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Abstract. Let p be an odd prime and let u(a, 1) and u(a′, 1) be two Lucas sequences whose
discriminants have the same nonzero quadratic character modulo p and whose periods modulo
p are equal. We prove that there is then an integer c such that for all d ∈ Zp, the frequency
with which d appears in a full period of u(a, 1) (mod p) is the same frequency as cd appears in
u(a′, 1) (mod p). Here u(a, 1) satisfies the recursion relation un+2 = aun+1 + un with initial
terms u0 = 0 and u1 = 1. Similar results are obtained for the companion Lucas sequences
v(a, 1) and v(a′, 1). We also explicitly determine the exact distribution of residues of u(a, 1)
(mod p) when u(a, 1) has a maximal period modulo p.

1. Introduction

Consider the second-order linear recurrence (w) = w(a, b) satisfying the recursion relation

wn+2 = awn+1 + bwn, (1.1)

where the parameters a and b and the initial terms w0 and w1 are all integers. We distinguish
two special recurrences, the Lucas sequence of the first kind (LSFK) u(a, b) and the Lucas
sequence of the second kind (LSSK) v(a, b) with initial terms u0 = 0, u1 = 1 and v0 = 2, v1 = a,
respectively. Associated with the linear recurrence w(a, b) is the characteristic polynomial f(x)
defined by

f(x) = x2 − ax− b (1.2)

with characteristic roots α and β and discriminant D = a2 + 4b = (α − β)2. By the Binet
formulas,

un =
αn − βn

α− β
, vn = αn + βn. (1.3)

Throughout this paper, p will denote an odd prime unless specified otherwise, and ε will
specify an element from {−1, 1}. It was shown in [7, pp. 344–345] that w(a, b) is purely
periodic modulo p if p ∤ b. From here on, we assume that p ∤ b. We will usually assume that
b = ±1, which will automatically guarantee that p ∤ b. If (m/p) = 1, where (m/p) denotes the
Legendre symbol,

√
m modulo p will denote the residue c modulo p such that c2 ≡ m (mod p)

and 0 ≤ c ≤ (p − 1)/2.
The period of w(a, b) modulo p, denoted by λw(p), is the least positive integer m such that

wn+m ≡ wn (mod p) for all n ≥ 0. The restricted period of w(a, b) modulo p, denoted by hw(p),
is the least positive integer r such that wn+r ≡ Mwn (mod p) for all n ≥ 0 and some fixed
nonzero residue M modulo p. Here M = Mw(p) is called the multiplier of w(a, b) modulo p.
Since the LSFK u(a, b) is purely periodic modulo p and has initial terms u0 = 0 and u1 = 1, it
is easily seen that hu(p) is the least positive integer r such that ur ≡ 0 (mod p). It is proved

in [7, pp. 354–355], that hw(p) | λw(p). Let Ew(p) =
λw(p)
hw(p) . Then by [7, pp. 354–355] Ew(p) is

the multiplicative order of the multiplier M modulo p.
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The main result of the paper [21] was to prove that if p is a fixed prime and u(a1, 1) and
u(a2, 1) are two LSFK’s with the same restricted period modulo p, then u(a1, 1) and u(a2, 1)
have the same distribution of residues modulo p. A similar result was proved for the LSSK’s
v(a1, 1) and v(a2, 1). With a little bit of extra effort, we can sharpen these results from [21]
by also obtaining the conclusion that the actual residues modulo p occurring in u(a2, 1) are
related to the residues modulo p appearing in u(a1, 1). Even more so, we will show that the
residues modulo p appearing in v(a2, 1) are exactly the same as the residues appearing in
v(a1, 1) modulo p.

We now define what it means for the recurrences w(a1, b) and w′(a2, b) with the same
parameter b to have the same distribution of residues modulo p. Let w(a, b) be a recurrence
and p be a fixed prime. Given a residue d modulo p, we let Aw(d) denote the number of times
that d appears in a full period of (w) modulo p. We have the following theorem regarding
upper bounds for Aw(d).

Theorem 1.1. Let p be a fixed prime and consider the recurrence w(a, b) and the LSFK
u(a, b). Let d be a fixed residue modulo p such that 0 ≤ d ≤ p − 1. Let g = ordp(−b), where
ordp(−b) denotes the multiplicative order of (−b) modulo p. Then

(i) Aw(d) ≤ min(2 · ordp(−b), p).
(ii) Au(0) = Eu(p) ≤ min(p− 1, 2g) and Au(d) ≤ min(g + Eu(p), 2g, p) if d 6= 0.
(iii) If b = 1 then Aw(d) ≤ 4.
(iv) If b = 1 and Eu(p) = 1, then Au(d) ≤ 3.

Proof. Part (i) was proved in Theorem 3 of [12]. Part (ii) was proved in Theorem 2 of [19].
Parts (iii) and (iv) follow from parts (i) and (ii), respectively. �

We let

Nw(p) = #{d |Aw(d) > 0}. (1.4)

We define the set Sw(p) by

Sw(p) = {i |Aw(d) = i for some d such that 0 ≤ d ≤ p− 1}. (1.5)

Further, if i is a nonnegative integer, we define Bw(i) by

Bw(i) = #{d | 0 ≤ d ≤ p− 1 and Aw(d) = i}. (1.6)

We observe by Theorem 1.1 that

Bw(i) = 0 if i > min(2 · ordpb, p). (1.7)

We say that the linear recurrences w(a1, b) and w′(a2, b) have the same distribution of residues
modulo p if Nw(p) = Nw′(p), Sw(p) = Sw′(p), and Bw(i) = Bw′(i) for all i ≥ 0. Recurrences
that have the same distribution of residues modulo p are also said to be identically distributed
modulo p.

To show that the two recurrences w(a1, b) and w′(a2, b) are identically distributed modulo
p, it suffices by relation (1.7) to prove that Bw(i) = Bw′(i) for all i ∈ {0, . . . , ℓ}, where
ℓ = min(2 · ordp(−b), p). This follows, since

Nw(p) =

ℓ
∑

i=1

Bw(i) (1.8)

and

Sw(p) = {i |Bw(i) > 0}. (1.9)

Before proceeding further, we will need the following results and definitions.
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Definition 1.2. Let p be a fixed prime. The recurrence w(a, b) is said to be p-regular if
∣

∣

∣

∣

w0 w1

w1 w2

∣

∣

∣

∣

= w0w2 − w2
1 6≡ 0 (mod p). (1.10)

Otherwise, the recurrence w(a, b) is called p-irregular. The p-irregular recurrence in which
wn ≡ 0 (mod p) for all n ≥ 0 is called the trivial recurrence modulo p.

The recurrence w(a, b) is p-irregular if and only if it satisfies a recursion relation modulo p
of order less than two.

Theorem 1.3. Suppose that the recurrences w(a, b) and w′(a, b) are both p-regular. Then

λw(p) = λw′(p), hw(p) = hw′(p), Ew(p) = Ew′(p), and Mw(p) ≡ Mu′(p) (mod p).

This is proved in [5, p. 695].

Theorem 1.4. Let p be a fixed prime. Consider the LSFK u(a, b) and the LSSK v(a, b) with
discriminant D = a2 + 4b. Then

(i) u(a, b) is p-regular.
(ii) v(a, b) is p-regular if and only if p ∤ D.
(iii) If w(a, b) is a recurrence for which hw(p) = 1, then w(a, b) is p-irregular.

Proof. (i) We note that

u0u2 − u21 = 0 · a− 12 = −1 6≡ 0 (mod p).

