FIBONACCI AND LUCAS REPRESENTATIONS

ZAI-QIAO BAI AND STEVEN R. FINCH

Abstract

An identity which relates the Fibonacci and Lucas representations of integers to the Riemann zeta function is derived.

1. Introduction and Results

The Fibonacci numbers ($F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$) can be used as the base of a numeral system. Any nonnegative integer k can be written in the form

$$
\begin{equation*}
k=\sum_{i=1}^{\infty} s_{i} F_{i} \equiv\left(\ldots s_{2} s_{1}\right)_{F}, \tag{1}
\end{equation*}
$$

where $s_{i} \in\{0,1\}$. In fact, if no further constraint is applied to the partition, such a Fibonacci representation is not unique if $k>0$, e.g.,

$$
1=F_{1}=F_{2}, \quad 2=F_{3}=F_{2}+F_{1}, \quad 3=F_{4}=F_{3}+F_{2}=F_{3}+F_{1}, \ldots
$$

Let $R(k)$ be the number of Fibonacci representations of k, which defines a rather irregular sequence (see Table 1) [9]. This sequence was first studied by Hoggatt and Basin [7], and later by Klarner [8]. However, subsequent studies were focused on a variant of $R(k)$ in which F_{1} is excluded from the base [5, 2, 6].

Similarly, the Lucas numbers ($L_{0}=2, L_{1}=1$ and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$) can also be used to represent nonnegative integers, i.e.,

$$
\begin{equation*}
k=\sum_{i=0}^{\infty} s_{i} L_{i} \equiv\left(\ldots s_{1} s_{0}\right)_{L} \tag{2}
\end{equation*}
$$

where $s_{i} \in\{0,1\}$. The Lucas representation for an integer is also generally not unique. Let $Q(k)$ be the number of Lucas representations of k, which appears to be as irregular as $R(k)$ as a function of k (see Table 2).

In this note we prove that

$$
\begin{equation*}
\#\{k: Q(k)=n\}=3 \#\{k: R(k)=n\} \equiv 3 w(n) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{w(n)}{n^{s}}=\frac{\zeta(s-1)}{2 \zeta(s)-\zeta(s-1)} \tag{4}
\end{equation*}
$$

if $\operatorname{Re}(s)$ is sufficiently large, where $\zeta(s)$ is the Riemann zeta function.

2. Proof of the Main Result

The proof of identity (3) and (4) is based on a matrix product expression for $R(k)$ and $Q(k)$. Such an expression was first obtained by Berstel for the above-mentioned variant of $R(k)$ [2], which can be generalized to $R(k)$ and $Q(k)$ by a minor modification.

According to a well-known theorem of Zeckendorf, the Fibonacci representation can be made unique if we require $s_{1}=0$ and $s_{n} s_{n+1}=0$, i.e., F_{1} is excluded from the base and

THE FIBONACCI QUARTERLY

no consecutive Fibonacci numbers are allowed in the summation [10]. Under this restriction, the binary string $S=\ldots s_{2} s_{1}$ is called the Zeckendorf code of $k=(S)_{F}$. The analog of a Zeckendorf code for the Lucas representation is the Brown code, which satisfies $s_{0} s_{2}=0$ and $s_{n} s_{n+1}=0$ [3]. The matrix product expressions of $R(k)$ and $Q(k)$ turn out to be dependent on the Zeckendorf and Brown codes of k.

Proposition 1. If $k>0$ and S is its Zeckendorf code, where the leading infinite substring of 0 's is ignored, S can be uniquely written as $10 \hat{S} t$, where \hat{S} is a string composed of words $r=10, l=00$ and $c=010$ and $t \in\{\epsilon, 0\} \equiv A_{F}$. Here ϵ denotes the empty string.

Proof. By induction.
Proposition 2. If $k>2$ and S is its Brown code, where the leading infinite substring of 0's is ignored, S can be uniquely written as $10 \hat{S} t$, where \hat{S} is a string composed of words $r=10$, $l=00$ and $c=010$ and $t \in\{0,00,10,01,010,001\} \equiv A_{L}$.

