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Abstract. We show that any complete (or most-perfect) magic square of order 8k (k =
1, 2, . . .) can be transformed to a pandiagonal Franklin magic square by means of a special
permutation matrix. However, not all pandiagonal Franklin magic squares can be obtained
by this transformation for k ≥ 2 and not all Franklin squares are pandiagonal. Since the
number of complete magic squares of order 4k (k ≥ 2) is known, our transformation gives a
lower bound on the number of all order-8k Franklin squares and pandiagonal ones.

General parameterizations, constructed here for Franklin and complete square matrices,
lead to the fact that they are rank 3. Using this information, their spectra are studied. Then,
odd matrix powers of pandiagonal Franklin squares are shown to be pandiagonal Franklin
squares.

1. Introduction

Franklin squares originate in the work of Benjamin Franklin who published an order-8 and
an order-16 Franklin square in 1769 as noted in the detailed history of Franklin’s mathematical
activities by Pasles [19]. Franklin squares are similar to magic squares in that all their rows
and columns sum to the same index numberm but their two main diagonals need not. Instead,
four families of bent diagonals sum to m. Bent diagonals are shown here for an order-6 square:
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. (1.1)

Also, half-rows and half-columns of a Franklin square sum to m/2, and all 2 × 2 subsquares
sum to an index number related to m (the quartal property). Some Franklin squares also are
pandiagonal, wherein the elements on all diagonals in both direction (with wraparound) sum
to m. Franklin squares that are not necessarily pandiagonal are called ordinary here. In some
of the squares Pasles considers in [18] the just stated Franklin square requirements are relaxed
and odd-order Franklin squares are considered. See Pickover [20] for a general treatment of
magic squares and related entities.

A square matrix of order n is natural (or normal) if its elements are 0, 1, . . . , n2 − 1 (used
here) or 1, 2, . . . , n2 (used by Franklin and some others). Squares that are not necessarily
natural are called general here. The squares given by Franklin are natural and even order.

Complete (or most-perfect) magic squares originate in the work of McClintock [11] in 1897.
They have the quartal property and the complementary property, wherein two elements n/2
positions apart along all diagonals (with wraparound) add to a known index number. Complete
natural magic squares of order n = 4k (k ≥ 2) are constructed (in principle) and enumerated
by Ollerenshaw and Brée [16]. They show that complete squares are magic and pandiagonal.
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In the next section matrix algebraic definitions are given for magic squares, pandiagonal
squares, Franklin squares, and complete squares. The reader may wish to consult these defi-
nitions before reading further in this introduction.

Methods for constructing Franklin squares are reviewed by Pasles [17, 18, 19] and the
author [15] who gives a systematic construction for natural ones of order 8k that reproduces
Franklin’s original squares for k = 1, 2 and that of Jacobs [8] for k = 3. Numerical generation
and enumeration of all natural order-8 natural Franklin squares is carried out by Schindel, et
al. [22]. From an exhaustive numerical search, Hurkens [7] concludes that there are no natural
Franklin squares of order 12 and he gives constructions for many higher orders.1 Ahmed [1]
gives an algebraic-geometric method of constructing and enumerating general Franklin squares.
This provides a crude upper bound on the number of natural ones of order 8.

Transformation. Here we obtain a transformation of a complete magic square of order 8k
to a pandiagonal Franklin magic square, thereby confirming a conjecture in [22]. Our trans-
formation involves pre- and post-multiplication of the complete square matrix by a special
permutation matrix whose construction is specified. For order 8 our transformation is identi-
cal to the row/column permutations used in [22] to transform a pandiagonal Franklin square
to a complete square. Verification of our transformation rests on a parameterization con-
structed for general quartal squares of even order. Also, we show that magic quartal squares
are pandiagonal. Thus, a magic Franklin square is pandiagonal. Our parameterizations are
specialized to general complete squares and general pandiagonal and ordinary Franklin squares
of order-4k (k ≥ 2).

The inverse of our transformation generates a pandiagonal quartal magic square from a
pandiagonal Franklin square of order-8k. Our parameterizations show that all such generated
squares are complete only for order 8 as in [22]. For higher orders 8k (k ≥ 2) the parameteriza-
tions indicate that there are many more pandiagonal Franklin squares than complete squares
and many more ordinary Franklin squares than pandiagonal ones (as expected). Thus, not
all pandiagonal Franklin squares of order 8k (k ≥ 2) can be obtained from complete ones by
our transformation. Since the number of order- 4k (k ≥ 2) natural complete magic squares is
known [16], our transformation gives a lower bound on the number of order-8k natural pan-
diagonal and ordinary Franklin squares. Also, our parameterizations lead to a crude upper
bound on the number of natural squares of each type. In addition, our parameterizations may
be useful for finding numerical natural Franklin squares of order 4k.

Spectra. From our parameterization for general quartal squares, natural ones are found
to be rank 3 which agrees with Sylvester’s rank inequality. This result applies to all natural
complete and Franklin squares and is confirmed by the numerical results for all order-8 Franklin
squares [22] as noted in [4]. Using the rank-3 information, we investigate the spectra of general
quartal squares and show that magic ones have one pair of eigenvalues ±λ. If such square
matrices are natural and λ 6= 0, then they are diagonalizable. This result applies to all natural
complete and pandiagonal Franklin squares. Also, we use the spectra information to show
that odd matrix powers of pandiagonal Franklin squares are pandiagonal Franklin squares.

