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Abstract. By interpreting various sums involving Fibonacci and Lucas numbers physically,
we show how one can often generate an additional summation with little effort. To illustrate
the fruitfulness of the approach, we establish some elegant summations that we believe are
new.

1. Introduction

The Fibonacci and Lucas numbers are defined for all integers n by the recurrence relations

Fn = Fn−1 + Fn−2 where F1 = 1 and F2 = 1;

Ln = Ln−1 + Ln−2 where L1 = 1 and L2 = 3.

In articles [12] and [13] we showed that essentially physical arguments can be used to find
various summations involving Fibonacci numbers. In this paper we detail a more systematic
treatment of this approach. We show how various summation formulas involving Fibonacci and
Lucas numbers can be interpreted physically, and how an appealing secondary summation can
often be deduced as a natural consequence. For instance, our first example will demonstrate
how the first summation in (1.1) implies the second summation,

n
∑

j=1

F 2
j = FnFn+1 =⇒

n
∑

j=1

F 2
j F2j = F 2

nF
2
n+1. (1.1)

While both of these are well-known, we believe that the derivation of the second identity as
a physical consequence of the first identity to be new. We will also establish some identities
that we believe are original. Most notably, in Proposition 3.5 we prove that

n
∑

j=1

F 3
j F

3
j+1 =

( n
∑

j=1

F 2
j Fj+1

)2

. (1.2)

The reader will note the resemblance between identity (1.2) and the iconic formula for the
sum of cubes,

n
∑

j=1

j3 =

( n
∑

j=1

j

)2

. (1.3)

The similarity is not superficial. We can deduce each of these formulas using the same method,
which we will outline in Section 2. In this respect, the work that follows can be regarded as a
generalization of (1.3). By looking at the proofs of these identities we will come to see each
as a physical imperative rather than a neat algebraic coincidence.

2. The Method and the Main Result

The required theory is elementary. Consider a rectangle R ⊂ R
2 of uniform density and

area A, placed lengthwise along the x-axis. The balancing point x of this rectangular figure is
its midpoint. If R is partitioned into sub-rectangles (Rj)

n
j=1 by a series of vertical lines then
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the balancing point of R can also be found by finding the midpoint xj and area Aj of each
part and then computing a weighted average,

x =

∑n
j=1Ajxj

A
. (2.1)

This is illustrated below in Figure 1.

x1 x2 x3 x4 xnx
0

Figure 1

We now show how equation (2.1) can be used to deduce each of (1.1), (1.2) and (1.3) in
the introduction, amongst other results. To this end, we take any finite sequence of positive
numbers (aj)

n
j=1 and let (Sj)

n
j=1 be the sequence of partial sums,

Sj =

j
∑

k=1

ak.

We then construct rectangles of dimensions

a1 × 1, a2 × 1, . . . , an × 1,

and then arrange these rectangles along the x-axis as shown below in Figure 2.

1

a1 a2 a3 · · · an

Sn

2

Sn0

Figure 2

For each 1 ≤ j ≤ n, the midpoint xj of rectangle j is

xj =
1

2
(aj + 2Sj−1). (2.2)

The balancing point x of the combined rectangle will be its midpoint,

x =
1

2
Sn, (2.3)

which can also be found using equations (2.1) and (2.2) giving

x =

∑n
j=1 ajxj

Sn

=

∑n
j=1

1
2

(

a2j + 2ajSj−1

)

Sn

. (2.4)

By equating the right-hand sides of (2.4) and (2.3) we prove Theorem 2.1. This is the central
result of the paper, and will be deployed extensively throughout Section 3.
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Theorem 2.1. For any finite sequence of positive numbers (aj)
n
j=1 whose partial sums are

(Sj)
n
j=1 we have

n
∑

j=1

(

a2j + 2ajSj−1

)

= S2
n. (2.5)

A given sequence (aj)
n
j=1 must satisfy two informal conditions for equation (2.5) to yield an

interesting result:

(1) the closed form of Sn must be known and,
(2) (a2j + 2ajSj−1)

n
j=1 is a sequence that we would like to sum.

As we will now see, such examples are not hard to come by.

3. Applications

For our first example we give a simple deduction of equation (1.3).

Example 3.1. Let aj = j so that

Sn =
n
∑

j=1

j =
n(n+ 1)

2
.

It follows that

a2j + 2ajSj−1 = j2 + 2j
j(j − 1)

2
= j3

in which case equation (2.5) yields

n
∑

j=1

j3 =

(

n(n+ 1)

2

)2

=

( n
∑

j=1

j

)2

.

Note that we have established the formula for the sum of cubes without assuming the
formula for the sum of squares, a prerequisite in many familiar proofs. Of course, the example
is elementary. However, it does provide an interesting physical interpretation of a well-known
result.

Equation (2.5), while valid for any finite sequence of positive numbers, is often productive
when each term of the sequence is some product of Fibonacci or Lucas numbers, as the following
two simple examples serve to illustrate.

Example 3.2. We first let aj = F 2
j . It is well-known that

Sn =

n
∑

j=1

F 2
j = FnFn+1.

It follows that

a2j + 2ajSj−1 = F 4
j + 2F 3

j Fj−1

= F 3
j (Fj + 2Fj−1)

= F 3
j Lj (as Lj = Fj + 2Fj−1)

= F 2
j F2j (as F2j = FjLj)
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in which case equation (2.5) yields
n
∑

j=1

F 2
j F2j = F 2

nF
2
n+1,

which was also deduced by Melham in [7] using an altogether different approach.