Proof. By induction.
We call \hat{S} the essential part of the Zeckendorf or Brown code of k. The following theorem informs us how to calculate $R(k)$ or $Q(k)$ from \hat{S}.
Theorem 3. If the essential part of the Zeckendorf or Brown code of k is $\hat{S}=\sigma_{m} \ldots \sigma_{1}$, then $R(k)$ or $Q(k)$ is given by

$$
\begin{equation*}
e^{T} M\left(\sigma_{k}\right) \cdots M\left(\sigma_{1}\right) e \equiv e^{T} M(\hat{S}) e \equiv g(\hat{S}) \tag{5}
\end{equation*}
$$

where

$$
M(r)=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \quad M(l)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad M(c)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

are three 2×2 matrices and $e=[1,1]^{T}$.
The proof of this theorem is a little tedious and we give it in a separate section (see below).
Noticing that $R(0)=1, Q(0)=Q(1)=Q(2)=1$, and $\# A_{L}=3 \# A_{F}$, we have the following proposition.

Proposition 4. For an arbitrary positive integer $n, \#\{k: Q(k)=n\}=3 \#\{k: R(k)=n\}$.
A key observation of Theorem 3 is that $M(c)=e e^{T}$, which allows us to write $g(\hat{S})$ as $g\left(\hat{S}_{1}\right) g\left(\hat{S}_{2}\right)$ if $\hat{S}=\hat{S}_{1} c \hat{S}_{2}$. In other words, we have the following proposition.

Proposition 5. If $\hat{S}=\tilde{S}_{m} c \tilde{S}_{m-1} c \ldots \tilde{S}_{1}$, where each \tilde{S}_{j} is a string composed only of r and l, then

$$
\begin{equation*}
g(\hat{S})=\prod_{j=1}^{m} g\left(\tilde{S}_{j}\right) \tag{6}
\end{equation*}
$$

The action of $M(r)$ and $M(l)$ on $(m, n)^{T}$ gives $(m, m+n)^{T}$ and $(m+n, n)^{T}$, respectively. If (m, n) is understood as the rational number m / n, this is just the generating rule of the Calkin-Wilf tree of fractions [4]. In addition, $e=[1,1]^{T}$ can be identified as the seed of the Calkin-Wilf tree. Therefore, when \tilde{S} runs over all sequences composed only of r and $l, M(\tilde{S}) e$ will produce all co-prime pairs $(m, n)^{T}$ once and only once, with exceptions $(0,1)^{T}$ and $(1,0)^{T}$. Consequently, we have the following proposition.

Proposition 6.

$$
\begin{equation*}
A_{s} \equiv \sum_{\tilde{S}} g(\tilde{S})^{-s}=\sum_{\substack{m+n>1 \\(m, n)=1}} \frac{1}{(m+n)^{s}}=\sum_{k=2}^{\infty} \frac{\varphi(k)}{k^{s}}=\frac{\zeta(s-1)}{\zeta(s)}-1 \tag{7}
\end{equation*}
$$

where $\varphi(k)$ is the Euler totient function [1].
Combining all above facts, we finally have the following theorem.
Theorem 7.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{w(n)}{n^{s}}=\sum_{k=0}^{\infty} R(k)^{-s}=\frac{\zeta(s-1)}{2 \zeta(s)-\zeta(s-1)} . \tag{8}
\end{equation*}
$$

Proof.

$$
\begin{align*}
\sum_{k=0}^{\infty} R(k)^{-s} & =1+\sum_{k=1}^{\infty} R(k)^{-s}=1+\sum_{\hat{S}} \sum_{t \in A_{F}} R\left((10 \hat{S} t)_{F}\right)^{-s} \\
& =1+2 \sum_{\hat{S}} g(\hat{S})^{-s}=1+2\left(A_{s}+A_{s}^{2}+\cdots\right) \\
& =\frac{1+A_{s}}{1-A_{s}}=\frac{\zeta(s-1)}{2 \zeta(s)-\zeta(s-1)} . \tag{9}
\end{align*}
$$