Thus, u(a, b) is p-regular by (1.10).

(ii) We observe that

v0v2 − v21 = 2(a2 + 2b)− a2 = a2 + 4b = D.

Thus, v(a, b) is p-regular if and only if p ∤ D.

(iii) If w(a, b) were to be p-regular, then hw(p) = hu(p) by Theorem 1.3 and part (i) of this
theorem. However, hu(p) ≥ 2, since u0 = 0 and u1 = 1. �

Theorem 1.5. Let p be a fixed prime. Consider the p-regular recurrence w(a, b) with discrim-

inant D and characteristic roots α = (a +
√
D)/2 and β = (a −

√
D)/2. Let h = hw(p) and

λ = λw(p). Let P be a prime ideal in Q(
√
D) lying over p. Then

(i) h > 1 and h | p− (D/p), where (D/p) = 0 if p | D.
(ii) If (D/p) = 0, then h = p.
(iii) If p ∤ D, then h | (p− (D/p))/2 if and only if (−b/p) = 1.
(iv) If w(a, b) = u(a, b), then un ≡ 0 (mod p) if and only if h | n.
(v) If (D/p) = 1, then λ | p− 1.
(vi) If p ∤ D, then λ = lcm(ordPα, ordPβ), where ordPα denotes the multiplicative order of

α modulo P .

Proof. We first note that by Theorem 1.3 and Theorem 1.4 (i) and (iii), hw(p) > 1, hw(p) =
hu(p), and λw(p) = λu(p), since both w(a, b) and u(a, b) are p-regular. Parts (i) and (v)
are proved in [6, pp. 44–45] and [10, pp. 290, 296, 297]. Parts (ii) and (iv) are proved in [8,
pp. 423–424]. Part (iii) is proved in [8, p. 441]. Part (vi) is proved in Theorem 6 (i) of [14] and
Theorem 8.44 of [9]. �

If the p-irregular recurrence w(a, b) is not the trivial recurrence modulo p, then (D/p) = 0
or 1 and we can consider α and β to be in Zp, the ring of integers modulo p.
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Theorem 1.6. Let p be a fixed prime. Suppose that w(a, b) is a p-irregular recurrence.

(i) If w0 ≡ 0 (mod p), then wn ≡ 0 (mod p) for n ≥ 0 and w(a, b) is the trivial recurrence
modulo p.

(ii) If w0 6≡ 0 (mod p), then either wn ≡ αnw0 (mod p) or wn ≡ βnw0 (mod p) for all
n ≥ 0.

(iii) hw(p) = 1.

Proof. Parts (i) and (ii) are proved in [5, p. 695]. Part (iii) follows from parts (i) and (ii). �

Definition 1.7. Let p be a fixed prime. The recurrences w(a, b) and w′(a, b) are p-equivalent
if w′(a, b) is a nonzero multiple of a translation of w(a, b) modulo p, that is, there exists a
nonzero residue c and a fixed integer r such that

w′

n ≡ cwn+r (mod p) for all n ≥ 0. (1.11)

It is clear that p-equivalence is indeed an equivalence relation on the set of recurrences w(a, b)
modulo p, since c is invertible modulo p. It is also evident that if w′(a, b) is p-equivalent to
w(a, b) and (1.11) holds, then

Aw′(cd) = Aw(d) (1.12)

for 0 ≤ d ≤ p− 1.

Theorem 1.8. Suppose that w(a, b) and w′(a, b) are p-equivalent recurrences such that w′

n ≡
cwn+r (mod p) for all n ≥ 0, where c is a fixed nonzero residue modulo p and r is a fixed
integer. Then

(i) w(a, b) and w′(a, b) are either both p-regular or both p-irregular.
(ii) w(a, b) and w′(a, b) are identically distributed modulo p.

Proof. Part (i) is proven in [5, p. 694]. Part (ii) follows from the fact that

Aw′(cd) = Aw(d)

for d ∈ {0, . . . , p− 1}. �

Theorem 1.9. Let w(a, b) be a p-regular recurrence. Then w(a, b) is p-equivalent to u(a, b) if
and only if wn ≡ 0 (mod p) for some n ≥ 0.

Proof. This follows from the fact that u0 ≡ 0 (mod p), from Definition 1.7, from Theorem
1.4 (i), and from the fact that if c 6≡ 0 (mod p), then cm ≡ 0 (mod p) if and only if m ≡ 0
(mod p). �

Theorem 1.10. Let p be a fixed prime. Let a and b be fixed integers such that p ∤ b. Define the
relation p-equivalence on the set of all p-regular recurrences w(a, b) modulo p. Let h = hu(a, b)
and D = a2 − 4b. Then the number of equivalence classes is equal to

p− (D/p)

h
.

This is proved in Theorem 2.14 of [5].

Theorem 1.11. Let p be a fixed prime.

(i) If p ≡ 1 (mod 4), then there exists a LSFK u(a, 1) such that (D/p) = 1 and hu(p) = m
if and only if m | (p − 1)/2 and m 6= 1.

(ii) If p ≡ 3 (mod 4), then there exists a LSFK u(a, 1) such that (D/p) = 1 and hu(p) = m
if and only if m | p− 1 and m ∤ (p − 1)/2.

(iii) If p ≡ 1 (mod 4), then there exists a LSFK u(a, 1) such that (D/p) = −1 and hu(p) =
m if and only if m | (p+ 1)/2 and m 6= 1.
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(iv) If p ≡ 3 (mod 4), then there exists a LSFK u(a, 1) such that (D/p) = −1 and hu(p) =
m if and only if m | p+ 1 and m ∤ (p+ 1)/2.

(v) If there exists a LSFK u(a, 1) such that (D/p) = ε and hu(p) = m, then there exist
exactly φ(m) such LSFK’s, where φ(m) denotes Euler’s totient function and 0 ≤ a ≤
p− 1.

Proof. Parts (i) and (ii) follow from Theorem 12 of [15]. Parts (iii) and (iv) follow from
Theorems 3 and 4 of [18]. Part (v) is proved in Theorems 3.7, 3.8, and 3.12 of [11]. �

The principal results of the paper [21] are given below.

Theorem 1.12. Let p be a fixed prime. Let (u) = (a1, 1) and (u′) = u(a2, 1) be two LSFK’s
with discriminants D1 = a21+4 and D2 = a22+4, respectively, such that p ∤ D1D2. Suppose that
hu(p) = hu′(p) and (D1/p) = (D2/p), where (Di/p) denotes the Legendre symbol. This occurs
if and only if λu(p) = λu′(p). Then u(a1, 1) and u(a2, 1) are identically distributed modulo p.

Theorem 1.13. Let p be a fixed prime. Let (v) = v(a1, 1) and (v′) = v(a2, 1) be two LSSK’s
with discriminants D1 = a21 + 4 and D2 = a22 + 4, respectively, such that p ∤ D1D2. Suppose
that (D1/p) = (D2/p) and that hv(p) = hv′(p). This occurs if and only if λv(p) = λv′(p).
Then v(a1, 1) and v(a2, 1) are identically distributed modulo p.

In the next section presenting the principal results of this paper in addition to the previously
mentioned results refining Theorems 1.12 and 1.13, we will show that if w(a, 1) is a p-regular
recurrence having a maximal restricted period modulo p, then we can explicitly determine the
distribution of w(a, b) modulo p.

