1)i(p +
3
2)i

(4x)i
∞
∑

j=0

(2i)j
j!

(−x)j

=
∞
∑

i,j=0

4i(2p + 1
2 )i(

1
2 )i

(p+ 1)i(p +
3
2)i

(−1)j(2i)j
j!

xi+j, (P.8)

whose term in xn has, for n ≥ 0, coefficient

[xn]{Fp(x)} =
∑

i+j=n

4i(2p+ 1
2 )i(

1
2 )i

(p+ 1)i(p +
3
2 )i

(−1)j(2i)j
j!

= 4n
n
∑

j=0

4−j(2p + 1
2 )n−j(

1
2 )n−j

(p+ 1)n−j(p+
3
2)n−j

(−1)j(2n− 2j)j
j!

. (P.9)

Now, the easily established relation (α)n/(α)n−j = (−1)j(−α− n+ 1)j allows us to make the
representations

(2p+ 1/2)n−j =
(2p + 1

2)n

(−1)j(−2p+ 1
2 − n)j

,

1

(p+ 1)n−j

=
(−1)j(−p− n)j

(p+ 1)n
,

1

(p + 3
2)n−j

=
(−1)j(−p− 1

2 − n)j

(p+ 3
2 )n

. (P.10)

In addition it can be shown, with some work, that

(1/2)n−j(2n− 2j)j = 4j
(12 )n(1− n)j

(1− 2n)j
, (P.11)

so, noting that [x0]{Fp(x)} = 1 and (1−n)n = 0, (P.10) and (P.11) combine to give, for n ≥ 1,
[xn]{Fp(x)} (P.9) as

[xn]{Fp(x)} = 4n
(2p + 1

2)n(
1
2)n

(p + 1)n(p +
3
2)n

n
∑

j=0

(1− n)j(−p− n)j(−p− 1
2 − n)j

(1− 2n)j(−2p+ 1
2 − n)j

· 1
j!

= 4n
(2p + 1

2)n(
1
2)n

(p + 1)n(p +
3
2)n

n−1
∑

j=0

(1− n)j(−p− n)j(−p− 1
2 − n)j

(1− 2n)j(−2p + 1
2 − n)j

· 1
j!

= M(n; p)H(n; p), (P.12)
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say, where

M(n; p) = 4n
(2p+ 1

2)n(
1
2)n

(p+ 1)n(p+
3
2)n

(P.13)

and H(n; p) is the finite series in j written as the 3F2(1) hypergeometric function

H(n; p) = 3F2

(

−(n− 1),−(p + n),−(p+ n+ 1
2)

−(2n − 1),−(2p + n− 1
2)

∣

∣

∣

∣

1

)

, (P.14)

remarking also that over the range j = 0, . . . , n−1 the rising factorials (−p−n)j and (1−2n)j
are non-zero. From (P.12), therefore, we may write

Fp(x) = 1 +
∑

n≥1

M(n; p)H(n; p)xn

= 1 + x
∑

n≥0

M(n + 1; p)H(n + 1; p)xn, (P.15)

and, looking at Theorem 3.1, it remains that the functions M(n + 1; p) and H(n + 1; p) be
manipulated into the form desired so as to complete the proof.

Consider first, then,

M(n+ 1; p) = 4n+1 (2p+ 1
2 )n+1(

1
2 )n+1

(p+ 1)n+1(p+
3
2)n+1

(P.16)

which, on employing the simple relations (2p+ 1
2)n+1 = (2p+ 1

2)(2p +
3
2)n, (

1
2 )n+1 = (12 )(

3
2 )n,

(p + 3
2)n+1 = (p+ 3

2)(p +
5
2)n and (p+ 1)n+1 = (p+ 1)(p + 2)n, can be written

M(n+ 1; p) = 22n+1 (4p + 1)

(p + 1)(2p + 3)

(2p+ 3
2)n(

3
2)n

(p+ 2)n(p+
5
2)n

. (P.17)