3. Discussion

A formula for $w(n)$ is possible as follows. A multiplicative composition of n is a sequence $x_{1}, x_{2}, \ldots, x_{k}$ of integers (for some $k \geq 1$) satisfying

$$
n=x_{1} x_{2} \cdots x_{k}, \quad x_{j} \geq 2 \text { for all } 1 \leq j \leq k .
$$

Let X_{n} denote the set of all multiplicative compositions of n. For example, if n is a prime power p^{m}, then $\# X_{n}=2^{m-1}$; if n is a product of distinct primes $p q$, then $\# X_{n}=3$. Let $X_{n, k}$ denote the subset of X_{n} of sequences containing exactly k terms. By use of Proposition 5 , it can be shown that

$$
w(n)=2\left[\varphi(n)+\sum_{X_{n, 2}} \varphi\left(x_{1}\right) \varphi\left(x_{2}\right)+\sum_{X_{n, 3}} \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right)+\cdots\right] .
$$

For example, $w\left(p^{m}\right)=2(p-1)(2 p-1)^{m-1}$ and $w(p q)=6(p-1)(q-1)$. The arithmetic function $w(n)$ fails to be multiplicative; standard techniques for computing the Dirichlet series corresponding to $w(n)$ do not apply.

Since the number of n-bit binary strings is 2^{n} while F_{n}, L_{n} grow like τ^{n} when $n \rightarrow \infty$, where $\tau=(\sqrt{5}+1) / 2$ is the golden ratio, by averaging, $R(k)$ and $Q(k)$ increase as k^{α} when $k \rightarrow \infty$, where

$$
\alpha=\frac{\log 2}{\log \tau}=1.44042 \ldots
$$

Thus, $\sum_{k} R(k)^{-s}$ and $\sum_{k} Q(k)^{-s}$ diverge for real $s<1+\alpha$, which is slightly smaller than $2.47875 \ldots$, the exact lower bound for convergence of the two series determined by the zero of the denominator of formula (8).

THE FIBONACCI QUARTERLY

4. Proof of Theorem 3

The key point to proving Theorem 3 is to categorize the Fibonacci (or Lucas) representations into two classes according to whether the leading non-zero bit of the Zeckendorf (or Brown) code is used. The counts of the two classes form a 2 -component vector, and Edson and Zamboni found that this vector can be generated from a simple iteration relation [6].

Let us begin with the Fibonacci representation. The proof is based on two facts. One is the inequality

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k}=F_{n+2}-1<F_{n+2} \leq 2 F_{n+1} \tag{10}
\end{equation*}
$$

for $n \geq 1$. Suppose S_{1} and S_{2} are two arbitrary binary sequences that begin with 1 . The first part of this inequality implies that, if $\left(S_{1}\right)_{F}=\left(S_{2}\right)_{F}$, then $\left|S_{1}\right|$ and $\left|S_{2}\right|$ are either equal or differ by one, where $|S|$ denotes the length of S as a binary string. In addition, the second part of this inequality implies that, if $\left(S_{1}\right)_{F}=\left(S_{2}\right)_{F}+F_{\left|S_{2}\right|}$, then $\left|S_{1}\right| \geq\left|S_{2}\right|$.

The other fact crucial to our proof is that, of all Fibonacci representations of a positive integer, the Zeckendorf code as a binary string is the one with the largest lexicographical order. Therefore, if $S=10 S^{\prime}$ is the Zeckendorf code of a positive integer k and $S_{1}=1 S^{\prime \prime}$ is an arbitrary Fibonacci representation of k, i.e., $\left(S_{1}\right)_{F}=k=(S)_{F}$, then $\left|S_{1}\right|=|S|$ or $|S|-1$.

The above described properties of the Fibonacci representation lead naturally to the following definitions.