2. The Main Theorems

Theorem 2.1. Let p be an odd prime. Suppose that (u) = u(a1, 1) and (u′) = u(a2, 1) both
have the same restricted period h = hu(p) and that the associated respective discriminants D1

and D2 both have the same nonzero quadratic character modulo p. Then not only are (u) and
(u′) identically distributed modulo p, but there exists an integer c such that

Au′(d) = Au(cd) for all d ∈ {0, 1, . . . , p − 1}, (2.1)

where

c ≡











ε
√

D1D
−1
2 (mod p), if h ≡ 2 (mod 4);

√

D1D
−1
2 (mod p), if h 6≡ 2 (mod 4),

for some ε = ±1.

In the case h 6≡ 2 (mod 4), we may also choose c ≡ Mk
√

D1D
−1
2 (mod p), where k is any

integer and M is the multiplier Mu(p).

Theorem 2.2. Let p be an odd prime. Suppose that (v) = v(a1, 1) and (v′) = v(a2, 1) both
have the same restricted period h = hv(p) and that the associated respective discriminants D1

and D2 both have the same nonzero quadratic character modulo p. Then not only are (v) and
(v′) identically distributed modulo p, but

Av′(d) = Av(d) for all d ∈ {0, 1, . . . , p− 1}. (2.2)

Moreover, in the case h 6≡ 2 (mod 4) we also have that

Av′(d) = Av(M
kd) for all d ∈ {0, 1, . . . , p− 1}, (2.3)

where k is any integer and M is the multiplier Mv(p).
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In Theorems 2.4, 2.6, and 2.7, we will sharpen Theorems 1.12, 1.13, 2.1, and 2.2 for p-regular
recurrences having a maximal restricted period modulo p equal to p− (D/p). Theorems 1.12
and 2.1 show that the LSFK’s u(a1, 1) and u(a2, 1) with the same restricted periods modulo
p, (or equivalently the same periods modulo p) are identically distributed modulo p if their
discriminants have the same quadratic character modulo p. An analogous result was obtained
in Theorems 1.13 and 2.2 for the LSSK’s v(a1, 1) and v(a2, 1). However, these theorems do not
necessarily explicitly describe the actual distribution of residues modulo p. For recurrences
(w) with a maximal restricted period modulo p, we will be able to explicitly determine Sw(p),
Nw(p), and Bw(i) for i ≥ 0 given only the restricted period of (w) modulo p and also possibly
the quadratic character of the discriminants of these recurrences modulo p. First, we present
Proposition 2.3 which gives a relation between p-regular recurrences w(a, b) having a maximal
restricted period modulo p and the LSFK u(a, b).

Proposition 2.3. Let w(a, b) be a p-regular recurrence with discriminant D. Suppose that
hw(p) = p− (D/p). Then w(a, b) is p-equivalent to u(a, b). In particular,

Aw(0) ≥ 1. (2.4)

Proof. By Theorem 1.10 and Theorem 1.8 (i), there exists exactly one class of regular p-
equivalent recurrences. The result now follows upon application of Theorem 1.4 (i). �

Theorem 2.4. Suppose that w(a, 1) is a p-regular recurrence such that (D/p) = −1 and
hw(p) = p + 1. Then p ≡ 3 (mod 4) and (−D/p) = 1. Consider the LSFK u(a, 1). Then
hu(p) = hw(p) = p + 1, Eu(p) = Ew(p) = 2, Mu(p) ≡ Mw(p) ≡ −1 (mod p), and λu(p) =
λw(p) = 2p + 2. Moreover, there exists a nonzero residue c modulo p such that wn ≡ cun+r

(mod p) for all n and some fixed integer r such that 0 ≤ r ≤ 2p + 1, where we can take c ≡ 1
(mod p) and r = 0 if wn(a, 1) ≡ un(a, 1) (mod p) for all n ≥ 0. Then the following hold:

(i) If p = 3, then Sw(p) = {2, 3} while if p ≡ 3 (mod 8) and p > 3, then Sw(p) =
{0, 2, 3, 4}. Moreover, if p ≡ 3 (mod 8) and p ≥ 3, then

Nw(p) =
3p+ 3

4
, Bw(0) =

p− 3

4
, Bw(2) =

p− 1

2
, Bw(3) = 2, Bw(4) =

p− 3

4
.

(ii) If p = 7 then Sw(p) = {1, 2, 4}, whereas if p > 7 then Sw(p) = {0, 1, 2, 4}. Further, if
p ≡ 7 (mod 8) and p ≥ 7, then

Nw(p) =
3p+ 7

4
, Bw(0) =

p− 7

4
, Bw(1) = 2, Bw(2) =

p− 1

2
, Bw(4) =

p+ 1

4
.

(iii) Aw(d) = Aw(−d).
(iv) Aw(d) ∈ {1, 3} if and only if d ≡ ±2c/

√
−D (mod p).

(v) Aw(0) = 2.
(vi) If p > 3 and a ≡ ±1 (mod p), then Aw(c) = Aw(−c) = 4.
(vii) If p ≡ 3 (mod 8) then Aw(2c/

√
−D) = Aw(−2c/

√
−D) = 3.

(viii) If p ≡ 7 (mod 8) then Aw(2c/
√
−D) = Aw(−2c/

√
−D) = 1.

Proof. By Theorems 1.3, 1.4 (i), and 1.8 and by Proposition 2.3, it suffices to consider the case
in which w(a, b) = u(a, b). The rest of the theorem now follows from the proofs of Theorems
7 and 8 in [17]. �

Remark 2.5. It follows from Theorems 1.3, 1.4 (i), 1.10, and 1.11 (v) that if p ≡ 3 (mod 4),
then there exist exactly φ(p + 1) parameters a, 0 ≤ a ≤ p − 1, such that ((a2 + 4)/p) = −1
and any p-regular recurrence w(a, 1) has a maximal restricted period hw(p) = p+ 1.
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Let p = 2q − 1 be a Mersenne prime, where q is a prime. Then clearly p ≡ 3 (mod 4). Let
w(a, 1) be any p-regular recurrence with discriminant D = a2+4 such that (D/p) = −1. Then
by Theorem 1.5 (i) and (iii), hw(p) = p+ 1. At present there are 49 known Mersenne primes
(see [2]) with the largest being 274207281 − 1 with 22338618 digits.

Theorem 2.6. Suppose that w(a, 1) is a p-regular recurrence such that p | D. Then p ≡ 1
(mod 4) and a ≡ ±

√
−4 (mod p). Further,

hw(p) = p, Ew(p) = 4, and λw(p) = 4p. (2.5)

Moreover,
Aw(d) = 4 for all d ∈ {0, 1, . . . , p − 1} (2.6)

and
Sw(p) = {4}, Nw(p) = p, Bw(4) = p, and Bw(i) = 0 if i 6= 4. (2.7)

Proof. The results in (2.5) follow from Theorem 1.5 (ii) and Theorem 3.11 (iv) which is given
in Section 3. The results in (2.6) and (2.7) are proved in [1] and [22]. It is clear that a ≡
±
√
−4 (mod p), since D = a2 + 4 ≡ 0 (mod p). By the law of quadratic reciprocity, p ≡ 1

(mod 4). �

Theorem 2.7. Suppose that w(a, 1) is a p-regular recurrence such that (D/p) = 1 and hw(p) =
p− 1. Then p ≡ 3 (mod 4). Consider the LSFK u(a, 1). Then

hu(p) = hw(p) = p− 1, Eu(p) = Ew(p) = 1,

Mu(p) ≡ Mw(p) ≡ 1 (mod p), and λu(p) = λw(p) = p− 1. (2.8)

Furthermore, there exists a nonzero residue c modulo p such that wn ≡ cun+r (mod p) for all
n and some fixed integer r such that 0 ≤ r ≤ p − 2, where we can take c ≡ 1 (mod p) and
r = 0 if wn(a, 1) ≡ un(a, 1) (mod p) for all n ≥ 0. Then the following hold:

(i) If p = 3, then Sw(p) = {0, 1}, while if p ≡ 3 (mod 8) and p > 3, then Sw(p) =
{0, 1, 2, 3}, Nw(p) = (5p + 1)/8, Bw(0) = (3p − 1)/8, Bw(1) = (3p + 7)/8, Bw(2) =
(p − 3)/8, and Bw(3) = (p− 3)/8.