2. Definitions

Let us begin with a brief review of definitions of certain special squares regarded as matrices.
The definitions that follow involve u - unity vector, u1, u2 - half unity vectors, U - unity matrix,

1Readers of TFQ may recall that Brown [3] shows that there are no magic squares with distinct entries
chosen from the set of Fibonacci numbers 1, 2, 3, 5, 8, . . .. However, Freitag [6] gives a representation for order
4 magic squares with entries that are Fibonacci numbers or the sum of two Fibonacci numbers.
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U1 - half unity matrix, I - identity matrix, R - reflection matrix, and K - shifter matrix. For
order n = 4 these are

u1 =
[

1 1 0 0
]T

, u2 =
[

0 0 1 1
]T

, u = u1 + u2 =
[

1 1 1 1
]T

, (2.1)

U =









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









, U1 =









1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0









, R =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









, K =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









,

and similarly for higher even order. The matrix product KM shifts the elements of a square
matrix M down one row (bottom row to top) and MK shifts them one column left (first
column to last). Matrix powers of K enable multiple row/column shifts. Also, K0 = Kn = I

and K
n

2RK
n

2 = R.
A magic square matrix M satisfies the following row, column, and two main-diagonal sum

conditions:
Mu = mu, MTu = mu,

UM = MU = mU, UMT = MTU = mU,
(2.2)

tr [M ] = m, tr [RM ] = m, (2.3)

where m - magic sum index, MT - transpose of M , and tr [M ] - trace of M . If M satisfies
(2.2), but not necessarily (2.3), then M is semi-magic. If M satisfies (2.3), but not necessarily
(2.2), then M is diagonal-magic. A square matrix of order n is natural if its elements are
0, 1, . . . n2 − 1 for which m = n(n2 − 1)/2. Squares that are not necessarily natural are called
general. In what follows all special squares (to be defined next) are general unless otherwise
noted.

In a pandiagonal square matrix MP , the elements on all diagonals in both directions (with
wraparound), sum to m, i.e.

tr
[

KiMP

]

= m, tr
[

KiRMP

]

= m, i = 0, 1, . . . , n− 1. (2.4)

A pandiagonal square is diagonal-magic by definition.
In a quartal square matrix Q, the sum of all 2× 2 subsquares (including broken ones) is 2r,

i.e.

(I +K)Q (I +K) = 2rU, (2.5)

where r is an auxiliary index. The following identities for a quartal square matrix Q follow
from (2.5) as given in [16] (in element form) and [13] (in matrix form):

Q(I +K) = K2iQ(I +K), (I +K)Q = (I +K)QK2i, i = 0, 1, . . . ,
n

2
− 1. (2.6)

A complete (or most-perfect) square matrix C of order n = 4k is quartal and has the
complementary property wherein the sum of any element of C and its counterpart element
n/2 positions along the same diagonal in both directions (with wraparound) is r, i.e.

C +K
n

2 CK
n

2 = rU, (2.7)

where r can be shown to be the same r as in (2.5). It is known [16] that a complete square C
can be transformed to another complete square C ′ by the shifting transformation

C ′ = KiCKj (2.8)

which can be used to transform C to standard form with the element C ′
1,1 = 0. This trans-

formation also applies to quartal and pandiagonal squares. Next, we give two theorems that
follow from the definitions.
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Theorem 2.1. A complete square is magic and pandiagonal. For a semi-magic quartal square

m =
n

2
r. (2.9)

Proofs by Ollerenshaw and Brée [16] can be verified by matrix operations on the relevant
defining equations. The pandiagonal property follows directly from (2.7). Also, we found the
following (apparently) new and useful result.

Theorem 2.2. A quartal magic square Q is pandiagonal.

Proof. On applying U to (2.5) with (2.2), (2.9) follows. The trace of Ki× (2.5) then gives

tr
[

KiQ
]

+ 2tr
[

Ki+1Q
]

+ tr
[

Ki+2Q
]

= 4m, i = 0, 1, . . . , n− 1. (2.10)

On solving this system of linear equations together with (2.3)1, one obtains (2.4)1 with MP =
Q. Similarly, the trace of KiR× (2.5) and (2.3)2 lead to (2.4)2, hence, Q is pandiagonal2. �

A Franklin square matrix F (as considered here) must satisfy three requirements. First,
it must be quartal. Second, the sum of its upper and lower half-columns and right and left
half-rows must be m/2, i.e.,

Fu1 = Fu2 = F Tu1 = F Tu2 =
m

2
u (2.11)

which makes F semi-magic and requires that n = 4k for a natural Franklin square. Third, the
elements on its bent diagonals must sum to m. A square has four families of bent diagonals as
illustrated in the Introduction. The bent-diagonal sum conditions can be expressed in matrix
form by introducing the matrix X with elements Xij defined as

Xij =







1, if i ≤ n/2 and j = i;
1, if i > n/2 and j = n+ 1− i;
0, otherwise.

(2.12)

Then, the following theorem provides a convenient way to enforce or check the bent diagonal
sum conditions.

Theorem 2.3. If X and F TX are pandiagonal, then F satisfies the bent-diagonal sum con-

ditions.

