FIBONACCI AND LUCAS REPRESENTATIONS

ZAI-QIAO BAI AND STEVEN R. FINCH

ABSTRACT. An identity which relates the Fibonacci and Lucas representations of integers to the Riemann zeta function is derived.

1. INTRODUCTION AND RESULTS

The Fibonacci numbers $(F_1 = F_2 = 1 \text{ and } F_n = F_{n-1} + F_{n-2} \text{ for } n \ge 3)$ can be used as the base of a numeral system. Any nonnegative integer k can be written in the form

$$k = \sum_{i=1}^{\infty} s_i F_i \equiv (\dots s_2 s_1)_F,\tag{1}$$

where $s_i \in \{0, 1\}$. In fact, if no further constraint is applied to the partition, such a Fibonacci representation is not unique if k > 0, e.g.,

$$1 = F_1 = F_2,$$
 $2 = F_3 = F_2 + F_1,$ $3 = F_4 = F_3 + F_2 = F_3 + F_1, \dots$

Let R(k) be the number of Fibonacci representations of k, which defines a rather irregular sequence (see Table 1) [9]. This sequence was first studied by Hoggatt and Basin [7], and later by Klarner [8]. However, subsequent studies were focused on a variant of R(k) in which F_1 is excluded from the base [5, 2, 6].

Similarly, the Lucas numbers $(L_0 = 2, L_1 = 1 \text{ and } L_n = L_{n-1} + L_{n-2} \text{ for } n \ge 2)$ can also be used to represent nonnegative integers, i.e.,

$$k = \sum_{i=0}^{\infty} s_i L_i \equiv (\dots s_1 s_0)_L \tag{2}$$

where $s_i \in \{0, 1\}$. The Lucas representation for an integer is also generally not unique. Let Q(k) be the number of Lucas representations of k, which appears to be as irregular as R(k) as a function of k (see Table 2).

In this note we prove that

$$\#\{k: Q(k) = n\} = 3\#\{k: R(k) = n\} \equiv 3w(n)$$
(3)

and

$$\sum_{n=1}^{\infty} \frac{w(n)}{n^s} = \frac{\zeta(s-1)}{2\zeta(s) - \zeta(s-1)}$$
(4)

if $\operatorname{Re}(s)$ is sufficiently large, where $\zeta(s)$ is the Riemann zeta function.

2. Proof of the Main Result

The proof of identity (3) and (4) is based on a matrix product expression for R(k) and Q(k). Such an expression was first obtained by Berstel for the above-mentioned variant of R(k) [2], which can be generalized to R(k) and Q(k) by a minor modification.

According to a well-known theorem of Zeckendorf, the Fibonacci representation can be made unique if we require $s_1 = 0$ and $s_n s_{n+1} = 0$, i.e., F_1 is excluded from the base and

no consecutive Fibonacci numbers are allowed in the summation [10]. Under this restriction, the binary string $S = \ldots s_2 s_1$ is called the Zeckendorf code of $k = (S)_F$. The analog of a Zeckendorf code for the Lucas representation is the Brown code, which satisfies $s_0 s_2 = 0$ and $s_n s_{n+1} = 0$ [3]. The matrix product expressions of R(k) and Q(k) turn out to be dependent on the Zeckendorf and Brown codes of k.

Proposition 1. If k > 0 and S is its Zeckendorf code, where the leading infinite substring of 0's is ignored, S can be uniquely written as $10\hat{S}t$, where \hat{S} is a string composed of words r = 10, l = 00 and c = 010 and $t \in \{\epsilon, 0\} \equiv A_F$. Here ϵ denotes the empty string.

Proof. By induction.

Proposition 2. If k > 2 and S is its Brown code, where the leading infinite substring of 0's is ignored, S can be uniquely written as $10\hat{S}t$, where \hat{S} is a string composed of words r = 10, l = 00 and c = 010 and $t \in \{0, 00, 10, 01, 010, 001\} \equiv A_L$.

Proof. By induction.

We call \hat{S} the essential part of the Zeckendorf or Brown code of k. The following theorem informs us how to calculate R(k) or Q(k) from \hat{S} .