Next, the required evaluation of

H(n+ 1; p) = 3F2

(

−n,−(p+ n+ 1),−(p + n+ 3
2)

−(2n+ 1),−(2p + n+ 1
2)

∣

∣

∣

∣

1

)

(P.18)

is achieved by applying the well-known identity

3F2

(

a, b,−t

c, a+ b− c− t+ 1

∣

∣

∣

∣

1

)

=
(c− a)t(c− b)t
(c)t(c− a− b)t

(P.19)

of Pfaff-Saalschütz (with a = −(p+ n+ 1), b = −(p + n + 3
2), c = −(2p + n+ 1

2 ) and t = n),
yielding

H(n+ 1; p) =
(12 − p)n(1− p)n

(−2p − n− 1
2 )n(n+ 2)n

, (P.20)
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and our proof concludes rapidly—to finish we write, from (P.17) and (P.20),

M(n + 1; p)H(n + 1; p) = 22n+1 (4p + 1)

(p+ 1)(2p + 3)

(12 − p)n(1− p)n

(p+ 2)n(p+
5
2)n

× (2p + 3
2 )n

(−2p− n− 1
2)n

(32 )n

(n+ 2)n

= 22n+1 (4p + 1)

(p+ 1)(2p + 3)

(12 − p)n(1− p)n

(p+ 2)n(p+
5
2)n

1

(−1)n
(2)n
4nn!

=
2(4p + 1)

(p+ 1)(2p + 3)

(12 − p)n(1− p)n(2)n

(p+ 2)n(p+
5
2)n

(−1)n

n!
(P.21)

after the simplifications shown, and substitution of (P.21) into (P.15) delivers Theorem 3.1
immediately; clearly, the 3F2(−x) series of Theorem 3.1 is a degree p−1 polynomial in x, with
Fp(x) degree p. �

Remark 3.1. A word of clarification is perhaps in order regarding application of the Pfaff-
Saalschütz identity. Potential terms of the form 0/0 in the series H(n+1; p) (P.18) (caused by
the appearance of the upper parameters −n or −(p+n+1) combined with the lower parameter
−(2n+1)) are avoided by a simple limiting argument that justifies the use of (P.19). Replacing
−(2n+1) with −(2n+1)+ε in (P.18), and likewise −(p+n+1) with −(p+n+1)+ε (|ε| ≪ 1),
Pfaff-Saalschütz still applies. Both sides of the resulting equation (P.20) are rational functions
of ε, which can then be set to zero as a limit.

4. Evaluations of I4(β) and I5(β)

We finish by giving new evaluations of the series I4(β) and I5(β) as an illustration of our
analysis, and add a couple of remarks.

Noting that Theorem 3.1 reproduces the right-hand side polynomials of (2.11), (2.9) and
(2.10) (for p = 1, 2, 3, respectively) as originally computed via (2.12), it is further found that

F4(x) =
1

715
(1 + x)(715 − 273x+ 35x2 − x3),

F5(x) =
1

41990
(1 + x)(41990 − 19380x + 3876x2 − 285x3 + 5x4). (4.1)

We may evaluate Ip(β) according to

Ip(β) = (pc2p/2)β 3F2

(

2p+ 1
2 ,

1
2 , 1

p+ 1, p + 3
2

∣

∣

∣

∣

4x(β)

(1 + x(β))2

)

= (pc2p/2)βFp(x(β)) (4.2)

by Theorem 2.1 and (2.12), in line with [4] where x(β) = G(β) − 1 as already mentioned;
in other words, I4(β) = 4

∑

n≥1 β
n[1024cn−1 − 384cn + 40cn+1 − cn+2] = (4c8/2)βF4(x(β)) =

2860βF4(x(β)) and I5(β) =
∑

n≥1 β
n[65536cn−1 − 32768cn + 5376cn+1 − 320cn+2 + 5cn+3] =

(5c10/2)βF5(x(β)) = 41990βF5(x(β)). Thus, noting that by (1.2),

x(1/4) = G(1/4) − 1 = 1,

x(3/16) = G(3/16) − 1 = 1/3,

x(1/8) = G(1/8) − 1 = 3− 2
√
2,

x(1/16) = G(1/16) − 1 = 7− 4
√
3, (4.3)
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then in particular, when p = 4, (4.1) delivers