Proof. To illustrate this, consider the order-4 matrix F with element Fij and form

FX =









F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

















1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0









=









F11 + F14 F12 + F13 0 0
F21 + F24 F22 + F23 0 0
F31 + F34 F32 + F33 0 0
F41 + F44 F42 + F43 0 0









,

F TX =









F11 F21 F31 F41

F12 F22 F32 F42

F13 F23 F33 F43

F14 F24 F34 F44

















1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0









=









F11 + F41 F21 + F31 0 0
F12 + F42 F22 + F32 0 0
F13 + F43 F23 + F33 0 0
F14 + F44 F24 + F34 0 0









(2.13)

in which all diagonals in both directions (with wraparound) sum to the four bent-diagonal sums
of F . The equivalence of these pandiagonal conditions on FX and F TX to the bent-diagonal
sum conditions are easily seen to extend to higher even-order F . �

2The proof given in [16] is for a complete square and uses (2.7).
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The pandiagonal condition on FX and F TX can be enforced or checked using (2.4). A
simpler form of the bent-diagonal sum conditions for a semi-magic quartal F is developed in
the next section. As shown by Pasles [18], the lowest even-order for existence of a natural
Franklin square is 8. He also considers squares with different Franklin conditions and odd-
order Franklin squares. A Franklin square of order 8k can be transformed to standard form
with the element F1,1 = 0 using permutations of the type given by Ahmed [1] and Hurkens
[7]. Franklin squares also may be pandiagonal. If they are not necessarily pandiagonal, they
are called ordinary.

3. Quartal Square Parameterization

We construct a general parameterization for even-order quartal squares and apply it to
obtain two useful identities. In a later section this parameterization is specialized to obtain
general parameterizations for complete and Franklin squares.

The following quartal square matrix Qn of even order n is constructed by applying the quar-
tal property to construct the 2× 2 square in its upper left corner and proceeding sequentially
to construct 2× 2 squares down and to the right:

Qn =

























γ α2 α3 α4

β2 2r − γ − α2 − β2 γ − α3 + β2 2r − γ − α4 − β2
β3 γ + α2 − β3 −γ + α3 + β3 γ + α4 − β3
β4 2r − γ − α2 − β4 γ − α3 + β4 2r − γ − α4 − β4
β5 γ + α2 − β5 −γ + α3 + β5 γ + α4 − β5
...

...
...

...
βn−1 γ + α2 − βn−1 −γ + α3 + βn−1 γ + α4 − βn−1

βn 2r − γ − α2 − βn γ − α3 + βn 2r − γ − α4 − βn

α5 · · · αn−1 αn

γ − α5 + β2 · · · γ − αn−1 + β2 2r − γ − αn − β2
−γ + α5 + β3 · · · −γ + αn−1 + β3 γ + αn − β3
γ − α5 + β4 · · · γ − αn−1 + β4 2r − γ − αn − β4
−γ + α5 + β5 · · · −γ + αn−1 + β5 γ + αn − β5

...
. . .

...
...

−γ + α5 + βn−1 · · · −γ + αn−1 + βn−1 γ + αn − βn−1

γ − α5 + βn · · · γ − αn−1 + βn 2r − γ − αn − βn

























. (3.1)

Qn has 2n− 1 free parameters, namely the integers γ and αi, βi, (i = 2, 3, . . . n). The quartal
property of Qn can be verified by (2.5) for any specific even-order n. As clear from its
construction, any even-order quartal square can be represented by Qn. Of course Qn is natural
only for a limited set of its free parameters. Examination of (3.1) for odd n shows that only
a trivial one-parameter Qn involving γ and r is possible.

From (3.1) it is not difficult to verify the following useful identities for a quartal matrix Q:

(I +K)Qu1 =
n

2
ru, (I +K)Qu2 =

n

2
ru, (3.2)

(I +K)QX = 2rU1, (I +R)QX = 2rU1. (3.3)

Theorem 3.1. A semi-magic quartal square Q of order 4k satisfies the bent-diagonal sum

conditions if

tr [QX] =
n

2
r = m, tr

[

QTX
]

=
n

2
r = m. (3.4)
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Proof. For a semi-magic quartal square Q, Theorem 2.1 and the identities (3.3) give

tr [QX] + tr [KQX] = 2m, tr [QX] + tr [RQX] = 2m,

tr
[

K2iQX
]

= tr [QX] = tr
[

K2i+1QX
]

= tr [KQX] = m
tr
[

K2iRQX
]

= tr [RQX] = tr
[

K2i+1RQX
]

= tr [KRQX] = m

}

i = 0, 1, . . .
n

2
− 1,

(3.5)

and similarly for QTX since QT is quartal too. Therefore, by (2.4), (3.4), and (3.5), QX
and QTX are pandiagonal and therefore, by Theorem 2.3, Q satisfies the bent-diagonal sum
conditions. �

This theorem provides a simple way of enforcing or checking the bent-diagonal sum conditions
on a square that is known to be semi-magic and quartal.

4. Complete to Franklin Transformation

We consider the possible transformation of a complete magic square matrix C to a pandi-
agonal Franklin square matrix F̂ as given by

F̂ = ZCZ, (4.1)

where the permutation matrix Z remains to be determined. It is required to be symmetric
and rotationally symmetric, i.e.