Theorem 3. If the essential part of the Zeckendorf or Brown code of k is $\hat{S} = \sigma_m \dots \sigma_1$, then R(k) or Q(k) is given by

$$e^T M(\sigma_k) \cdots M(\sigma_1) e \equiv e^T M(\hat{S}) e \equiv g(\hat{S})$$
 (5)

where

$$M(r) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \qquad M(l) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \qquad M(c) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

are three 2×2 matrices and $e = [1, 1]^T$.

The proof of this theorem is a little tedious and we give it in a separate section (see below). Noticing that R(0) = 1, Q(0) = Q(1) = Q(2) = 1, and $\#A_L = 3\#A_F$, we have the following proposition.

Proposition 4. For an arbitrary positive integer n, $\#\{k: Q(k) = n\} = 3\#\{k: R(k) = n\}$.

A key observation of Theorem 3 is that $M(c) = ee^T$, which allows us to write $g(\hat{S})$ as $g(\hat{S}_1)g(\hat{S}_2)$ if $\hat{S} = \hat{S}_1c\hat{S}_2$. In other words, we have the following proposition.

Proposition 5. If $\hat{S} = \tilde{S}_m c \tilde{S}_{m-1} c \dots \tilde{S}_1$, where each \tilde{S}_j is a string composed only of r and l, then

$$g(\hat{S}) = \prod_{j=1}^{m} g(\tilde{S}_j).$$
(6)

The action of M(r) and M(l) on $(m, n)^T$ gives $(m, m + n)^T$ and $(m + n, n)^T$, respectively. If (m, n) is understood as the rational number m/n, this is just the generating rule of the Calkin-Wilf tree of fractions [4]. In addition, $e = [1, 1]^T$ can be identified as the seed of the Calkin-Wilf tree. Therefore, when \tilde{S} runs over all sequences composed only of r and l, $M(\tilde{S})e$ will produce all co-prime pairs $(m, n)^T$ once and only once, with exceptions $(0, 1)^T$ and $(1, 0)^T$. Consequently, we have the following proposition.

Proposition 6.

$$A_s \equiv \sum_{\tilde{S}} g(\tilde{S})^{-s} = \sum_{\substack{m+n>1\\(m,n)=1}} \frac{1}{(m+n)^s} = \sum_{k=2}^{\infty} \frac{\varphi(k)}{k^s} = \frac{\zeta(s-1)}{\zeta(s)} - 1$$
(7)

where $\varphi(k)$ is the Euler totient function [1].

Combining all above facts, we finally have the following theorem.

Theorem 7.

$$\sum_{n=1}^{\infty} \frac{w(n)}{n^s} = \sum_{k=0}^{\infty} R(k)^{-s} = \frac{\zeta(s-1)}{2\zeta(s) - \zeta(s-1)}.$$
(8)

Proof.

$$\sum_{k=0}^{\infty} R(k)^{-s} = 1 + \sum_{k=1}^{\infty} R(k)^{-s} = 1 + \sum_{\hat{S}} \sum_{t \in A_F} R((10\hat{S}t)_F)^{-s}$$
$$= 1 + 2\sum_{\hat{S}} g(\hat{S})^{-s} = 1 + 2(A_s + A_s^2 + \cdots)$$
$$= \frac{1+A_s}{1-A_s} = \frac{\zeta(s-1)}{2\zeta(s) - \zeta(s-1)}.$$
(9)

3. DISCUSSION

A formula for w(n) is possible as follows. A multiplicative composition of n is a sequence x_1, x_2, \ldots, x_k of integers (for some $k \ge 1$) satisfying

$$n = x_1 x_2 \cdots x_k, \quad x_j \ge 2 \text{ for all } 1 \le j \le k.$$

Let X_n denote the set of all multiplicative compositions of n. For example, if n is a prime power p^m , then $\#X_n = 2^{m-1}$; if n is a product of distinct primes pq, then $\#X_n = 3$. Let $X_{n,k}$ denote the subset of X_n of sequences containing exactly k terms. By use of Proposition 5, it can be shown that

$$w(n) = 2\left[\varphi(n) + \sum_{X_{n,2}} \varphi(x_1)\varphi(x_2) + \sum_{X_{n,3}} \varphi(x_1)\varphi(x_2)\varphi(x_3) + \cdots\right].$$

For example, $w(p^m) = 2(p-1)(2p-1)^{m-1}$ and w(pq) = 6(p-1)(q-1). The arithmetic function w(n) fails to be multiplicative; standard techniques for computing the Dirichlet series corresponding to w(n) do not apply.