I4(1/4) = 715F4(x(1/4)) = 715 · 952
715

= 952,

I4(3/16) = (2145/4)F4(x(3/16)) =
2145

4
· 5216
4455

= 16952/27,

I4(1/8) = (715/2)F4(x(1/8)) =
715

2
· 784
715

= 392,

I4(1/16) = (715/4)F4(x(1/16)) =
715

4
· 32

715
(245 − 128

√
3)

= 8(245 − 128
√
3), (4.4)

all series having been checked numerically to a high degree of convergence accuracy. We find,
in a similar fashion,

I5(1/4) = 13103,

I5(3/16) = 727991/81,

I5(1/8) = 7127 − 1024
√
2,

I5(1/16) = 16384
√
3− 25657, (4.5)

the calculation details of which we leave as a straightforward reader exercise.

Remark 4.1. The transformation Theorem 3.1 gives a form for Fp(x) that is more convenient
to work with than (2.12), and more informative. As we have seen, all specific computations
made for p = 1, . . . , 5 reveal the presence of a factor 1 + x within Fp(x), and those beyond
p = 5 suggest that this is the case for general p. We confirm that such a conjecture is indeed
true by means of a little known identity, tucked away in W. N. Bailey’s revered 1935 text
[1], which can be shown to lead independently to Theorem 3.1. Rather than allow it to
clutter the main narrative here the details are set out in the Appendix, and it means that the
factored form of Fp(x) noted could, in principle, be reverse-engineered from Theorem 3.1 as a
starting point, which is an observation worth making—for clarity, Theorem 3.1 is the preferred
representation of Fp(x) occurring as a consequence of our line of enquiry, and a fully factored
form is produced in practice only by algebraic computation and simplification functionality
(as evident in (2.9)–(2.11) and (4.1)).

Remark 4.2. Although we choose to give results for neither I6(β) nor I7(β) it is useful,
for completeness, to see the associated evaluating polynomials as F6(x) = (1 + x)(312018 −
163438x+43263x2 −5313x3+253x4−3x5)/312018 and F7(x) = (1+x)(9360540−5368545x+
1726725x2−296010x3+24570x4−819x5+7x6)/9360540, each with the basic structure expected
from our analysis.

5. Summary

In this paper we have re-examined some of the results given in previous explicit series eval-
uations by the author, and developed new ones from consideration of a fully general problem.
This has been achieved by appeal to some non-trivial hypergeometric theory, attesting to its
power where applied appropriately; here it has offered both a route through the analysis and
a clear understanding of the evaluations procedure.

It is worth emphasizing, perhaps, that the study of any similar class of series seems to
be absent from the literature (due almost certainly to its unusual nature). Note also that
a method of evaluation for Ip(β) based solely on the Catalan sequence generating function
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G(x)—seen to be successful in the p = 2, 3 cases of [4] as so called Method III, and trivially
so in the p = 1 instance of [3]—would appear to lend itself to an elegant generalization which
accommodates arbitrary p; this, however, must be assigned to discussion in a future article.
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Appendix

In this Appendix we offer a formal route to Theorem 3.1 which stands independent of the
Section 3 proof.