(ii) If p = 7 then Sw(p) = {0, 1, 2}, while if p ≡ 7 (mod 8) and p > 7, then Sw(p) =
{0, 1, 2, 3}. Moreover, if p ≡ 7 (mod 8) and p ≥ 7, then

Nw(p) =
5p− 3

8
, Bw(0) =

3p+ 3

8
, Bw(1) =

3p− 5

8
, Bw(2) =

p+ 9

8
, Bw(3) =

p− 7

8
.

(iii) Aw(d) +Aw(−d) ∈ {1, 3} if d ≡ ±2c/
√
D (mod p).

(iv) Aw(d) +Aw(−d) ∈ {0, 2, 4} if d 6≡ ±2c/
√
D (mod p).

(v) Aw(0) = 1.
(vi) If a ≡ ±1 (mod p), then Aw(c) = 3 and Aw(−c) = 1.
(vii) If Aw(d) +Aw(−d) = 4 then Aw(d) ∈ {1, 3}.
(viii) If p ≡ 3 (mod 8) then Aw(2c/

√
D) ∈ {0, 1} and Aw(−2c/

√
D) = 1−Aw(2c

√
D).

(ix) If p ≡ 7 (mod 8), then Aw(2c/
√
D) ∈ {1, 2} and Aw(−2c/

√
D) = 3−Aw(2c

√
D).

The proof of Theorem 2.7 will be given in Section 4.

Remark 2.8. We see by Theorems 1.3, 1.4 (i), 1.10, and 1.11 (v) that if p ≡ 3 (mod 4),
then there exist exactly φ(p − 1) parameters a, 0 ≤ a ≤ p − 1 for which ((a2 + 4)/p) = 1
and any p-regular recurrence w(a, 1) has a maximal restricted period modulo p equal to p− 1.
Primes q such that 2q + 1 is also prime are called Sophie Germain primes. It is easily seen
that if q is an odd Sophie Gemain prime, then 2q + 1 ≡ 3 (mod 4). Let q be an odd Sophie
Germain prime and let p = 2q + 1. Suppose that a 6≡ 0 (mod p) and w(a, 1) is a p-regular
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recurrence with discriminant D = a2 + 4 such that (D/p) = 1. Then by Theorem 1.5 (i) and
(iii), hw(p) = p− 1.

By inspection, we see that the first few Sophie Germain primes are

2, 3, 5, 11, 23, 29, 41, 53, 89, 113, 131, . . . .

According to [3], the largest known Sophie Germain prime is 18543637900515 ·2666667 −1 with
200701 digits.

3. Preliminaries

Before proving our main theorems, we will need the following results.

Theorem 3.1. Let p be a fixed prime. Let a and b be integers such that p ∤ b. Define the
relation p-equivalence on the set of all nontrivial p-irregular recurrences w(a, b) modulo p. Let
D = a2 + 4b. Let α and β be the characteristic roots of the characteristic polynomial

f(x) = x2 − ax− b.

Let H(p) denote the number of equivalence classes.

(i) If (D/p) = −1, then H(p) = 0.
(ii) If (D/p) = 1, then H(p) = 2. Moreover, the recurrence w(a, b) having initial terms

w0 ≡ 1, w1 ≡ α (mod p) is in one equivalence class, while the recurrence w′(a, b)
having initial terms w′

0 ≡ 1, w′

1 ≡ β (mod p) is in the other equivalence class.
(iii) If (D/p) = 0, then H(p) = 1. Furthermore, the recurrence w′′(a, b) having initial terms

w′′

0 ≡ 1, w′′

1 ≡ α (mod p) is in the unique equivalence class.

This follows from Lemma 2.4 of [5].

Theorem 3.2. Let w(a, b) be a p-regular recurrence. Let e be a fixed integer such that 1 ≤
e ≤ hw(p) − 1. Then the ratios wn+e

wn
are distinct modulo p for 0 ≤ n ≤ hw(p) − 1, where we

denote the ratio wn+e

wn
(mod p) by ∞ if wn ≡ 0 (mod p).

This is proved in Lemma 2 of [19].

Theorem 3.3. Let p be a fixed prime. Let w(a, b) be a p-regular recurrence with restricted
period h = hw(p) and let w′(a, b) be a nontrivial recurrence modulo p (possibly p-irregular)
with restricted period h′ = hw′(p). Let c be a fixed integer such that 1 ≤ c ≤ h− 1. Then there
exist integers n1 and n2 such that

wn1+c

wn1

≡ w′

n2+c

w′

n2

(mod p)

if and only if w(a, b) and w′(a, b) are p-equivalent, where we allow the possibility that wn1+c/wn1

≡ w′

n2+c/w
′

n2
≡ ∞ (mod p).

This follows from Lemma 3.4 of [5].

Lemma 3.4. Let p be a fixed prime. Consider the LSFK u(a, b) and the LSSK v(a, b). Suppose
further that in the case of the LSSK v(a, b) that p ∤ D = a2 + 4b. Then u(a, b) and v(a, b) are
both p-regular and have common restricted period h and multiplier M modulo p. Moreover,
the following hold:

(i) uh−n ≡ −Mun/(−b)n (mod p) for 0 ≤ n ≤ h.
(ii) vh−n ≡ Mvn/(−b)n (mod p) for 0 ≤ n ≤ h.
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This is proved in Lemma 5 of [19]. The proof is established by induction and use of the
recursion relation (1.1) defining u(a, b) and v(a, b).

Lemma 3.5. Let p be a fixed prime. Let w(a, 1) be either the LSFK u(a, 1) or the LSSK
v(a, 1), and let h = hw(p), where p ∤ D. If h is even, then

wn+2r 6≡ εwn (mod p) (3.1)

for any integers n and r such that 0 ≤ n < n+2r ≤ h/2 or h/2 ≤ n < n+2r ≤ h. Moreover,
if h is odd, then

wn+2r 6≡ εwn (mod p) (3.2)

for any integers n and r such that 0 ≤ n < n+ 2r ≤ h− 1.

This follows from Lemmas 2 and 5 of [19], Lemma 7 (i) and (ii) of [16], and Lemma 7 of
[20].

Proposition 3.6. Consider the LSFK u(a, b) and the LSSK v(a, b) with discriminant D =
a2 − 4b 6= 0. Let p be a fixed prime and let h = hu(p).

(i) If m | n, then um | un.
(ii) u2n = unvn.
(iii) v2n −Du2n = 4(−b)n.
(iv) If h is even, then vh/2 ≡ 0 (mod p).