Since the number of *n*-bit binary strings is 2^n while F_n , L_n grow like τ^n when $n \to \infty$, where $\tau = (\sqrt{5}+1)/2$ is the golden ratio, by averaging, R(k) and Q(k) increase as k^{α} when $k \to \infty$, where

$$\alpha = \frac{\log 2}{\log \tau} = 1.44042\dots$$

Thus, $\sum_{k} R(k)^{-s}$ and $\sum_{k} Q(k)^{-s}$ diverge for real $s < 1 + \alpha$, which is slightly smaller than 2.47875..., the exact lower bound for convergence of the two series determined by the zero of the denominator of formula (8).

NOVEMBER 2016

321

4. Proof of Theorem 3

The key point to proving Theorem 3 is to categorize the Fibonacci (or Lucas) representations into two classes according to whether the leading non-zero bit of the Zeckendorf (or Brown) code is used. The counts of the two classes form a 2-component vector, and Edson and Zamboni found that this vector can be generated from a simple iteration relation [6].

Let us begin with the Fibonacci representation. The proof is based on two facts. One is the inequality

$$\sum_{k=1}^{n} F_k = F_{n+2} - 1 < F_{n+2} \le 2F_{n+1}$$
(10)

for $n \ge 1$. Suppose S_1 and S_2 are two arbitrary binary sequences that begin with 1. The first part of this inequality implies that, if $(S_1)_F = (S_2)_F$, then $|S_1|$ and $|S_2|$ are either equal or differ by one, where |S| denotes the length of S as a binary string. In addition, the second part of this inequality implies that, if $(S_1)_F = (S_2)_F + F_{|S_2|}$, then $|S_1| \ge |S_2|$.

The other fact crucial to our proof is that, of all Fibonacci representations of a positive integer, the Zeckendorf code as a binary string is the one with the largest lexicographical order. Therefore, if S = 10S' is the Zeckendorf code of a positive integer k and $S_1 = 1S''$ is an arbitrary Fibonacci representation of k, i.e., $(S_1)_F = k = (S)_F$, then $|S_1| = |S|$ or |S| - 1.

The above described properties of the Fibonacci representation lead naturally to the following definitions.

Definition 8. Letting S = 10... be the Zeckendorf code of a positive integer, define

$$R_0(S) = \#\{S' \in [0,1]^{|S|-1} : (S')_F = (S)_F\},\tag{11}$$

$$R_1(S) = \#\{S' \in [0,1]^{|S|-1} : (1S')_F = (S)_F\}.$$
(12)

Using this notation, we have the following proposition.

Proposition 9. If S = 10S' is a Zeckendorf code, then

$$R((S)_F) = R_0(S) + R_1(S) = e^T \begin{bmatrix} R_0(S) \\ R_1(S) \end{bmatrix}.$$
 (13)

Moreover, from the definition and properties of the Zeckendorf code we have the following proposition.

Proposition 10. If 10S' is a Zeckendorf code, then

$$R_1(10S') = R((S')_F).$$
(14)

We then consider how R_0 and R_1 change when a Zeckendorf code 10S is expanded to 10rS, 10lS or 10cS. The iteration rules for R_1 can be readily derived as follows:

$$R_1(1010S) = R((10S)_F) = R_0(10S) + R_1(10S),$$
(15)

$$R_1(1000S) = R((00S)_F) = R((S)_F) = R_1(10S),$$
(16)

$$R_1(10010S) = R((010S)_F) = R((10S)_F) = R_0(10S) + R_1(10S).$$
(17)