Definition 8. Letting $S=10 \ldots$ be the Zeckendorf code of a positive integer, define

$$
\begin{align*}
& R_{0}(S)=\#\left\{S^{\prime} \in[0,1]^{|S|-1}:\left(S^{\prime}\right)_{F}=(S)_{F}\right\}, \tag{11}\\
& R_{1}(S)=\#\left\{S^{\prime} \in[0,1]^{|S|-1}:\left(1 S^{\prime}\right)_{F}=(S)_{F}\right\} . \tag{12}
\end{align*}
$$

Using this notation, we have the following proposition.
Proposition 9. If $S=10 S^{\prime}$ is a Zeckendorf code, then

$$
R\left((S)_{F}\right)=R_{0}(S)+R_{1}(S)=e^{T}\left[\begin{array}{l}
R_{0}(S) \tag{13}\\
R_{1}(S)
\end{array}\right] .
$$

Moreover, from the definition and properties of the Zeckendorf code we have the following proposition.

Proposition 10. If $10 S^{\prime}$ is a Zeckendorf code, then

$$
\begin{equation*}
R_{1}\left(10 S^{\prime}\right)=R\left(\left(S^{\prime}\right)_{F}\right) \tag{14}
\end{equation*}
$$

We then consider how R_{0} and R_{1} change when a Zeckendorf code $10 S$ is expanded to $10 r S$, $10 l S$ or $10 c S$. The iteration rules for R_{1} can be readily derived as follows:

$$
\begin{align*}
R_{1}(1010 S) & =R\left((10 S)_{F}\right)=R_{0}(10 S)+R_{1}(10 S), \tag{15}\\
R_{1}(1000 S) & =R\left((00 S)_{F}\right)=R\left((S)_{F}\right)=R_{1}(10 S), \tag{16}\\
R_{1}(10010 S) & =R\left((010 S)_{F}\right)=R\left((10 S)_{F}\right)=R_{0}(10 S)+R_{1}(10 S) . \tag{17}
\end{align*}
$$

For the iteration rules of R_{0}, note that

$$
\begin{aligned}
R_{0}(10 S) & =\#\left\{S^{\prime} \in[0,1]^{|S|}:\left(1 S^{\prime}\right)_{F}=(10 S)_{F}\right\} \\
& =\#\left\{S^{\prime} \in[0,1]^{|S|}:\left(S^{\prime}\right)_{F}=F_{|S|}+(S)_{F}\right\},
\end{aligned}
$$

hence we have the following,

$$
\begin{align*}
& R_{0}(1010 S)=\#\left\{S^{\prime} \in[0,1]^{|S|+2}:\left(S^{\prime}\right)_{F}=F_{|S|+2}+(10 S)_{F}\right\} \\
&=\#\left\{S^{\prime} \in[0,1]^{|S|+1}:\left(1 S^{\prime}\right)_{F}=F_{|S|+2}+(10 S)_{F}\right\} \\
&=\#\left\{S^{\prime} \in[0,1]^{|S|+1}:\left(S^{\prime}\right)_{F}=(10 S)_{F}\right\} \\
&=R_{0}(10 S), \tag{18}\\
& R_{0}(1000 S)= \#\left\{S^{\prime} \in[0,1]^{|S|+2}:\left(S^{\prime}\right)_{F}=F_{|S|+2}+(00 S)_{F}=(10 S)_{F}\right\} \\
&= R\left((10 S)_{F}\right)=R_{0}(10 S)+R_{1}(10 S) \tag{19}\\
& R_{0}(10010 S)=\#\left\{S^{\prime} \in[0,1]^{|S|+3}:\left(S^{\prime}\right)_{F}=F_{|S|+3}+(010 S)_{F}=(1000 S)_{F}\right\} \\
&= R_{0}(1000 S)=R_{0}(10 S)+R_{1}(10 S) . \tag{20}
\end{align*}
$$