Proof. Parts (i)–(iii) follow from the Binet formulas (1.3). We now establish part (iv). Suppose
that h is even. Then h is the least positive integer n such that un ≡ 0 (mod p). Hence, by
part (ii),

uh = uh/2vh/2 ≡ 0 (mod p),

where uh/2 6≡ 0 (mod p). Therefore, vh/2 ≡ 0 (mod p). �

Theorem 3.7. Let k be a fixed positive integer. Consider the LSFK u(a, b) and LSSK v(a, b),
where b 6= 0, with characteristic roots α and β and discriminant D = a2 + 4b 6= 0. Suppose
that uk(a, b) 6= 0. Then

{

ukn(a, b)

uk(a, b)

}

∞

n=0

is a LSFK u(a′, b′) and {vkn(a, b)}∞n=0 is a LSSK v(a′, b′), where u(a′, b′) and v(a′, b′) have
characteristic roots αk and βk, parameters a′ = vk(a, b) and b′ = −(−b)k, and discriminant
D′ = Du2k(a, b).

Proofs of Theorem 3.7 are given in [10, pp. 189–190] and [8, p. 437].

Lemma 3.8. Consider the LSFK u(a, b) and the LSSK v(a, b). Then

(i) un(−a, b) = (−1)n+1un(a, b) for n ≥ 0,
(ii) vn(−a, b) = (−1)nvn(a, b) for n ≥ 0.
(iii) If h1 and h2 are the restricted periods of u(a, b) and u(−a, b), respectively, then h1 = h2.

Proof. Parts (i) and (ii) follow from the Binet formulas (1.3). Part (iii) follows from Theorem
1.5 (iv) and part (i) of this lemma. �

Lemma 3.9. Let p be a fixed prime and let w(a, b) be a p-regular recurrence. Let M = Mw(p).
Then

Aw(d) = Aw(M
jd) for 1 ≤ j ≤ Ew(p)− 1.

This follows from the proof of Lemma 10 of [17] and Lemma 13 of [19].
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Theorem 3.10. Let p be a fixed prime. Consider the recurrences u(a, b) and v(a, b). Let
h = hu(p). Then v(a, b) is p-equivalent to u(a, b) if and only if h is even.

Proof. By Proposition 3.6 (iv), vh/2 ≡ 0 (mod p) when h is even. Then

vh/2 ≡ vh/2+1 · u0 ≡ vh/2+1 · 0 ≡ 0 (mod p) (3.3)

and

vh/2+1 ≡ vh/2+1 · u1 ≡ vh/2+1 · 1 ≡ vh/2+1 (mod p). (3.4)

Since v(a, b) is nontrivial modulo p, it now follows by the recursion relation (1.1) defining both
u(a, b) and v(a, b) that v(a, b) is p-equivalent to u(a, b) when h is even. It is proved in Lemma
6 of [19] that v(a, b) is not p-equivalent to u(a, b) when h is odd. �

Theorem 3.11. Let w(a, 1) be a p-regular recurrence with discriminant D. Then

(i) Ew(p) = 1, 2, or 4.
(ii) Ew(p) = 1 if and only if hw(p) ≡ 2 (mod 4). Moreover, if Ew(p) = 1, then (D/p) = 1.
(iii) Ew(p) = 2 if and only if hw(p) ≡ 0 (mod 4). Moreover, if Ew(p) = 2, then (D/p) =

(−1/p).
(iv) Ew(p) = 4 if and only if hw(p) is odd. Moreover, if Ew(p) = 4 then p ≡ 1 (mod 4).
(v) If p ≡ 3 (mod 4) and (D/p) = 1, then hw(p) ≡ 2 (mod 4) and Ew(p) = 1.
(vi) If p ≡ 3 (mod 4) and (D/p) = −1, then hw(p) ≡ 0 (mod 4) and Ew(p) = 2.
(vii) If p ≡ 1 (mod 4) and (D/p) = −1, then hw(p) is odd and Ew(p) = 4.

Proof. By Theorem 1.4 (i), u(a, b) is p-regular. It now follows from Theorem 1.3 that hw(p) =
hu(p) and λw(p) = λu(p). Parts (i)–(vii) now follow from Lemma 3 and Theorem 13 of [14]. �

Lemma 3.12. Let p be a fixed prime. Consider the recurrences w(a, 1) and w′(−a, 1), where
either w(a, 1) and w′(−a, 1) are the LSFK’s u(a, 1) and u(−a, 1), respectively, or they are the
LSSK’s v(a, 1) and v(−a, 1), respectively. Then

Aw′(d) = Aw(d) (3.5)

for 0 ≤ d ≤ p− 1, and w(a, 1) and w′(−a, 1) are identically distributed modulo p.

This follows from the proof of Lemma 3.18 in [21].

Lemma 3.13. Let u(a, 1) be a LSFK. Suppose that h = hu(p) ≡ 2 (mod 4). Then Eu(p) = 1
and Mu(p) ≡ 1 (mod p).

(i) Suppose that un+2r−1 ≡ ±un (mod p), where n and r integers such that 1 ≤ n <
n + 2r − 1 < h/2. Then the only values of 2s − 1 and m such that 1 ≤ 2s − 1 ≤ h − 1,
1 ≤ m ≤ h− 1, um ≡ ±un (mod p), and um+2s−1/um ≡ ±1 (mod p) are

2s− 1 = 2r − 1, m = n or m = h− n− 2r + 1, (3.6)

2s− 1 = h− 2r + 1, m = n+ 2r − 1 or m = h− n, (3.7)

2s− 1 = h− 2n− 2r + 1, m = n or m = n+ 2r − 1, (3.8)

2s− 1 = 2n + 2r − 1, m = h− n− 2r + 1 or m = h− n. (3.9)

(ii) Suppose that uh/2 ≡ ±un (mod p), where 1 ≤ n < h/2 and h/2 = n + 2r − 1 for
some positive integer r. Then the only values of 2s − 1 and m such that 1 ≤ 2s − 1 ≤ h− 1,
1 ≤ m ≤ h− 1, um ≡ ±un (mod p), and um+2s−1/um ≡ ±1 (mod p) are

2s− 1 = 2r − 1, m = n or m = h/2, (3.10)

2s− 1 = h− 2r + 1, m = h/2 or m = h/2 + 2r − 1. (3.11)
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Proof. (i) It follows from Theorem 3.11 (ii) that Eu(p) = 1 andMu(p) ≡ 1 (mod p). Moreover,
we see by Lemma 3.5 that if ue ≡ ±ug (mod p) and ue ≡ ±un (mod p), where 1 ≤ e < g <
h/2, then e = n and g = n+2r− 1. It now follows from the fact that Mu(p) ≡ 1 (mod p) and
from Lemma 3.4 (i) that the only values for 2s− 1 and m are the ones listed in (3.6)–(3.9).

(ii) This follows by an argument similar to that used in the proof of part (i). �

4. Proofs of the Main Theorems

Proof of Theorem 2.1. Let h = hu(p), h1 = hu′(p), λ = λu(p), and λ1 = λu′(p). By
hypothesis, (D1/p) = (D2/p), p ∤ D1D2, and h = h1. By Theorem 3.11 (i)–(iv), it then follows
that λ = λ1.