ZT = Z−1 = Z, RZR = Z. (4.2)

It follows from these requirements that F̂ is magic since C is magic. Furthermore, F̂ is
natural when C is natural since Z is a permutation matrix. Other requirements will be placed
on Z in what follows to make F̂ satisfy the pandiagonal Franklin square conditions which are
considered next.
Quartal Property. We require that Z be of the form

Z =

n/2
∑

i=1

I ′iK
2i =

n/2
∑

i=1

K2iI ′′i ,

n/2
∑

i=1

I ′i =

n/2
∑

i=1

I ′′i = I, (4.3)

where I ′i and I ′′i are diagonal matrices with elements 0 and 1. Then, by (4.3) and the identities
(2.6), we form

(I +K)ZC(I +K) = (I +K)

n/2
∑

i=1

I ′iK
2iC(I +K)

= (I +K)

n/2
∑

i=1

I ′iC(I +K) = (I +K)C(I +K) = 2rU. (4.4)

Thus, according to (2.5), C̃ = ZC is quartal and so

(I +K)C̃Z(I +K) =

n/2
∑

i=1

(I +K)C̃K2iI ′′i (I +K)

= (I +K)C̃

n/2
∑

i=1

I ′′i (I +K) = (I +K)C̃(I +K) = 2rU. (4.5)
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Therefore,

(I +K)ZCZ(I +K) = (I +K) F̂ (I +K) = 2rU, (4.6)

hence, F̂ is quartal and, by Theorem 2.2, F̂ is pandiagonal. Therefore, the identities (3.2) and

(3.3) apply to F̂ .

Half-Row/Column Sums. To make F̂ satisfy the half-row/column sum conditions (2.11),
we first apply (4.1) to the complementary condition (2.7) with (2.9) to obtain

F̂ +
[

ZK
n

2 Z
]

F̂
[

ZK
n

2Z
]

=
2

n
mU. (4.7)

On post-multiplying this by u1 and requiring that
[

ZK
n

2 Z
]

u1 = u1, (4.8)

we have
(

I + ZK
n

2Z
)

F̂ u1 = mu. (4.9)

Let
F̂ u1 =

m

2
u+ v (4.10)

and substitute this into (4.9) and (3.2) with (2.9) to obtain
(

I + ZK
n

2Z
)

v = 0,

(I +K) v = 0. (4.11)

The only solution to both of these equations is v = 0, hence, F̂ u1 = m
2
u and, since F̂ is

magic, F̂ u2 = m
2
u. A similar argument leads to F̂ Tu1 = F̂ Tu2 = m

2
u. Thus, F̂ satisfies the

half-row/column sum conditions (2.11) and is semi-magic.

Bent-Diagonal Sums. On post-multiplying (4.7) by X and requiring that
[

ZK
n

2Z
]

X = X
[

ZK
n

2 Z
]

, (4.12)

with (2.9), we obtain

F̂X +
(

ZK
n

2Z
)

F̂X
(

ZK
n

2 Z
)

=
4

n
mU1 (4.13)

and similarly for F̂ T . Thus,

tr
[

F̂X
]

= tr
[

F̂ TX
]

= m. (4.14)

Therefore, since F̂ is quartal and semi-magic, by Theorem 3.1, F̂ satisfies the bent-diagonal
sum conditions. Since all the Franklin conditions are satisfied, F̂ is a pandiagonal Franklin
magic square subject to the noted conditions on Z.
Construction of Z. To construct Z that satisfies the previously imposed conditions, we
start with order 8 and then show how to construct Z successively for order 16, 24, . . .. For
order 8 we take Z as

Z8 =









I2 O2 O2 O2

O2 O2 I2 O2

O2 I2 O2 O2

O2 O2 O2 I2









, I2 ≡

[

1 0
0 1

]

, O2 ≡

[

0 0
0 0

]

, (4.15)

where I2 and O2 are submatrices of Z8. The inverse transformation corresponding to (4.1),
namely

M̂ = ZF̂Z (4.16)
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with Z = Z8 is equivalent to the row/column permutations used by Schindel, et al. [22]

to transform an order-8 pandiagonal Franklin magic square F̂8 to a complete magic square
M̂ = Ĉ8. The inverse transformation (4.16) is discussed further below.

It is not difficult to show that Z8 satisfies (4.2) and (4.3). On noting that

Z8K
4Z8 =









O2 I2 O2 O2

I2 O2 O2 O2

O2 O2 O2 I2
O2 O2 I2 O2









, X8 =









I2 O2 O2 O2

O2 I2 O2 O2

O2 R2 O2 O2

R2 O2 O2 O2









, R2 ≡

[

0 1
1 0

]

, (4.17)

it can be verified that Z8 satisfies (4.8) and (4.12).
For order n = 8k (k = 2, 3, . . .), we construct Zn sequentially by adding rows and columns

onto Zn−8 as follows:

Zn =













I2 O2 O O2 O2

O2 O2 O I2 O2

O O Zn−8 O O
O2 I2 O O2 O2

O2 O2 O O2 I2













, n = 16, 24, . . . , (4.18)

where O are submatrices of proper dimensions with 0 elements. Again, Zn satisfies (4.2) and

(4.3). On noting that ZnK
n

2Zn is of the same form as Z8K
4Z8 in (4.17), it can be verified

that Zn satisfies (4.8) and (4.12). Thus, Zn is a suitable Z matrix for transforming a complete

magic square Cn to a pandiagonal Franklin magic square matrix F̂n by (4.1) for order n = 8k.
It appears that no suitable Zn exists for n = 8k+4. Also, it is possible that other suitable Zn

may exist for n = 8k.

