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Abstract. In this note, we show that if N is an odd perfect number and qα is some
prime power exactly dividing it, then σ(N/qα)/qα > 5. In general, we also show that if
σ(N/qα)/qα < K, where K is any constant, then N is bounded by some function depending
on K.

1. Introduction

For a positive integer N we write σ(N) for the sum of the divisors of N . A number N is
perfect if σ(N) = 2N . Even perfect numbers have been characterized by Euler. Namely, N is
an even perfect number if and only if N = 2p−1(2p − 1), where 2p − 1 is prime. Hence, the
only obstruction in proving that there are infinitely many of them lies with proving that there
exist infinitely many primes of the form 2p − 1.

We know less about odd perfect numbers. No example has been found, nor do we have a
proof that they don’t exist. If they exist, then they must have at least 7 distinct prime factors,
a result of Pomerance from [7]. The bound 7 has been raised to 9 recently in [5]. Brent et. al.
[2] showed that N > 10300. The exponent 300 has been raised to 1500 in the recent work [6].

Let N be perfect and let qα‖N , where q is prime. Recall that the notation qα‖N stands for
the power of q exactly dividing N , namely qα | N but qα+1 ∤ N . Then

2N = 2qα
(

N

qα

)

= σ(N) = σ(qα)σ

(

N

qα

)

,

and since qα is coprime to σ(qα), it follows that σ(N/qα)/qα is an integer divisor of 2N . When
N = 2p−1(2p − 1) is even, then

σ(N/qα)

qα
=

{

2, if q = 2;
1, if q = 2p − 1.

Here, we study this statistic when N is an odd perfect number. We prove the following
theorem.

Theorem 1.1. If N is an odd perfect number and qα‖N is a prime power exactly dividing N ,

then σ(N/qα)/qα > 5.

This improves on a previous lower bound obtained by the first author in his M. S. thesis [3].
The lower bound 5 can likely be easily improved although it is not clear to us what the

current numerical limit of this improvement should be. We leave this as a problem for other
researchers. In light of the above result, one may ask whether it could be the case that by
imposing an upper bound on the amount σ(N/qα)/qα, the number N ends up being bounded
as well. This is indeed so as shown by the following result.

Theorem 1.2. For every fixed K > 5, there are only finitely many odd perfect numbers N
such that for some prime power qα‖N we have that σ(N/qα)/qα < K. All such N are bounded

by some effectively computable number depending on K.
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The proof of Theorem 1.1 is elementary. The proof of Theorem 1.2 uses the arguments from
the proof of the particular case Theorem 1.1 together with two more ingredients. The first
ingredient is a result of Heath–Brown [4] to the effect that an odd perfect number N with s

distinct prime factors cannot exceed 44
s+1

. The second ingredient is a well-known result from
the theory of Exponential Diophantine Equations (for the main results in this area, see [8])
regarding the largest prime factor of f(n) for large n, where f(X) ∈ Z[X] is a polynomial with
at least two distinct roots.

One of the main tools for the proof of both Theorems 1.1 and 1.2 is the following result due
to Bang (see [1]).

Lemma 1.3. Let a > 1 be an integer. For all n ≥ 7, there is a prime factor p of an− 1 which

does not divide am−1 for any 1 ≤ m < n. Moreover, such a prime p is congruent to 1 modulo

n.

Throughout the paper, we use p, q, r, P and Q with or without subscripts for prime
numbers.

2. Preliminaries

Let N = pλ1

1 · · · pλs
s qα, where the primes p1, . . . , ps, q are distinct and not necessarily ordered

increasingly. We write

σ(pλi

i ) = miq
βi , i = 1, . . . , k, and σ(pλi

i ) = qβi , i = k + 1, . . . , s, (2.1)

where mi ≥ 2 for i = 1, . . . , k, and α = β1 + · · ·+ βs. For both proofs of Theorem 1.1 and 1.2
we will need facts about equations (2.1) for some i either in {1, . . . , k} and with a fixed value
of mi ≥ 2, or with i ∈ {k +1, . . . , s}. Observe that λi is even for all i = k+1, . . . , s, and λi is
even for at most one i ∈ {1, . . . , k}.

We treat first the case of a fixed mi ≥ 2. For simplicity, let p := pi, β := βi, m := mi, and
λ := λi for some i = 1, . . . , k. Then the first equation (2.1) for the index i is

pλ+1 − 1

p− 1
= mqβ. (2.2)

Here, p and q are odd. We prove the following lemma.