For the iteration rules of R_0 , note that

$$R_0(10S) = \#\{S' \in [0,1]^{|S|} : (1S')_F = (10S)_F\} = \#\{S' \in [0,1]^{|S|} : (S')_F = F_{|S|} + (S)_F\},\$$

hence we have the following,

$$R_{0}(1010S) = \#\{S' \in [0,1]^{|S|+2} : (S')_{F} = F_{|S|+2} + (10S)_{F}\}$$

$$= \#\{S' \in [0,1]^{|S|+1} : (1S')_{F} = F_{|S|+2} + (10S)_{F}\}$$

$$= \#\{S' \in [0,1]^{|S|+1} : (S')_{F} = (10S)_{F}\}$$

$$= R_{0}(10S),$$
(18)

$$R_0(1000S) = \#\{S' \in [0,1]^{|S|+2} : (S')_F = F_{|S|+2} + (00S)_F = (10S)_F\}$$

= $R((10S)_F) = R_0(10S) + R_1(10S),$ (19)

$$R_0(10010S) = \#\{S' \in [0,1]^{|S|+3} : (S')_F = F_{|S|+3} + (010S)_F = (1000S)_F\}$$

= $R_0(1000S) = R_0(10S) + R_1(10S).$ (20)

Combining formulas 15–17 and 18–20, we have the following proposition.

Proposition 11. If 10S is the Zeckendorf code of a positive integer, then

$$\begin{bmatrix} R_0(10\sigma S) \\ R_1(10\sigma S) \end{bmatrix} = M(\sigma) \begin{bmatrix} R_0(10S) \\ R_1(10S) \end{bmatrix}$$
(21)

for $\sigma = r, l, c$.

Finally, we can readily check that $R_0(10) = 1$ (as $F_2 = F_1$), $R_1(10) = 1$ (as $F_2 = F_2$), $R_0(100) = 1$ (as $F_3 = F_2 + F_1$) and $R_1(100) = 1$ (as $F_3 = F_3$), i.e.,

$$\begin{bmatrix} R_0(10) \\ R_1(10) \end{bmatrix} = \begin{bmatrix} R_0(100) \\ R_1(100) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = e.$$
 (22)

Combining this formula with Propositions 9 and 11, Theorem 3 for the Fibonacci representation is proved.

We now consider the Lucas representation. Because similar inequalities hold for Lucas numbers, i.e.,

$$\sum_{j=0}^{k} L_j = L_{k+2} - 1 < 2L_{k+1}$$
(23)

for $k \geq 1$ and the Brown code is also constructed from a greedy algorithm for the largest lexicographical order, the same iteration rules hold for similarly defined Q_0 and Q_1 . Thus we need only to verify that

$$\begin{bmatrix} Q_0(10t) \\ Q_1(10t) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
(24)

for each $t \in A_L$, which is obviously true (see Table 3). Therefore we complete the proof of Theorem 3.

Table 1.							
n	Zeckendorf code	segmentation	essential part	R(n)			
1	10	<u>10</u>	ϵ	2			
2	100	<u>10</u> 0	ϵ	2			
3	1000	<u>10 00</u>	l	3			
4	1010	$10 \ 10$	r	3			
5	10000	<u>10 00 0</u>	l	3			
6	10010	10 010	c	4			
7	10100	<u>10 10 0</u>	r	3			
8	100000	10 00 00	ll	4			
9	100010	10 00 10	lr	5			
10	100100	<u>10 010 0</u>	c	4			
11	101000	10 10 00	rl	5			
12	101010	<u>10 10 10</u>	rr	4			
13	1000000	<u>10 00 00 0</u>	ll	4			
14	1000010	10 00 010	lc	6			
15	1000100	10 00 10 10	lr	5			
16	1001000	10 010 00	cl	6			
17	1001010	10 010 10	cr	6			
18	1010000	<u>10 10 00 0</u>	rl	5			
19	1010010	$10 \ 10 \ 010$	rc	6			
20	1010100	<u>10 10 10 0</u>	rr	4			
21	1000000	10 00 00 00	lll	5			
22	10000010	10 00 00 10	llr	7			
23	10000100	<u>10 00 010 0</u>	lc	6			
24	10001000	10 00 10 00	lrl	8			
25	10001010	<u>10 00 10 10</u>	lrr	7			
26	10010000	<u>10 010 00 0</u>	cl	6			
27	10010010	10 010 010	cc	8			
28	10010100	<u>10 010 10 0</u>	cr	6			
29	10100000	<u>10 10 00 00</u>	rll	7			
30	10100010	10 00 00 10	rlr	8			
31	10100100	<u>10 10 010 0</u>	rc	6			
32	10101000	<u>10 10 10 00</u>	rrl	7			
33	10101010	<u>10 10 10 10</u>	rrr	5			

Table 1.