Inverse Transformation. We return to the inverse transformation (4.16) for an order-8k

pandiagonal Franklin square F̂ transformed to a square M̂ . It follows from the preceding
results that since F̂ is magic, quartal, and pandiagonal, then so is M̂ . However, the com-
plementary property (2.7) for M̂ does not follow from the Franklin square conditions for F̂
except for n = 8 as shown by the parameterizations given in the next section.

Other transformations of magic squares have been given previously. In particular, a regular
(or associative) magic square can be transformed to a pandiagonal magic square by the Planck
transformation [21] as given in matrix form by Nordgren [13]. Also, he shows that a Franklin
square can be transformed to a (nonquartal) pandiagonal magic square in two ways [15].

5. Parameterizations

On placing restrictions on the general parameterization for a quartal square (3.1), we ob-
tain general parameterizations for complete and Franklin squares of order 4k. A study of their
transformations confirms the foregoing general results for order 8k. In addition, our param-
eterizations provide a means of generating natural squares of each type by numerical search
on the free parameters. We recall that parameterizations are available for general order-3 and
order-4 magic squares as discussed by Loly, et al. [9] and Nordgren [14].
Complete Squares. To obtain a general parameterization for a complete magic squares Cn

of order n = 4k, we enforce the complementary condition (2.7) on Qn from (3.1) which leads

NOVEMBER 2016 311



THE FIBONACCI QUARTERLY

to

αn

2
+i =

{

2r − γ − αi − αn

2
+1, i = 2, 4, . . . , n

2
,

γ − αi + αn

2
+1, i = 3, 5, . . . , n

2
− 1,

βn

2
+1 = r − αn

2
+1, (5.1)

βn

2
+i =

{

r − γ − βi + αn

2
+1, i = 2, 4, . . . , n

2
,

r + γ − βi − αn

2
+1, i = 3, 5, . . . , n

2
− 1.

Thus, Cn has n free parameters, namely γ, α2, α3, . . . αn

2
+1, β2, β3, . . . βn

2
.

For order 8, with γ = 0 (for C8 in standard form), (5.1) and (3.1) give the following
parameterization for a complete magic square:

C8 =

























0 α2 α3 α4

β2 2r − α2 − β2 β2 − α3 2r − α4 − β2
β3 α2 − β3 β3 + α3 α4 − β3
β4 2r − α2 − β4 β4 − α3 2r − α4 − β4

r − α5 −r + α5 + α2 r − α5 + α3 −r + α5 + α4

r + α5 − β2 r − α5 − α2 + β2 r + α5 − α3 − β2 r − α5 − α4 + β2
r − α5 − β3 −r + α5 + α2 + β3 r − α5 + α3 − β3 −r + α5 + α4 + β3
r + α5 − β4 r − α5 − α2 + β4 r + α5 − α3 − β4 r − α5 − α4 + β4

α5 2r − α5 − α2 α5 − α3 2r − α5 − α4

−α5 + β2 α5 + α2 − β2 −α5 + β2 + α3 α5 + α4 − β2
α5 + β3 2r − α5 − α2 − β3 α5 + β3 − α3 2r − α5 − α4 − β3
−α5 + β4 α5 + α2 − β4 −α5 + β4 + α3 α5 + α4 − β4

r r − α2 r − α3 r − α4

r − β2 −r + α2 + β2 r + α3 − β2 −r + α4 + β2
r − β3 r − α2 + β3 r − α3 − β3 r − α4 + β3
r − β4 −r + α2 + β4 r + α3 − β4 −r + α4 + β4

























(5.2)

which has 7 free parameters. Its magic properties follow from Theorem 2.1 and can be verified
directly as can the complementary property (2.7) and the quartal property (2.5).

Transformed Pandiagonal Franklin Squares. By the transformation (4.1) with (4.15)
applied to C8 of (5.2) we obtain the following parameterization for an order-8 pandiagonal
Franklin square:

F̂8 =

























0 α2 α5 2r − α5 − α2

β2 2r − α2 − β2 −α5 + β2 α5 + α2 − β2
r − α5 −r + α5 + α2 r r − α2

r + α5 − β2 r − α5 − α2 + β2 r − β2 −r + α2 + β2
β3 α2 − β3 α5 + β3 2r − α5 − α2 − β3
β4 2r − α2 − β4 −α5 + β4 α5 + α2 − β4

r − α5 − β3 −r + α5 + α2 + β3 r − β3 r − α2 + β3
r + α5 − β4 r − α5 − α2 + β4 r − β4 −r + α2 + β4
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α3 α4 α5 − α3 2r − α5 − α4