Lemma 2.1. In equation (2.2), we have λ+ 1 ≤ m2.

Proof. For a positive integer n coprime to p let ℓp(n) be the multiplicative order of p modulo
n. Let un := (pn − 1)/(p − 1). Then m divides uλ+1. It is then well-known that λ + 1 is
divisible by the number zp(m) defined as

zp(m) := lcm[zp(r
δ), rδ‖m],

where

zp(r
δ) =

{

rδ if p ≡ 1 (mod r),
ℓp(r

δ) otherwise.

Clearly, 2 ≤ zp(m) ≤ m. Equality is achieved if and only if each prime factor of m is also a
prime factor of p− 1. Assume that λ+ 1 > m2. Write λ+ 1 = zp(m)d, where d > zp(m). We

look at ud = (pd− 1)/(p− 1) which is a divisor of mqβ. If d ≥ 7, then by Lemma 1.3 there is a
prime factor P of ud which does not divide uzp(m). Since all prime factors of m divide uzp(m),
we must have that P = q. But then all prime factors of uλ+1 divide either q; hence, ud, or m;
hence uzp(m), contradicting Lemma 1.3. So, we have a contradiction if d ≥ 7.
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Thus, all prime factors of ud are among the prime factors of uzp(m) and so d ≤ 6. In
particular, the prime factors of d must be among the prime factors of zp(m), for otherwise,
namely if there is some prime factor Q of d which does not divide zp(m), then uQ = (pQ −

1)/(p−1) is a divisor of ud = (pd−1)/(p−1) which is coprime to uzp(m), a multiple of m, which
in turn is false. Thus, all prime factors of d are indeed among the prime factors of zp(m), and
since d > zp(m), there is a prime factor Q of d which appears in the factorization of d with an
exponent larger than the exponent with which it appears in the factorization of zp(m). Hence,
d ≥ Q2, and since d ≤ 6, we get that Q = 2. This implies that uλ+1 is a multiple of u4; hence,
a multiple of 4, which is false. This shows that indeed λ+ 1 ≤ m2. �

We next treat the case of i ∈ {k + 1, . . . , s}.

Lemma 2.2. The equations

pλ+1 − 1

p− 1
= qβ and pλ |

qα+1 − 1

q − 1
(2.3)

imply that α+ 1 is a multiple of pλ−1.

Proof. The left equation in (2.3) is

pλ + · · · + p2 + p = qβ − 1,

showing that p‖qβ − 1. This implies easily that p‖qℓq(p) − 1. Now the conclusion follows
immediately from the divisibility relation from the right-hand side of equation (2.3). �

Let m := m1 · · ·mk. We let M :=
∏s

i=k+1 p
λi

i . We label the numbers λ1, . . . , λk such that
β1 ≤ β2 ≤ · · · ≤ βk. Applying Lemma 2.2 for i = k + 1, . . . , s, we get that

α+ 1 ≥
s
∏

i=2

pαi−1
i ≥

s
∏

i=2

p
αi/2
i = M1/2. (2.4)

Let Λ := lcm[λi +1 : i = 1, . . . , k]. Then Λ ≤
∏k

i=1m
2
i = m2. Observe that pλi

i ≡ 1 (mod qβi)
for i = 1, . . . , k. In particular,

pΛi ≡ 1 (mod qβi) for all i = 1, . . . , k. (2.5)

Lemma 2.3. One of the following holds:

(i) q | m;

(ii) qβi < (2Mqm)(m
2+1)i for i = 1, . . . , k.

Proof. If q | m, we are through. So suppose that q ∤ m. We write

qα+1 − 1

q − 1
= σ(qα) =

(

2M

m

)

pλ1

1 · · · pλk

k .

We raise the above equation to the power Λ and use congruences (2.5) obtaining
(

−1

q − 1

)Λ

≡

(

2M

m

)Λ

(mod qβ1).

Hence, qβ1 | (2M(q−1))Λ±mΛ. The last expression is nonzero, since if it were zero, we would
get 2M(q − 1) = m, which is impossible because 2M(q − 1) is a multiple of 4, whereas m is a
divisor of 2N , so it is not a multiple of 4. Thus,

qβ1 ≤ (2M(q − 1))Λ +mΛ < (2M(q − 1) +m)Λ < (2Mqm)Λ < (2Mqm)m
2

.
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This takes care of the case i = 1 of (ii). For the case of a general i in (ii), suppose, by induction,
that i ≥ 2 and that we have proved that

q
βj

j < (2Mqm)(m
2+1)j holds for all j = 1, . . . , i− 1.