Proof. Consider a rather obscure result in Bailey [1, Example 4(iv), p. 97] (he attributes it to
F. J. W. Whipple in fact), namely,

3F2

(

a, b, c

1 + a− b, 1 + a− c

∣

∣

∣

∣

x

)

=

(1− x)−a
3F2

( 1
2a,

1
2(1 + a), 1 + a− b− c

1 + a− b, 1 + a− c

∣

∣

∣

∣

−4x

(1− x)2

)

, (A.1)

which reads after rearrangement, on setting a = 1, b = 1− p and c = 1
2 − p,

3F2

(

1
2 , 1, 2p +

1
2

p+ 1, p + 3
2

∣

∣

∣

∣

4x

(1 + x)2

)

= Fp(x) = (1 + x) 3F2

(

1, 1− p, 12 − p

p+ 1, p+ 3
2

∣

∣

∣

∣

−x

)

, (A.2)

where (and with reference to Remark 4.1) we see a factor of 1 + x intrinsic to it. We can
reproduce Theorem 3.1 (in which Fp(x) contains no such factor) by proceeding as follows:

Fp(x) = 3F2

(

1, 1 − p, 12 − p

p+ 1, p + 3
2

∣

∣

∣

∣

−x

)

+ x 3F2

(

1, 1− p, 12 − p

p+ 1, p + 3
2

∣

∣

∣

∣

−x

)

=
∑

k≥0

(1)k(1− p)k(
1
2 − p)k

(p+ 1)k(p+
3
2 )k

· (−x)k

k!
+ x

∑

k≥0

(1)k(1− p)k(
1
2 − p)k

(p+ 1)k(p +
3
2)k

· (−x)k

k!

= 1 +
∑

k≥1

(1)k(1 − p)k(
1
2 − p)k

(p+ 1)k(p+
3
2)k

· (−x)k

k!
+ x

∑

k≥0

(1)k(1− p)k(
1
2 − p)k

(p + 1)k(p+
3
2)k

· (−x)k

k!

= 1 +
∑

k≥0

(1)k+1(1− p)k+1(
1
2 − p)k+1

(p+ 1)k+1(p+
3
2)k+1

· (−x)k+1

(k + 1)!

+ x
∑

k≥0

(1)k(1− p)k(
1
2 − p)k

(p+ 1)k(p +
3
2)k

· (−x)k

k!
. (A.3)
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The rising factorial terms within the first sum of (A.3) are now rewritten, giving

Fp(x) = 1 +
∑

k≥0

(1 + k)(1)k · (1− p+ k)(1− p)k · (12 − p+ k)(12 − p)k

(p+ 1 + k)(p + 1)k · (p+ 3
2 + k)(p + 3

2)k
· (−x)k+1

(k + 1)!

+ x
∑

k≥0

(1)k(1− p)k(
1
2 − p)k

(p+ 1)k(p +
3
2 )k

· (−x)k

k!

= 1 +
∑

k≥0

(1)k(1− p)k(
1
2 − p)k

(p + 1)k(p+
3
2 )k

[

1− (1− p+ k)(12 − p+ k)

(p+ 1 + k)(p + 3
2 + k)

]

(−1)kxk+1

k!

= 1 +
∑

k≥0

(1)k(1− p)k(
1
2 − p)k

(p + 1)k(p+
3
2 )k

[

(4p + 1)(1 + k)

(p+ 1 + k)(p + 3
2 + k)

]

(−1)kxk+1

k!

= 1 + (4p+ 1)x
∑

k≥0

(1)k+1(1− p)k(
1
2 − p)k

(p+ 1)k+1(p+
3
2)k+1

· (−x)k

k!

= 1 + (4p+ 1)x
∑

k≥0

(2)k(1− p)k(
1
2 − p)k

(p+ 1)(p + 2)k · (p+ 3
2)(p +

5
2)k

· (−x)k

k!

= 1 +
2(4p + 1)

(p+ 1)(2p + 3)
x
∑

k≥0

(2)k(1− p)k(
1
2 − p)k

(p+ 2)k(p+
5
2)k

· (−x)k

k!

= 1 +
2(4p + 1)

(p+ 1)(2p + 3)
x3F2

(

2,−(p − 1),−(p − 1
2 )

p+ 2, p+ 5
2

∣

∣

∣

∣

−x

)

, (A.4)

as desired. �
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