β2 − α3 2r − α4 − β2 −α5 + α3 + β2 α5 + α4 − β2
r + α3 − α5 −r + α5 + α4 r − α3 r − α4

r + α5 − α3 − β2 r − α5 − α4 + β2 r + α3 − β2 −r + α4 + β2
β3 + α3 α4 − β3 α5 − α3 + β3 2r − α5 − α4 − β3
β4 − α3 2r − α4 − β4 −α5 + α3 + β4 α5 + α4 − β4

r − α5 + α3 − β3 −r + α5 + α4 + β3 r − α3 − β3 r − α4 + β3
r + α5 − α3 − β4 r − α5 − α4 + β4 r + α3 − β4 −r + α4 + β4

























, (5.3)

where the Franklin square conditions can be verified directly and F̂8 satisfies the diagonal
magic sum conditions (2.3) which makes F̂8 pandiagonal by Theorem 2.2. This verifies the
transformation (4.1) for order 8. It also has been verified in the same manner for orders 16

and 24. For order n = 8k, the transformed F̂n has n free parameters (for γ 6= 0), the same as
Cn from which it was transformed.

Ordinary Franklin Squares. We construct a general parameterization for an ordinary
Franklin square Fn of order n = 4k (k ≥ 2) by enforcing the half-row/column sum conditions
and the bent diagonal sum conditions on Qn of (3.1). From these conditions, namely (2.11)
and (3.4) of Theorem 3.1, applied to Qn we find that

αn

2
=

n

4
r − γ −

n/2−1
∑

i=2

αi, αn−1 = γ +

n/4−1
∑

i=1

α2i+1 −

n/2−2
∑

i=n/4

α2i+1,

αn =
n

4
r − γ −

n/4−1
∑

i=1

α2i+1 −

n/2−2
∑

i=n/4

α2i+2, (5.4)

and similar formulas for βn

2
, βn−1, and βn. These formulas determine 6 of the 2n − 1 free

parameters of Q leaving 2n− 7 free parameters for Fn. For n = 4, we find that

α2 = α4 = β2 = β4 = r − γ, α3 = β3 = γ, (5.5)

so there is only one free parameter γ and no natural F4 as also shown by Pasles [18].
For n = 8, with γ = 0 (for F in standard form), (5.4) and (3.1) give the following parame-

terization for an ordinary Franklin square:

F8 =

























0 α2 α3 2r − α2 − α3

β2 2r − α2 − β2 β2 − α3 α2 + α3 − β2
β3 α2 − β3 β3 + α3 2r − α2 − α3 − β3

2r − β2 − β3 β2 + β3 − α2 2r − α3 − β2 − β3 −2r + α2 + α3 + β2 + β3
β5 α2 − β5 β5 + α3 2r − α2 − α3 − β5
β6 2r − α2 − β6 β6 − α3 α2 + α3 − β6

β3 − β5 α2 − β3 + β5 α3 + β3 − β5 2r − α2 − α3 − β3 + β5
2r − β3 − β6 β3 + β6 − α2 2r − α3 − β3 − β6 −2r + α2 + α3 + β3 + β6
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α5 α6 α3 − α5 2r − α3 − α6

β2 − α5 2r − α6 − β2 −α3 + α5 + β2 α3 + α6 − β2
β3 + α5 α6 − β3 α3 − α5 + β3 2r − α3 − α6 − β3

2r − α5 − β2 − β3 −α6 + β2 + β3 2r − α3 + α5 − β2 − β3 −2r + α3 + α6 + β2 + β3
β5 + α5 α6 − β5 α3 − α5 + β5 2r − α3 − α6 − β5
β6 − α5 2r − α6 − β6 −α3 + α5 + β6 α3 + α6 − β6

α5 + β3 − β5 α6 − β3 + β5 α3 − α5 − β5 + β3 2r − α3 − α6 + β5 − β3
2r − α5 − β3 − β6 −α6 + β3 + β6 2r − α3 + α5 − β3 − β6 −2r + α3 + α6 + β3 + β6

























(5.6)
which has 8 free parameters, one more than the pandiagonal Franklin square of (5.3). Thus,
as expected, there are many more order-8 ordinary Franklin squares than pandiagonal ones.
For order-8 natural Franklin squares this ratio is 2 to 1 in the numerical results of Schindel,
et al. [22].

Pandiagonal Franklin Squares. The diagonal magic sum conditions (2.3) on an ordinary
Fn of order n = 4k (k ≥ 2), as parameterized above, are satisfied if

4

n/4−1
∑

i=1

(α2i+1 + β2i+1)− (n− 8) γ = m (5.7)

in which case Fn is pandiagonal according to Theorem 2.2 and has 2n− 8 free parameters.
From (5.6) or (5.7), F8 satisfies the diagonal magic sum conditions (2.3) if

α3 + β3 = [F8]13 + [F8]31 = r (5.8)

in which case, by Theorem 2.2, F8 is pandiagonal. The element condition of (5.8) is satisfied

by F̂8 of (5.3) and it provides a simple way of identifying order-8 Franklin squares (in standard
form) that are pandiagonal. Also, [F8]33 = r for this case.

