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Abstract. We obtain, by way of combinatorial arguments, a number of convolution identities
involving the Jacobsthal numbers, the Jacobsthal-Lucas numbers and various generalizations
of the Fibonacci numbers.

1. Introduction

Suppose that both f(n) and g(n) are functions defined on the nonnegative integers. We
term (f ∗ g)(n) the nth convolution of f and g, where

(f ∗ g)(n) =
n∑

k=0

f(k)g(n − k).

In [3] we obtained, via the manipulation of certain generating functions, the convolution
identity given below in Theorem 1.1.

Theorem 1.1.
n∑

k=0

LkJn−k = jn+1 − Ln+1,

where Ln denotes the nth Lucas number, and Jn and jn denote the nth Jacobsthal number and

the nth Jacobsthal-Lucas number, respectively [5].

Subsequently, we asked for a combinatorial proof of this result. The purpose of this paper
is to provide just such a proof and then to obtain combinatorial interpretations of other
convolution identities involving sequences arising from recurrence relations. The proof of the
above result is given in Section 2, while proofs of further identities are obtained in Sections 3
and 4.

2. A Combinatorial Proof

In this section we prove Theorem 1.1 by combinatorial means. Let Bn denote a 1×n board.
It is well-known that the nth Fibonacci number Fn enumerates the ways of tiling Bn−1 using
uncolored 1 × 1 squares and 1 × 2 dominos. It is not quite so well-known, however, that Ln

counts the number of ways of tiling a circular n-board Cn with squares and dominoes, on which
the cells are numbered 1 through n and a tiling is termed an n-bracelet [2]. Such an n-bracelet
is termed out-of-phase if the same domino covers cells n and 1, and in-phase if this is not the
case. We refer to the kth cell of Cn as Tk.

Note, incidentally, that these are not bracelets in the conventional mathematical sense.
Indeed, in the field of combinatorics, bracelets of length n are mathematical objects that
may be regarded as equivalence classes of n-character strings over some alphabet of size k, in
which rotations and reflections are taken as equivalent. Such bracelets represent, for example,
structures with n circularly-connected beads of up to k different colors. However, the fact that
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the cells of Cn are numbered means that there are no such symmetry considerations in our
scenario. It is also worth pointing out here that there are Fn+1 in-phase and Fn−1 out-of-phase
uncolored tilings of Cn, leading to the well-known identity Ln = Fn+1 + Fn−1.

The nth Jacobsthal number Jn enumerates the ways of tiling Bn−1 using white 1×1 squares,
white 1×2 dominos and black 1×2 dominos, while the nth Jacobsthal-Lucas number jn counts
the number of ways of tiling Cn with these white squares, white dominos and black dominoes
[1]. Again, there arises the possibility of both in-phase and out-of-phase n-bracelets. Now, we
give the proof of Theorem 1.1.

Proof. Let us count the number of ways of tiling Cn with white squares, white dominos and
black dominoes under the restriction that there must be at least one black domino present in
each of the resultant n-bracelets. This enumeration will be carried out in two different ways.

First, consider the in-phase n-bracelets containing at least one black domino. For each such
n-bracelet there exists some k with 1 ≤ k ≤ n−1 for which a black domino covers both Tk and
Tk+1, all the leftmost k− 1 cells in the n-bracelet are covered by white tiles and the rightmost
n− (k+ 1) ones can be tiled using white squares, white dominos and black dominos. Bearing
in mind the combinatorial interpretations of Fn and Jn mentioned previously, it follows that
the number of such n-bracelets is given by FkJn−k. Summing over all possible values of k gives
us

n∑

k=1

FkJn−k

as the number of in-phase n-bracelets.
We now enumerate the out-of-phase n-bracelets containing at least one black domino. Sup-

pose first that a white domino covers cells n and 1. This leaves us with what is essentially a
1× (n− 2) board to tile using white squares, white dominos and black dominoes under the re-
striction that there must be at least one black domino present in each of these (n−2)-bracelets.
A similar argument to that given in the previous paragraph leads to

n−2∑

k=1

FkJn−k−2

as the number of out-of-phase n-bracelets in which at least one black domino is present and
a white domino covers cells n and 1. The remaining out-of-phase n-bracelets arise from the
situation in which a black domino occupies cells n and 1. Enumerating such n-bracelets is
equivalent to counting the number of tilings of Bn−2 using white squares, white dominos and
black dominoes. This is equal to F1Jn−1, where the factor F1 = 1 has been included for ease
and consistency of notation.

We are now able to enumerate the ways of tiling Cn with white squares, white dominos and
black dominoes under the restriction that there must be at least one black domino present in
each of these n-bracelets. This is is given by

n∑

k=1

FkJn−k + F1Jn−1 +

n−2∑

k=1

FkJn−k−2 =

n∑

k=1

FkJn−k + F1Jn−1 +

n∑

k=3

Fk−2Jn−k

=

n∑

k=1

(Fk + Fk−2) Jn−k + F1Jn−1 − F0Jn−2 − F−1Jn−1
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=
n∑

k=1

Lk−1Jn−k

=

n−1∑

k=0

LkJn−1−k.

From the combinatorial interpretations of jn and Ln we see that jn − Ln gives the total
number of ways of tiling Cn with white squares, white dominos and black dominoes under the
restriction that each of the resultant n-bracelets must contain at least one black domino. We
thus have

n−1∑

k=0

LkJn−1−k = jn − Ln,

from which the statement of the theorem follows, noting that the n-bracelets generated via
the initial enumeration are indeed unique. �

3. Further Identities

We now go on to obtain two further results by way of combinatorial proofs. First, let
Sr = {s1, . . . , sr, d} be the set composed of r 1×1 squares of different colors and a single 1×2
domino. Next, for some fixed r ∈ N, let (Fr(n))n≥0

be the generalized Fibonacci sequence
given by

Fr(n) = rFr(n− 1) + Fr(n− 2),

where Fr(0) = 0 and Fr(1) = 1. It is well-known that Fr(n) enumerates the ways of tiling
Bn−1 using elements from Sr. In our next theorem we obtain a result concerning a convolution
involving this generalized Fibonacci sequence.