Let p− (D1/p) = 2im. By Theorem 1.5,

h = h1 = 2jm1 (4.1)

for some j and m such that 0 ≤ j ≤ i and m1 | m. Let r = m/m1. By Theorem 1.11, 1.4(i),
and 1.3, there exists a LSFK (u′′) = u(a3, 1) and LSSK (v′′) = v(a3, 1) with discriminant
D3 = a23 + 4 such that (D3/p) = (D1/p) = (D2/p) and

hu′′(p) = hv′′(p) = 2jm = rh = rh1. (4.2)

Let λ2 = λu′′(p). Then by Theorem 3.11,

λ2 = λv′′(p) = rλ = rλ1. (4.3)

By (4.3) and the proof of Theorem 2.1 in [21], there exist odd integers k and ℓ such that
1 ≤ k, ℓ ≤ 2j−1m if j ≥ 1, 1 ≤ k, ℓ ≤ m− 2 if j = 0,

gcd(k, λ2) = gcd(ℓ, λ2) = r =
λ2

λ
, (4.4)

and

vk(a3, 1) ≡ ε1a1, vℓ(a3, 1) ≡ ε2a2 (mod p) (4.5)

for some ε1 and ε2 ∈ {−1, 1}. Then by (4.5) and Theorem 3.7,

un(ε1a1, 1) ≡ un(vk(a3, 1), 1) =
ukn(a3, 1)

uk(a3, 1)
(mod p) (4.6)

and

un(ε2a2, 1) ≡ un(vℓ(a3, 1), 1) =
uℓn(a3, 1)

uℓ(a3, 1)
(mod p) (4.7)

for all n ≥ 0. Since u(a1, 1) and u(a2, 1) both have periods modulo p equal to λ, it follows
from Lemma 3.8 (iii) and Theorem 3.11 (i)–(iv) that u(ε1a1, 1) and u(ε2a2, 1) also have periods
modulo p equal to λ. It now follows from (4.4) that the sets

{kn}λn=1 and {ℓn}λn=1 (4.8)

contain the same sets of residues modulo λ2. It thus follows that the sets

{ukn(a3, 1)}λn=1 and {uℓn(a3, 1)}λn=1 (4.9)

contain the same sets of residues modulo p. Let u′′k = uk(a3, 1), u
′′

ℓ = uℓ(a3, 1), v
′′

k = vk(a3, 1),
and v′′ℓ = vℓ(a3, 1). Noting that u′′k and u′′ℓ are both invertible modulo p by Theorem 1.5 (iv),
it follows from (4.6), (4.7), (4.9), and the fact that both (û) = u(ε1a1, 1) and (ũ) = u(ε2a2, 1)
have periods modulo p equal to λ1 that

Aũ(d) = Aû(u
′′

k(u
′′

ℓ )
−1d) (4.10)
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for 0 ≤ d ≤ p− 1. Since Aû(d) = Au(d) and Aũ(d) = Au′(d) for 0 ≤ d ≤ p− 1 by Lemma 3.12,
we have by (4.10) that

Au′(d) = Au(u
′′

k(u
′′

ℓ )
−1d) (4.11)

for 0 ≤ d ≤ p− 1.
By Proposition 3.6 (iii),

(v′′k)
2 −D3(u

′′

k)
2 = 4(−1)k = −4 (4.12)

and
(v′′ℓ )

2 −D3(u
′′

ℓ )
2 = 4(−1)ℓ = −4. (4.13)

Noting that p ∤ D3u
′′

ku
′′

ℓ , we see by (4.5), (4.12), and (4.13) that

D3(u
′′

k)
2

D3(u
′′

ℓ )
2
≡ (v′′k)

2 + 4

(v′′ℓ )
2 + 4

≡ a21 + 4

a22 + 4
≡ D1

D2
≡ (u′′k)

2

(u′′ℓ )
2

(mod p). (4.14)

Thus, by (4.14),

u′′k(u
′′

ℓ )
−1 ≡ ε

√

D1D
−1
2 (mod p) (4.15)

for some ε ∈ {−1, 1}. Therefore, by (4.11), (4.15), and Lemma 3.9,

Au′(d) = Au(ε

√

D1D
−1
2 d) = Au(M

kε

√

D1D
−1
2 d) = Au(d) (4.16)

for 0 ≤ d ≤ p − 1 and any integer k. We note from Theorem 3.11 (i)–(iv) that Mk ≡ −1
(mod p) for some integer k if and only if h 6≡ 2 (mod 4). The result now follows. �

Proof of Theorem 2.2. Since p ∤ D1D2, both (v) = v(a1, 1) and (v′) = v(a2, 1) are p-regular
by Theorem 1.4 (ii). Consider the LSFK’s (u) = u(a1, 1) and (u′) = u(a2, 1). Then by
Theorem 1.3 and Theorem 1.4 (ii),

hu(p) = hv(p) and hu′(p) = hv′(p). (4.17)

By hypothesis, hv(p) = hv′(p). It now follows from Theorem 3.11 (i)–(iv) that λv(p) = λv′(p).
Let λ1 = λv(p). As in the proof of Theorem 2.1, let p− (D1/p) = 2im. By Theorem 1.5

hv(p) = hv′(p) = 2jm1 (4.18)

for some j and some m1 such that 0 ≤ j ≤ i and m1 | m. Let r = m/m1. By Theorems 1.11,
1.4 (ii), and 1.3, there exists a LSSK (v′′) = v(a3, 1) with discriminant D3 = a23 + 4 such that
(D3/p) = (D1/p) = (D2/p) and having restricted period hv′′(p) for which

hv′′(p) = 2jm = rhv(p). (4.19)

Then by Theorem 3.11,
λv′′(p) = rλv(p). (4.20)

Let λ2 = λv′′(p). By (4.20) and the proof of Theorem 2.2 in [21] there exist odd integers k
and ℓ such that 1 ≤ k, ℓ ≤ 2j−1m if j ≥ 1, 1 ≤ k, ℓ ≤ m− 2 if j = 0,

gcd(k, λ2) = gcd(ℓ, λ2) = r =
λ2

λ
, (4.21)

and
vk(a3, 1) ≡ ε1a1, vℓ(a3, 1) ≡ ε2a2, (mod p) (4.22)

for some ε1, ε2 ∈ {−1, 1}. Then by (4.22) and Theorem 3.7,

vn(ε1a1, 1) ≡ vn(vk(a3, 1), 1) = vkn(a3, 1) (mod p) (4.23)

and
vn(ε2a2, 1) ≡ vn(vℓ(a3, 1), 1) = vℓn(a3, 1) (mod p) (4.24)
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for all n ≥ 0. Let (v′′) = v(a3, 1), v̂ = v(ε1a, 1), and ṽ = v(ε2a, 1).
Since v(a1, 1) and v(a2, 1) both have periods equal to λ, it follows from Lemma 3.8 (iii),

Theorem 1.4 (ii), Theorem 1.3, and Theorem 3.11 (i)–(iv) that v(ε1a1, 1) and v(ε2a2, 1) also
have periods equal to λv(p). It now follows from (4.21) that the sets

{kn}λn=1 and {ℓn}λn=1 (4.25)

contain the same sets of residues modulo λ2. Therefore, it follows that the sets

{vkn(a3, 1)}λn=1 and {vℓn(a3, 1)}λn=1 (4.26)

contain the same sets of residues modulo p. Since both the LSSK’s

v(ε1a1, 1) ≡ {vkn(a3, 1)}∞n=0 (mod p) (4.27)

and
v(ε2a2, 1) ≡ {vℓn(a3, 1)}∞n=0 (mod p) (4.28)

have periods modulo p equal to λ, it follows from (4.26)–(4.28) that

Aṽ(d) = Av̂(d) (4.29)

for 0 ≤ d ≤ p− 1. Moreover, by Lemma 3.12,

Av̂(d) = Av(d) and Aṽ(d) = Av′(d) (4.30)

for 0 ≤ d ≤ p − 1. We now see from (4.29) and (4.30) that equation (2.2) holds. Equation
(2.3) now follows from Lemma 3.9. �

Proof of Theorem 2.7. By Theorems 1.3, 1.4 (i), and 1.11, there exists a p-regular recurrence
w(a, 1) with restricted period hw(p) = p− 1. As in the proof of Theorem 2.4, we can assume
that w(a, 1) = u(a, 1), and thus, c ≡ 1 (mod p). By Theorem 1.5 (iii), p ≡ 3 (mod 4). We
note that (2.7) follows from Theorem 3.11 (ii). Moreover, by Theorem 1.5 (iv) and the fact
that Eu(p) = 1, we see that Au(0) = 1, and part (v) is established.