On enforcing (5.8) on F8 of (5.6) we obtain the pandiagonal Franklin square F̂8 of (5.3)
with slightly different numbering of the free parameters. In view of this equivalence, it follows
that any order-8 pandiagonal Franklin square F̂8 can be transformed to a complete square C8

by (4.16) as can be verified directly and is done numerically by Schindel, et al. [22] for natural

F̂8. Thus, we have a one-to-one correspondence between the sets of (natural or general) F̂8

and C8.
For higher-order Franklin squares, (5.7) again determines one of the parameters, leaving

2n − 8 free parameters for a pandiagonal Franklin square F̃n of order n = 4k. For n = 4k
(k ≥ 3) the number of free parameters 2n−8 in F̃n exceeds the number of free parameters n in

a general complete square Cn and its transformed pandiagonal Franklin square F̂n (n = 8k);
their numbers being equal for n = 8. Thus, for n = 8k (k ≥ 2) there are pandiagonal Franklin
magic squares that cannot be transformed to complete magic squares. For example, the
order-16 pandiagonal Franklin square given by Morris [12] (attributed to Franklin) does not
transform to a complete square by (4.16) with Z16 from (4.18).

6. Spectra

Since the number of nonzero eigenvalues of a matrix cannot exceed its rank, we first deter-
mine the rank of our parameterized complete and Franklin squares. According to Maple c© (in
Scientific WorkPlace c©), all of the order-8 squares parameterized above are rank 3. This agrees
with the numerical results for all order-8 natural Franklin squares generated in [22] as noted
in [4]. To see why this is so, consider the reduced row echelon form of the general order-8
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quartal square Q8 from (3.1) for which Maple c© gives














1 0 0
α4−α2

γ−α3

α5−α3

γ−α3

α6−α2

γ−α3

α7−α3

γ−α3

α8−α2

γ−α3

0 1 0 1 0 1 0 1

0 0 1 −
α4−α2

γ−α3

γ−α5

γ−α3
−

α6−α2

γ−α3

γ−α7

γ−α3
−

α8−α2

γ−α3

0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...















. (6.1)

If Q8 is natural, none of the elements in (6.1) can be 0 and rank [Q8] = 3. A detailed analysis
of the Gaussian elimination procedure used to derive (6.1) when applied to Qn from (3.1)

results in a reduced row echelon form similar to (6.1). Therefore, natural Qn, Cn, F̂n, and Fn

are rank 3, since they all are quartal.
For certain general quartal squares, rank [Qn] = 2. This includes the case γ = αi = η for

i odd, and αi = µ for i even. Also, rank [Qn] = 1 if γ = αi = r = 0. The reduced column
echelon form of Qn replaces αi by βi in (6.1) and leads to the same conclusions.

A bound on rank [Qn] can be obtained from the quartal property condition (2.5) and
Sylvester’s rank inequality for order-n square matrices A,B,C extended to the form

rank [A] + rank [B] + rank [C]− 2n ≤ rank [ABC] . (6.2)

With
A = C = I +K, B = Qn, ABC = 2rU, (6.3)

and noting that for even n

rank [I +K] = n− 1, rank [U ] = 1, (6.4)

(2.5) and (6.2) lead to
rank [Qn] ≤ 3 (6.5)

which agrees with the foregoing results.
Next we consider the eigenvalues and eigenvectors of quartal squares.

Theorem 6.1. A diagonal-magic quartal square Qn has the eigenvalue m and one pair of

eigenvalues ±λ. If λ 6= 0 and this Qn, is natural, then it is diagonalizable.

Proof. As noted by Mattingly [10], the eigenvalue m follows from the semi-magic condition
(2.2)1 and all other eigenvalues are less than m in absolute value. Since, as shown above,
rank [Qn] ≤ 3, Qn has at most 3 nonzero eigenvalues m,λ1, λ2 which must sum to tr [Qn].
From the diagonal-magic condition (2.3), tr [Qn] = m, hence, λ1 = λ, λ2 = −λ for a diagonal-
magic quartal square Qn.

It is not difficult to find the eigenvectors for five 0 eigenvalues of Q8 of (3.1) to be the
columns of the matrix

























α4 − α2 α5 − α3 α6 − α2 α7 − α3 α8 − α2

− (α3 − γ) 0 − (α3 − γ) 0 − (α3 − γ)
− (α4 − α2) γ − α5 − (α6 − α2) γ − α7 − (α8 − α2)

α3 − γ 0 0 0 0
0 α3 − γ 0 0 0
0 0 α3 − γ 0 0
0 0 0 α3 − γ 0
0 0 0 0 α3 − γ

























(6.6)

and this can be generalized to higher order Qn without difficulty by following the same pat-
tern for the elements. Thus, if Qn is natural, these n − 3 simple eigenvectors are linearly
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independent. If λ 6= 0, then the three nonzero eigenvalues are distinct and the spectral matrix
is diagonal. �

This theorem applies to all complete squares and all pandiagonal Franklin squares. When
λ1 = −λ2 = 0 these two eigenvalues may have generalized eigenvectors in which case Qn

would not be diagonalizable. Since an ordinary Franklin square F need only be semi-magic,
it may have a pair of equal eigenvalues which may have generalized eigenvectors in which case
F would not be diagonalizable. Numerical examples of nondiagonalizable general C8 and F8

have been found for both such cases by the author.

7. Matrix Powers of Franklin Squares

Theorem 7.1. An odd matrix power of a pandiagonal Franklin square is a pandiagonal

Franklin square.