Theorem 3.1. Let a, b, n ∈ N, where b > a. Then

(Fa ∗ Fb) (n) =
Fb(n)− Fa(n)

b− a
.

Proof. Let S = Sb\Sa. In order to prove this result we count, in two different ways, the
number of tilings of Bn−1 using elements from Sb, where we impose the restriction that each
tiling must contain at least one element from S.

First, let us denote the kth cell, going from left to right, of Bn−1 by Uk, where 1 ≤ k ≤ n−1.
We enumerate the restricted tilings of Bn−1 in a systematic way, as follows. Any one of the
b− a elements of S, each of which is a square tile, is placed on Uk. The section of Bn−1 to the
left of Uk is then tiled with elements from Sa while the section to the right of Uk is tiled with
elements from Sb. Note then that this gives us a tiling of Bn−1 for which the first appearance
of a tile from S occurs at Uk. From this we see that the total number of tilings for which the
first appearance of a tile from S occurs, when moving from left to right, at Uk is given by

(b− a)Fa((k − 1) + 1)Fb(((n − 1)− k) + 1) = (b− a)Fa(k)Fb(n− k).

Summing over all k such that 1 ≤ k ≤ n−1, we see that the total number of tilings of Bn−1

using elements from Sb, with the restriction that each tiling must contain at least one element
from S, is given by

(b− a)

n−1∑

k=1

Fa(k)Fb(n− k) = (b− a)

n∑

k=0

Fa(k)Fb(n− k)

= (b− a) (Fa ∗ Fb) (n),
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where, in the first step, we have used the fact that Fa(0) = Fb(0) = 0. Notice that the tilings
generated by the above process are unique.

Finally, on noting that Fb(n) − Fa(n) gives the number of total number of tilings of Bn−1

using elements from Sb, with the restriction that each tiling must contain at least one element
from S, we have completed the proof of the theorem. �

Our next result is related to Theorem 3.1 in the sense that the roles of the squares and
dominos are interchanged. Indeed, we adopt a similar approach here to that used in Theorem
3.1, but include the proof for the sake of completeness.

Let Dr = {d1, . . . , dr, s} be the set composed of r 1 × 2 dominos of different colors and a
single 1×1 square. For some fixed r ∈ N, let (Gr(n))n≥0

be the generalized Fibonacci sequence
given by

Gr(n) = Gr(n− 1) + rGr(n− 2),

where Gr(0) = 0 and Gr(1) = 1. It is known that Gr(n) enumerates the ways of tiling Bn−1

using elements from Dr.

Theorem 3.2. Let a, b, n ∈ N, where b > a. Then

(Ga ∗Gb) (n) =
Gb(n+ 1)−Ga(n+ 1)

b− a
.

Proof. We start by letting D = Db\Da. This time we consider the tilings of Bn, where Uk

denotes the kth cell of Bn. When enumerating the restricted tilings, any one of the b − a

elements of D, each of which is a domino, covers both Uk and Uk+1, where 1 ≤ k ≤ n − 1.
The section of Bn to the left of Uk is then tiled with elements from Da while the section to
the right of Uk+1 is tiled with elements from Db. Note then that this gives us a tiling of Bn

for which the first appearance, when moving from left to right, of a tile from D occurs at Uk.
From this we see that the total number of tilings for which the first appearance of a tile from
D occurs at Uk is given by

(b− a)Ga((k − 1) + 1)Gb((n− (k + 1)) + 1) = (b− a)Ga(k)Gb(n− k).

Now, summing over all k such that 1 ≤ k ≤ n − 1, we see that the total number of tilings
of Bn using elements from Db, with the restriction that each tiling must contain at least one
element from D, is given by

(b− a)
n−1∑

k=1

Ga(k)Gb(n− k) = (b− a)
n∑

k=0

Ga(k)Gb(n− k)

= (b− a) (Ga ∗Gb) (n),

where, in the first step, we have used the fact that Ga(0) = Gb(0) = 0. Notice once again that
the tilings generated by the above process are unique.

Then, since Gb(n + 1) − Ga(n + 1) gives the total number of tilings of Bn using elements
from Db, with the restriction that each tiling must contain at least one element from D, the
theorem has been proved. �

4. A Generalization

The results given in Theorems 3.1 and 3.2 can in fact be generalized somewhat. To this
end, we let Mr,t = {s1, . . . , sr, d1, . . . , dt} be the set composed of r 1 × 1 squares of different
colors and t 1× 2 dominos of different colors. Note that, for b > a, the differences Mb,t\Ma,t

and Mr,b\Mr,a are just the sets S and D, respectively, as defined previously in the proofs
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of Theorems 3.1 and 3.2. With Hr,t(n) defined via the recurrence Hr,t(n) = rHr,t(n − 1) +
tHr,t(n − 2), where Hr,t(0) = 0 and Hr,t(1) = 1, we obtain, by similar reasoning to that used
in the proofs of Theorems 3.1 and 3.2, the following results:

(Ha,t ∗Hb,t) (n) =
Hb,t(n)−Ha,t(n)

b− a

and

(Hr,a ∗Hr,b) (n) =
Hr,b(n + 1)−Hr,a(n+ 1)

b− a
.

Interested readers might also like to look at [4], which is in some sense related to the work
carried out in the current paper.
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