We now prove parts (iii), (iv), (vi), and (vii). Let h = hu(p) = p− 1. By Lemma 3.4 (i),

uh−n ≡ (−1)n+1un (mod n) (4.31)

for 0 ≤ n ≤ h/2. Moreover, by Lemma 3.5, if 0 ≤ m < n ≤ h/2 and m ≡ n (mod 2), then

um 6≡ ±un (mod p). (4.32)

Now suppose that 1 ≤ m ≤ h/2 and there does not exist an integer n 6= m such that
1 ≤ n ≤ h/2 and un ≡ ±um (mod p). If m is odd and m 6= h/2, then by (4.31) and the fact
that Eu(p) = 1,

A(um) = 2 and A(−um) = 0, (4.33)

while if m = h/2, then
A(um) = 1 and A(−um) = 0. (4.34)

If m is even, then by (4.31),
A(um) = A(−um) = 1. (4.35)

Next we suppose that for a given integer m such that 1 ≤ m ≤ h/2, there exists an integer
n 6= m such that 1 ≤ n ≤ h/2 and un ≡ ±um (mod p). By (4.32) and the pigeonhole principle,
there exists exactly one such n and n 6≡ m (mod 2). Thus, we can assume that m is odd and
n is even. Then by (4.31), we find that if 1 ≤ m < h/2, then

A(um) = 3 and A(−um) = 1, (4.36)

while if m = h/2, then
A(um) = 2 and A(−um) = 1, (4.37)
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We now determine uh/2 (mod p). We observe by Theorem 1.5 (iv) and Proposition 3.6 (ii)
that uh = uh/2vh/2 ≡ 0 (mod p). Since uh/2 6≡ 0 (mod p) by Proposition 1.5 (iv), we find that
vh/2 ≡ 0 (mod p). We now see by Proposition 3.6 (iii) that

v2h/2 −Du2h/2 ≡ 02 −Du2h/2 ≡ 4(−1)h/2 ≡ −4 (mod p).

Thus, since (D/p) = 1, we obtain that

uh/2 ≡ 2ε/
√
D (mod p). (4.38)

Parts (iii), (iv), and (vii) now follow from (4.33)–(4.38). Now suppose that a ≡ ±1 (mod p).
Then u1 ≡ 1 and u2 = a ≡ ±1 (mod p). Part (vi) now follows from (4.36).

We now prove parts (i), (ii), (viii), and (ix). We first determine Nu(p). Let R be the number
of even integers e such that 2 ≤ e ≤ (p − 1)/2. Let T be the number of odd integers j such
that 1 ≤ j ≤ (p − 1)/2. Clearly, R = (p − 3)/4 and T = (p + 1)/4. Let Y be the number of
odd integers m such that m ≤ (p− 1)/2 and

um ≡ ±ue (mod p) (4.39)

for some even integer e such that 2 ≤ e ≤ (p − 1)/2. Since Au(0) = 1, we now see by
(4.33)–(4.37) that

Nu(p) = 1 + 2R + (T − Y ) = 1 + 2
(p− 3

4

)

+
p+ 1

4
− Y =

3p− 1

4
− Y. (4.40)

We will see later

Y =

{

p−3
8 , if p ≡ 3 (mod 8);

p+1
8 , if p ≡ 7 (mod 8).

(4.41)

This will imply by (4.40) and (4.41) that

Nu(p) =

{

5p+1
8 , if p ≡ 3 (mod 8);

5p−3
8 , if p ≡ 7 (mod 8),

(4.42)

as desired.
By Theorem 3.3 and Lemma 3.13, if there exist integers m and n such that 1 ≤ m < n <

(p − 1)/2, n − m is odd, and un ≡ ±um (mod p), then there exist exactly four odd integers
ℓ such that 1 ≤ ℓ ≤ p − 2 and for which there exist exactly two distinct integers n1 and n2

satisfying 1 ≤ n1, n2 ≤ p− 2,

un1+ℓ ≡ un1
≡ εum (mod p) (4.43)

and

un2+ℓ ≡ −un1
≡ −εum (mod p). (4.44)

Similarly, if there exists an integer m for which 1 ≤ m < (p−1)/2, (p−1)/2−m is odd, and
u(p−1)/2 ≡ ±um (mod p), then there exist exactly two odd integers ℓ such that 1 ≤ ℓ ≤ p − 2
and (4.43) and (4.44) hold for two distinct integers n1 and n2 satisfying 1 ≤ n1, n2 ≤ p− 2.

Let g be a fixed integer such that 1 ≤ g ≤ p − 2. Noting that hu(p) = p − 1, it follows
from Theorem 3.2 that the p − 1 ratios wn+g/wn are distinct modulo p for 0 ≤ n ≤ p − 2.
Notice that there are p+1 possible values for wn+g/wn (mod p) including the values 0 and ∞.
Furthermore, by Theorem 1.6 (ii) and Theorem 3.1 (ii), there are two nontrivial p-irregular
recurrences that are not p-equivalent to u(a, 1) or to each other, namely, the recurrences
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w′(a, 1) with initial terms w′

0 ≡ 1, w′

1 ≡ α (mod p) and w′′(a, 1) with initial terms w′′

0 ≡ 1,
w′′

1 ≡ β (mod p). Thus, by Theorem 3.3, the ratios

w′

g

w′

0

≡ αg (mod p) and
w′′

g

w′′

0

≡ βg (mod p) (4.45)

are distinct from each other and from the p − 1 ratios wn+g/wn (mod p), 0 ≤ n ≤ p − 2.
Hence, we have exhausted all p+1 possible values for these ratios modulo p. Thus, for a given
integer g such that 1 ≤ g ≤ p− 2 both of the residues 1 and (−1) (mod p) appear among the
ratios

{un+g

un

}p−2

n=0
,

w′

g

w′

0

, and
w′′

g

w′′

0

modulo p. (4.46)

We now determine the values of w′

g/w
′

0 and w′′

g/w
′′

0 (mod p) for various integers g such that
1 ≤ g ≤ p− 2. By Theorem 1.5 (vi),

λu(p) = p− 1 = lcm(ordpα, ordpβ), (4.47)

where we assume that ordpα ≤ ordpβ. Since αβ = −1, it follows from (4.47) that

ordpα =
p− 1

2
, ordpβ = p− 1. (4.48)

Hence,
αg 6≡ ±1 and βg 6≡ ±1 (mod p) (4.49)

if 1 ≤ g ≤ p− 2 and g 6= (p− 1)/2, while

α(p−1)/2 ≡ 1 and β(p−1)/2 ≡ −1 (mod p). (4.50)

Thus, by (4.46), (4.49), and (4.50), if ℓ is an odd integer such that 1 ≤ ℓ ≤ p − 2, then there
exist distinct integers n1 and n2 such that 0 ≤ n1, n2 ≤ p− 2 and

un1+ℓ

un1

≡ 1,
un2+ℓ

un2

≡ −1 (mod p) (4.51)

if and only if ℓ is one of the (p− 3)/2 odd integers for which 1 ≤ ℓ ≤ p− 2 and ℓ 6= (p− 1)/2.
We now observe that

p− 3

2
≡

{

0 (mod 4), if p ≡ 3 (mod 8);
2 (mod 4), if p ≡ 7 (mod 8).