Proof. The sum conditions (2.11) on the half rows/columns of a Franklin square F together
with (2.2) lead to

F iu1 = F i−1Fu1 =
m

2
F i−1u =

mi

2
u (7.1)

and similarly for F iu2,
[

F i
]T

u1, and
[

F i
]T

u2. Thus, F
i satisfies the appropriate sum condi-

tions corresponding to (2.11) on its half rows/columns and F i is semi-magic.
In order to verify the diagonal magic sum conditions on F i, we recall that the Jordan form

of F and its matrix power F i can be written as

F = SDS−1, F i = SDiS−1, (7.2)

where for magic F with eigenvalues m,±λ (as noted above) and i odd

D =















m 0 0 0 · · ·
0 λ 0 0 · · ·

0 0 −λ 0 · · ·

0 0 0 0 · · ·
...

...
...

...
. . .















, Di =















mi 0 0 0 · · ·

0 λi 0 0 · · ·

0 0 −λi 0 · · ·

0 0 0 0 · · ·
...

...
...

...
. . .















, (7.3)

or if λ = 0 and there are two generalized eigenvectors, then

D =















m 1 0 0 · · ·

0 0 1 0 · · ·

0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .















, Di =















mi mi−1 mi−2 0 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·
...

...
...

...
. . .















. (7.4)

In both of these cases

tr [F ] = m, tr
[

F i
]

= mi, (i odd) . (7.5)

With S−1RS represented by a matrix with elements sij, we have

tr [RF ] = tr
[

DS−1RS
]

= ms11 + λ (s22 − s33) = m, (7.6)

hence,

s11 = 1, s22 − s33 = 0 or λ = 0. (7.7)

Therefore,

tr
[

RF i
]

= tr
[

DiS−1RS
]

= mis11 + λi (s22 − s33) = mi. (7.8)
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Thus, F i satisfies the appropriate diagonal sum conditions corresponding to (2.3), hence, F i

is magic. The quartal condition on F i can be established from (2.5) and (7.3) in the same
manner as for (7.8), where again the coefficients of λ and λi vanish.

With (7.2), the bent-diagonal condition (3.4) for a Franklin magic square F reads

tr [FX] = tr
[

DS−1XS
]

= m. (7.9)

By the same argument used to derive (7.8) we find that

tr
[

F iX
]

= tr
[

(

F i
)T

X
]

= mi (7.10)

which are the appropriate bent-diagonal conditions corresponding to (3.4) for a quartal square.
Therefore, F i is a Franklin magic square and, by Theorem 2.2, it is pandiagonal. �

In a similar manner it can be shown that the product of an odd number of pandiagonal
Franklin squares is a pandiagonal Franklin square. Theorem 7.1 has been confirmed nu-
merically for the order-16 pandiagonal Franklin square given by Morris [12] (attributed to
Franklin). Numerical results also show that odd powers of nonpandiagonal Franklin squares
are not Franklin squares in general.

A simpler proof of Theorem 7.1 is possible for a pandiagonal Franklin square F̂ of order-8k
transformed from a complete magic square C by (4.1). It follows from(4.1) and (4.2) that

F̂ i = [ZCZ]i = ZCiZ, (7.11)

where Ci is a complete magic square for odd i as shown by Nordgren [13]. Therefore, it follows

from (4.1) and (7.11) that F̂ i is a pandiagonal Franklin magic square for odd i. Matrix powers
of magic squares also are considered by Cook, et al. [5].3

8. Number of Franklin Squares

As noted by Schindel, et al. [22], only one third of their 1,105,920 numerically generated
natural order-8 Franklin squares are pandiagonal and can be transformed to complete magic
squares.4 This number corresponds to the number 368,640 of order-8 natural complete magic
squares enumerated by Ollerenshaw and Brée [16]. Thus, our transformation of order-8 natural
complete magic squares to natural pandiagonal Franklin magic squares (the inverse of the
transformation in [22]) produces the same one third of the known natural Franklin squares of
order-8.

As indicated by our parameterizations and noted in [22], for higher orders one expects
there to be even more Franklin squares that cannot be transformed to or from complete magic
squares. Since the number of complete magic squares is determined in [16], our transformation
provides a lower bound on the number of pandiagonal and ordinary Franklin squares of order-
8k.

Ahmed [1] determines the number of general order-8 Franklin squares with magic sum
equal to that of natural squares to be 2.29 . . . E14 which is an upper bound on the number
of natural ones. In our parameterization for a general order-8 Franklin square there are 9
free parameters (when γ is retained) each of which can take up to 64 values (0, 1, . . . , 63) for
equivalence with a natural magic square, giving 64 × 63 × · · · × 56 = 9.99 . . .E15 possible
squares as an upper bound on the number of general and natural ones. This number can be
reduced somewhat by a more detailed consideration of allowable values for other elements of
F8 in its parameterization (5.6). Similar results can be obtained from our parameterizations

3Unfortunately, the purported Franklin square given by them does not meet the Franklin square conditions.
4The number 1,105,920 was verified by Amela [2] using a different method of construction.
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for higher-order complete and Franklin squares. As already noted, Hurkens [7] found that
there are no natural Franklin squares of order-12. The actual number of natural Franklin
squares of order-4k (k ≥ 4) remains to be determined, perhaps along the lines of Ollerenshaw
and Brée [16].
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