Then p
λj

j < σ(p
λj

j ) = mjq
βj for j = 1, . . . , i− 1. Thus,

qα+1 − 1

q − 1
=

(

2Mpλ1

1 · · · p
λi−1

i−1

m

)

pλi

i · · · pλk

k . (2.6)

We raise congruence (2.6) to the power Λ and reduce it modulo qβi obtaining

qβi

i | (2M(q − 1)pλ1

1 · · · p
λi−1

i−1 )Λ ±mΛ.

The last expression above is not zero since 2M(q − 1)pλ1

1 · · · p
λi−1

i−1 is a multiple of 4 and m is
not. Hence,

qβi ≤ (2M(q − 1)pλ1

1 · · · pi−1
λi−1)Λ +mΛ

≤ mΛ((2M(q − 1)Λ + 1)(qβ1 · · · qi−1
βi−1)Λ

≤ (2qMm)ΛqΛ(β1+···+βi−1)

< (2qMm)m
2(1+(m2+1)+···+(m2+1)i−1)

< (2qMm)(m
2+1)i ,

which is what we wanted to prove. �

3. The Proof of Theorem 1.1

Since m ≤ 5 and at most one of the mi’s is even for i = 1, . . . , k, we get that k ≤ 1. Then
Lemma 2.3 shows that either q ≤ 5, or

qβi ≤ (20Mq)25
i

for all i = 1, . . . , k. (3.1)

Assume that q > 5. Then

q
√

M−1 ≤ qα =

(

2M

m

)

pλ1

1 · · · pλk

k < 2Mqβ1+···+βk

< 2M(20qM)25 < (20qM)26,

leading to

3
√

M−27 ≤ q
√

M−27 < (20M)26,

which implies that M < 2 × 105. Since s ≥ 8 and k ≤ 1, there exists j ∈ {k + 1, . . . , s} such

that p
βj

j < M1/7 ≤ 6. This is false because p
βj

j ≥ 32 = 9. Thus, q ∈ {3, 5}.

The equation from the right-hand side of (2.1) with p := p2, λ := λ2 and β := β2 becomes

pλ+1 − 1

p− 1
= qβ.

Observe that λ+1 is odd. If λ+1 ≥ 7, we get a contradiction from Lemma 1.3 because q ≤ 5.
Thus, λ ∈ {2, 4} and we get one of the four equations

p2 + p+ 1 = 3β, p4 + p3 + p2 + p+ 1 = 3β,

p2 + p+ 1 = 5β, p4 + p3 + p2 + p+ 1 = 25β .
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Arguments modulo 9 and 25 show first that the exponents β from the above equations are in
{0, 1}, which immediately implies that none of the above equations has in fact any solutions.

4. The Proof of Theorem 1.2

Here, we have m = m1 · · ·mk ≤ K, so m ≤ K and k ≤ (logK)/(log 2). Heath–Brown

proved that N < 44
s+1

(see [4]). Hence, we may assume that s > k. Then M ≥ 2s−k. Now
the argument from the proof of Theorem 1.1 shows that either q ≤ K, or

q
√

M−1 ≤ qα < σ(qα) < 2Mqβ1+···+βk < (2KMq)(K
2+1)k+1

.

In the second case, we get that M is bounded, hence s is bounded, so N is bounded by
Heath-Brown’s result.

In the first case, Lemma 1.3 shows that in equations appearing in the right-hand side of
equations (2.1), the numbers λi + 1 are bounded for i = k+ 1, . . . , s. Let Γ be a bound for λi

for i = k + 1, . . . , s. For each λ ∈ {2, . . . ,Γ} and fixed value of q ≤ K, equation

pλ+1 − 1

p− 1
= pλ + pλ−1 + · · ·+ p+ 1 = qβ

in the unknowns p and β have only finitely many effectively computable solutions (p, β).
Indeed, this follows because if we write P (t) for the largest prime factor of the positive integer
t, then it is known that if f(X) ∈ Z[X] is a polynomial with at least two distinct roots, then
P (f(n)) tends to infinity with n in an effective way. Now we only have to invoke this result
for the polynomial f(X) = (Xλ+1 − 1)/(X − 1) whose λ ≥ 2 roots are all distinct, and for
the equation P (f(p)) = q ≤ K. Thus, all primes pk+1, . . . , ps are bounded, and therefore so is
their number s− k. Hence, s is bounded, therefore N is bounded by Heath–Brown’s result.
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