Combining formulas $15-17$ and $18-20$, we have the following proposition.
Proposition 11. If $10 S$ is the Zeckendorf code of a positive integer, then

$$
\left[\begin{array}{l}
R_{0}(10 \sigma S) \tag{21}\\
R_{1}(10 \sigma S)
\end{array}\right]=M(\sigma)\left[\begin{array}{l}
R_{0}(10 S) \\
R_{1}(10 S)
\end{array}\right]
$$

for $\sigma=r, l, c$.
Finally, we can readily check that $R_{0}(10)=1\left(\right.$ as $\left.F_{2}=F_{1}\right), R_{1}(10)=1\left(\right.$ as $\left.F_{2}=F_{2}\right)$, $R_{0}(100)=1\left(\right.$ as $\left.F_{3}=F_{2}+F_{1}\right)$ and $R_{1}(100)=1\left(\right.$ as $\left.F_{3}=F_{3}\right)$, i.e.,

$$
\left[\begin{array}{l}
R_{0}(10) \tag{22}\\
R_{1}(10)
\end{array}\right]=\left[\begin{array}{l}
R_{0}(100) \\
R_{1}(100)
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=e .
$$

Combining this formula with Propositions 9 and 11, Theorem 3 for the Fibonacci representation is proved.

We now consider the Lucas representation. Because similar inequalities hold for Lucas numbers, i.e.,

$$
\begin{equation*}
\sum_{j=0}^{k} L_{j}=L_{k+2}-1<2 L_{k+1} \tag{23}
\end{equation*}
$$

for $k \geq 1$ and the Brown code is also constructed from a greedy algorithm for the largest lexicographical order, the same iteration rules hold for similarly defined Q_{0} and Q_{1}. Thus we need only to verify that

$$
\left[\begin{array}{l}
Q_{0}(10 t) \tag{24}\\
Q_{1}(10 t)
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

for each $t \in A_{L}$, which is obviously true (see Table 3). Therefore we complete the proof of Theorem 3.

THE FIBONACCI QUARTERLY

Table 1.

n	Zeckendorf code	segmentation	essential part	$R(n)$
1	10	10	ϵ	2
2	100	10 0	ϵ	2
3	1000	1000	l	3
4	1010	1010	r	3
5	10000	$10 \underline{00} \underline{0}$	l	3
6	10010	$\underline{10} \underline{010}$	c	4
7	10100	$10 \underline{10} \underline{0}$	r	3
8	100000	$\underline{10} \underline{00} \underline{00}$	$l l$	4
9	100010	$\underline{10} \underline{00} \underline{10}$	$l r$	5
10	100100	$10 \underline{010} 0$	c	4
11	101000	$1010 \underline{00}$	$r l$	5
12	101010	101010	rr	4
13	1000000	$\underline{10} \underline{00} \underline{00} \underline{0}$	$l l$	4
14	1000010	$10 \underline{00} 010$	$l c$	6
15	1000100	$\underline{10} \underline{00} 10 \underline{10}$	$l r$	5
16	1001000	$10 \underline{010} \underline{00}$	$c l$	6
17	1001010	$10 \underline{010} 10$	$c r$	6
18	1010000	$\underline{10} \underline{10} \underline{00} \underline{0}$	$r l$	5
19	1010010	$10 \underline{10} \underline{010}$	$r c$	6
20	1010100	$101010 \underline{0}$	$r r$	4
21	10000000	$10 \underline{00} \underline{00} \underline{00}$	$l l l$	5
22	10000010	$10 \underline{00} \underline{00} \underline{10}$	$l l r$	7
23	10000100	$10 \underline{00} \underline{010} \underline{0}$	$l c$	6
24	10001000	$10 \underline{00} \underline{10} \underline{00}$	$l r l$	8
25	10001010	$10 \underline{00} 10 \underline{10}$	$l r r$	7
26	10010000	$10 \underline{010} 00 \underline{0}$	cl	6
27	10010010	$10 \underline{010} \underline{010}$	cc	8
28	10010100	$10 \underline{010} 10 \underline{0}$	$c r$	6
29	10100000	$101000 \underline{00}$	rll	7
30	10100010	$10 \underline{00} \underline{00} \underline{10}$	$r l r$	8
31	10100100	$1010 \underline{010} 0$	$r c$	6
32	10101000	$10 \frac{10}{10} \underline{10}$	$r r l$	7
33	10101010	10101010	$r r r$	5

FIBONACCI AND LUCAS REPRESENTATIONS
Table 2.