(4.52)

It now follows from (4.34), (4.37), (4.38), and (4.52) that parts (viii) and (ix) both hold.
We now see from Theorem 3.2, (4.43), and (4.44) that

Y =

{ (p−3)/2
4 = p−3

8 , if p ≡ 3 (mod 8);

(p−7)/2
4 + 2

2 = p+1
8 , if p ≡ 7 (mod 8),

(4.53)

and the formula for Nu(p) given in (4.42) indeed holds.
We now observe by Theorem 1.1 (iv) that Su(p) ⊂ {0, 1, 2, 3}. Next we determine Bw(i) for

0 ≤ i ≤ 3. First suppose that i = 0. Then by (4.42),

Bu(0) = p−Nu(p) =

{

p− 5p+1
8 = 3p−1

8 if p ≡ 3 (mod 8),

p− 5p−3
8 = 3p+3

8 if p ≡ 7 (mod 8).
(4.54)

Now we let i = 1. It follows from (4.34)–(4.38) and parts (v), (viii), and (ix) that

Bu(1) = 1+ 2(R− Y ) + (Y +1) = 1+
p− 3

2
− p− 3

4
+

p− 3

8
+ 1 =

3p+ 7

8
if p ≡ 3 (mod 8),

(4.55)
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whereas

Bu(1) = 1 + 2(R− Y ) + Y = 1 +
p− 3

2
− p+ 1

4
+

p+ 1

8
=

3p − 5

8
if p ≡ 7 (mod 8). (4.56)

Further, we consider the case in which i = 2. Then by (4.33), (4.34), (4.37), (4.38), and
parts (viii) and (ix),

Bu(2) = (T − Y )− 1 =
p+ 1

4
− p− 3

8
− 1 =

p− 3

8
if p ≡ 3 (mod 8), (4.57)

while

Bu(2) = (T − Y ) + 1 =
p+ 1

4
− p+ 1

8
+ 1 =

p+ 9

8
if p ≡ 7 (mod 8). (4.58)

Finally, we suppose that i = 3. Then by (4.34), (4.36), and (4.37),

Bu(3) = Y =
p− 3

8
if p ≡ 3 (mod 8), (4.59)

while

Bu(3) = Y − 1 =
p+ 1

8
− 1 =

p− 7

8
if p ≡ 7 (mod 8). (4.60)

Finally, we see from (4.55)–(4.60) that Su(p) = {0, 1} if p = 3, Su(p) = {0, 1, 2} if p = 7,
and Su(p) = {0, 1, 2, 3} if p ≡ 3 (mod 4) and p > 7.

Parts (i) and (ii) are now established and the proof is complete. �

5. Corollaries of the Main Theorems

Corollary 5.1 follows from Theorem 2.1 and 2.2 upon application of Theorem 1.8, Theorem
3.11, and (1.12).

Corollary 5.1. Let p be a fixed prime. Let w(a1, 1) and w′(a2, 1) be recurrences with discrim-
inants D1 = a21 + 4 and D2 = a22 + 4, respectively, such that p ∤ D1D2 and (D1/p) = (D2/p).
Suppose that either w(a1, 1) is p-equivalent to u(a1, 1) and w′(a2, 1) is p-equivalent to u(a2, 1),
or it is the case that w(a, 1) is p-equivalent to v(a1, 1) and w′(a2, 1) is p-equivalent to v(a2, 1).

Suppose further that hw(p) = hw′(p). This occurs if and only if λw(p) = λw′(p). Then there
exists a nonzero residue c modulo p such that Aw′(d) = Aw(cd) for 0 ≤ d ≤ p−1, and w(a1, 1)
and w′(a2, 1) are identically distributed modulo p.

Corollary 5.2 below follows from Theorems 2.1 and 2.2 upon application of Theorem 1.8,
Theorem 1.10, Theorem 3.10, and (1.12).

Corollary 5.2. Let p ≡ 1 (mod 4) be a fixed prime. Then there exists a LSFK u(a, 1) with
discriminant D such that (D/p) = −1 and hu(p) = (p+ 1)/2.

Let w′(a1, 1) be any p-regular recurrence with discriminant D1 such that (D1/p) = −1 and
hw′(p) = (p + 1)/2. Then w′(a1, 1) is p-equivalent to either u(a1, 1) or v(a1, 1).

If w′(a1, 1) is p-equivalent to u(a1, 1), then there exists a nonzero residue c modulo p such
that Aw′(d) = Au(cd), and w′(a1, 1) is identically distributed modulo p to u(a, 1). If w′(a1, 1)
is p-equivalent to v(a1, 1), then there exists a nonzero residue c modulo p such that Aw′(cd) =
Av(d), and w′(a1, 1) is identically distributed modulo p to v(a, 1).

Remark 5.3. Primes q for which 2q − 1 is also prime are called Sophie Germain primes of
the second kind. It is easily seen that if q is an odd Sophie Gemain prime, then 2q − 1 ≡ 1
(mod 4). Let q be an odd Sophie Germain prime and let p = 2q− 1. Suppose that w(a, 1) is a
p-regular recurrence with discriminant D = a2 + 4 such that (D/p) = −1. Then by Theorem
1.5 (i) and (iii), hw(p) = (p+ 1)/2.
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By inspection, we see that the first few Sophie Germain primes of the second kind are

2, 3, 7, 19, 31, 37, 79, 97, 139, 157, 199, 211, . . . .

The largest known Sophie Germain prime of the second kind is 129431439657 ·2170172 +1 with
51238 digits according to [4].

Corollary 5.4. Suppose that w(a, 1) is p-equivalent to v(a, 1) and that p | D = a2 + 4. Then
w(a, 1) is p-irregular and

λw(p) = λv(p) = 4. (5.1)

Moreover,

Aw(0) = 0, Sw(p) = {0, 1}, Nw(p) = λw(p) = 4, Bw(0) = p− 4, Bw(1) = 4. (5.2)

Proof. By Theorem 1.8 it suffices to prove the result for the case in which w(a, 1) = v(a, 1).
Since v0 = 2, we see by Theorem 1.6 (ii) that

λv(p) = ordpα = ordpa/2.

Since D = a2 + 4 ≡ 0 (mod p), we find that (a/2)2 ≡ −1 (mod p), which implies that
ordpα = λv(p) = 4, and (5.1) holds. It now easily follows that (5.2) holds upon use of
Theorem 1.6 (ii). �
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[21] L. Somer and M. Kř́ıžek, Identically distributed second-order linear recurrences modulo p, The Fibonacci
Quarterly, 53.4 (2015), 290–312.

[22] W. A. Webb and C. T. Long, Distribution modulo ph of the general linear second order recurrence, Atti
Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 92–100.

MSC2010: 11B39, 11A07, 11A41

Department of Mathematics, Catholic University of America, Washington, D.C. 20064

E-mail address: somer@cua.edu

Institute of Mathematics, Academy of Sciences, Žitná 25, CZ – 115 67 Prague 1, Czech Republic
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