FIBONACCI AND LUCAS REPRESENTATIONS

14010 2.							
n	Brown code	segmentation	essential part	Q(n)			
1	10			1			
2	1			1			
3	100	<u>10 0</u>	ϵ	2			
4	1000	<u>10 00</u>	ϵ	2			
5	1010	<u>10 10</u>	ϵ	2			
6	1001	<u>10 01</u>	ϵ	2			
7	10000	<u>10 00 0</u>	l	3			
8	10010	<u>10 010</u>	ϵ	2			
9	10001	<u>10 001</u>	ϵ	2			
10	10100	<u>10 10 0</u>	r	3			
11	100000	<u>10 00 00</u>	l	3			
12	100010	<u>10 00 10</u>	l	3			
13	100001	<u>10 00 01</u>	l	3			
14	100100	<u>10 010 0</u>	c	4			
15	101000	<u>10 10 00</u>	r	3			
16	101010	<u>10 10 10</u>	r	3			
17	101001	<u>10 10 01</u>	r	3			
18	1000000	<u>10 00 00 0</u>	ll	4			
19	1000010	10 00 010	l	3			
20	1000001	10 00 001	l	3			
21	1000100	10 00 10 0	lr	5			
22	1001000	10 010 00	С	4			
23	1001010	10 010 10	c	4			
24	1001001	10 010 01	c	4			
25	1010000	<u>10 10 00 0</u>	rl	5			
26	1010010	10 10 010	r	3			
27	1010010	10 10 001	r	3			
28	1010100	<u>10 10 10 0</u>	rr	4			

Table 2.

Table 3.

t	$Q_0(10t)$	partition	$Q_1(10t)$	partition
0	1	$3 = L_1 + L_0$	1	$3 = L_2$
00	1	$4 = L_2 + L_1$	1	$4 = L_3$
01	1	$6 = L_2 + L_1 + L_0$	1	$6 = L_3 + L_0$
10	1	$5 = L_2 + L_0$	1	$5 = L_3 + L_1$
001	1	$9 = L_3 + L_2 + L_0$	1	$9 = L_4 + L_0$
010	1	$8 = L_3 + L_2 + L_1$	1	$8 = L_4 + L_1$

References

- [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York-Heidelberg, 1976.
- [2] J. Berstel, An exercise on Fibonacci representations, Theor. Inform. Appl., 35 (2001), 491–498.
- [3] J. L. Brown, Unique representations of integers as sums of distinct Lucas numbers, The Fibonacci Quarterly, 7.3 (1969), 243-252.
- [4] N. Calkin and H. Wilf, Recounting the rationals, American Mathematical Monthly, 107 (2000), 360–363.
- [5] L. Carlitz, Fibonacci representations, The Fibonacci Quarterly, 6.3 (1968), 193–220.

NOVEMBER 2016

- [6] M. Edson and L. Q. Zamboni, On representations of positive integers in the Fibonacci base, Theor. Comp. Sci., 326 (2004), 241–260.
- [7] V. E. Hoggatt Jr. and S. L. Basin, Representations by complete sequences Part I (Fibonacci), The Fibonacci Quarterly, 3.1 (1963), 1–14, 31.
- [8] D. A. Klarner, Representations of N as a sum of distinct elements from special sequences, The Fibonacci Quarterly, 4.4 (1966), 289–306, 322.
- [9] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A000121, http://oeis.org/A067595, http://oeis.org/A274262.
- [10] E. Zeckendorf, Representation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liege, 41 (1972), 179–182.

MSC2010: 11B39, 11M06, 30B50

DEPARTMENT OF PHYSICS, BEIJING NORMAL UNIVERSITY, BEIJING 1000875, PR CHINA *E-mail address:* baizq@bnu.edu.cn

Department of Statistics, Harvard University, Cambridge, MA 02138 $E\text{-}mail address: steven_finch@harvard.edu$