n	Brown code	segmentation	essential part	$Q(n)$
1	10	-	-	1
2	1	-	-	1
3	100	$\underline{10} \underline{0}$	ϵ	2
4	1000	1000	ϵ	2
5	1010	1010	ϵ	2
6	1001	$\underline{10} 01$	ϵ	2
7	10000	10000	l	3
8	10010	10010	ϵ	2
9	10001	10001	ϵ	2
10	10100	$1010 \underline{0}$	r	3
11	100000	$10 \underline{00} \underline{00}$	l	3
12	100010	$\underline{10} \underline{00} \underline{10}$	l	3
13	100001	$\underline{10} 00 \underline{01}$	l	3
14	100100	$\underline{10} 010 \underline{0}$	c	4
15	101000	$\underline{10} 10 \underline{00}$	r	3
16	101010	$\underline{10} 10 \underline{10}$	r	3
17	101001	$\underline{10} \underline{10} \underline{01}$	r	3
18	1000000	$\underline{10} 00000$	$l l$	4
19	1000010	$\underline{10} 00 \underline{010}$	l	3
20	1000001	$\underline{10} 00 \underline{001}$	l	3
21	1000100	$\underline{10} 00100$	$l r$	5
22	1001000	$\underline{10} 010 \underline{00}$	c	4
23	1001010	$\underline{10} 010 \underline{10}$	c	4
24	1001001	$\underline{10} 010 \underline{01}$	c	4
25	1010000	$\underline{10} \underline{10} 00 \underline{0}$	$r l$	5
26	1010010	$\underline{10} 10 \underline{010}$	r	3
27	1010010	$\underline{10} 10 \underline{001}$	r	3
28	1010100	$\underline{10} \underline{10} \underline{10} \underline{0}$	$r r$	4

Table 3.

t	$Q_{0}(10 t)$	partition	$Q_{1}(10 t)$	partition
0	1	$3=L_{1}+L_{0}$	1	$3=L_{2}$
00	1	$4=L_{2}+L_{1}$	1	$4=L_{3}$
01	1	$6=L_{2}+L_{1}+L_{0}$	1	$6=L_{3}+L_{0}$
10	1	$5=L_{2}+L_{0}$	1	$5=L_{3}+L_{1}$
001	1	$9=L_{3}+L_{2}+L_{0}$	1	$9=L_{4}+L_{0}$
010	1	$8=L_{3}+L_{2}+L_{1}$	1	$8=L_{4}+L_{1}$

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York-Heidelberg, 1976.
[2] J. Berstel, An exercise on Fibonacci representations, Theor. Inform. Appl., 35 (2001), 491-498.
[3] J. L. Brown, Unique representations of integers as sums of distinct Lucas numbers, The Fibonacci Quarterly, 7.3 (1969), 243-252.
[4] N. Calkin and H. Wilf, Recounting the rationals, American Mathematical Monthly, 107 (2000), 360-363.
[5] L. Carlitz, Fibonacci representations, The Fibonacci Quarterly, 6.3 (1968), 193-220.

THE FIBONACCI QUARTERLY

[6] M. Edson and L. Q. Zamboni, On representations of positive integers in the Fibonacci base, Theor. Comp. Sci., 326 (2004), 241-260.
[7] V. E. Hoggatt Jr. and S. L. Basin, Representations by complete sequences - Part I (Fibonacci), The Fibonacci Quarterly, 3.1 (1963), 1-14, 31.
[8] D. A. Klarner, Representations of N as a sum of distinct elements from special sequences, The Fibonacci Quarterly, 4.4 (1966), 289-306, 322.
[9] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A000121, http://oeis.org/A067595, http://oeis.org/A274262.
[10] E. Zeckendorf, Representation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liege, 41 (1972), 179-182.
MSC2010: 11B39, 11M06, 30B50
Department of Physics, Beijing Normal University, Beijing 1000875, PR China
E-mail address: baizq@bnu.edu.cn
Department of Statistics, Harvard University, Cambridge, MA 02138
E-mail address: steven_finch@harvard.edu