Example 3.3. For our second example we let aj = F2j . We will employ the well-known result
that

Sn =

n
∑

j=1

F2j = F2n+1 − 1.

Subsequently,

a2j + 2ajSj−1 = F 2
2j + 2F2j(F2(j−1)+1 − 1)

= F2j(F2j + 2F2j−1)− 2F2j

= F2jL2j − 2F2j (as L2j = F2j + 2F2j−1)

= F4j − 2F2j (as F4j = F2jL2j).

Yet another application of equation (2.5) yields
n
∑

j=1

(F4j − 2F2j) = (F2n+1 − 1)2

from which we readily obtain
n
∑

j=1

F4j = F 2
2n+1 − 1.

Of course, the same procedure works for other summations and a sample of eight such
results is summarized in Table 1 below. Though each will be familiar, the approach taken to
establish these results is original.

Table 1. Each of the first summations implies the second summation.

(1) aj = Fj :
∑n

j=1 Fj = Fn+2 − 1 =⇒
∑n

j=1 FjFj+3 = F 2
n+2 − 1

(2) aj = Lj :
∑n

j=1 Lj = Ln+2 − 3 =⇒
∑n

j=1 LjLj+3 = L2
n+2 − 9

(3) aj = F2j :
∑n

j=1 F2j = F2n+1 − 1 =⇒
∑n

j=1 F4j = F 2
2n+1 − 1

(4) aj = L2j :
∑n

j=1 L2j = L2n+1 − 1 =⇒
∑n

j=1 F4j =
1
5

(

L2
2n+1 − 1

)

(5) aj = F2j−1 :
∑n

j=1 F2j−1 = F2n =⇒
∑n

j=1 F4j−2 = F 2
2n

(6) aj = L2j−1 :
∑n

j=1 L2j−1 = L2n − 2 =⇒
∑n

j=1 F4j−2 =
1
5

(

L2
2n − 4

)

(7) aj = F 2
j :

∑n
j=1 F

2
j = FnFn+1 =⇒

∑n
j=1 F

2
j F2j = F 2

nF
2
n+1

(8) aj = L2
j :

∑n
j=1 L

2
j = LnLn+1 − 2 =⇒

∑n
j=1 L

2
jF2j =

1
5

(

L2
nL

2
n+1 − 4

)
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Interestingly, by comparing row (3) with row (4), and row (5) with row (6), we obtain the
well-known and so-called fundamental identity,

L2
n − 5F 2

n = (−1)n4, (3.1)

the importance of which is detailed by Rabinowitz [9]. By looking at individual rows we can
make further observations. For instance, by considering row (5) we see that

n
∑

j=1

F4j−2 =

( n
∑

j=1

F2j−1

)2

.

Example 3.4. Suppose we now begin with the remarkable (and remarkably imposing) result
deduced by Melham [7, equation (1.3)],

n
∑

j=1

FjFj+1F
2
j+2Fj+3Fj+4 =

1

4
FnFn+1Fn+2Fn+3Fn+4Fn+5. (3.2)

As before, we let aj = FjFj+1F
2
j+2Fj+3Fj+4 so that by equation (3.2) we have

Sn =
1

4
FnFn+1Fn+2Fn+3Fn+4Fn+5.

It follows that

a2j + 2ajSj−1 = F 2
j F

2
j+1F

4
j+2F

2
j+3F

2
j+4 +

1

2
Fj−1F

2
j F

2
j+1F

3
j+2F

2
j+3F

2
j+4

=
1

2
F 2
j F

2
j+1F

3
j+2F

2
j+3F

2
j+4(2Fj+2 + Fj−1)

=
1

2
F 2
j F

2
j+1F

3
j+2F

2
j+3F

2
j+4Lj+2 (as Lj+2 = 2Fj+2 + Fj−1)

=
1

2
F 2
j F

2
j+1F

2
j+2F

2
j+3F

2
j+4F2j+4 (as F2j+4 = Fj+2Lj+2).

Therefore equation (2.5) yields

n
∑

j=1

F 2
j F

2
j+1F

2
j+2F

2
j+3F

2
j+4F2j+4 =

1

8
F 2
nF

2
n+1F

2
n+2F

2
n+3F

2
n+4F

2
n+5. (3.3)

Equation (3.3) is also deduced by Melham [8, equation (2.7)], independently of (3.2) rather
than as a consequence of it.

The method that we have discovered can also be applied sequentially. For instance, if we
begin with an elegant result first discovered by Block in [2],

n
∑

j=1

F 2
j Fj+1 =

1

2
FnFn+1Fn+2, (3.4)

then we can establish equations (3.5) and (3.6) below. We believe that these are original.
Note that (3.4) is easily proved; although induction will suffice, Clary and Hemenway [3,
p.135] demonstrate a particularly clean approach.
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Proposition 3.5. Equation (3.4) implies (3.5) which in turn implies (3.6) where

n
∑

j=1

F 3
j F

3
j+1 =

1

4
F 2
nF

2
n+1F

2
n+2, (3.5)

n
∑

j=1

F 5
j F

5
j+1F2j+1 =

1

8
F 4
nF

4
n+1F

4
n+2. (3.6)

Proof. We prove that equation (3.5) implies (3.6). Let aj = F 3
j F

3
j+1 so that by equation (3.5)

we have

Sn =
1

4
F 2
nF

2
n+1F

2
n+2.

Therefore,

a2j + 2ajSj−1 = F 6
j F

6
j+1 +

1

2
F 2
j−1F

5
j F

5
j+1

=
1

2
F 5
j F

5
j+1(2FjFj+1 + F 2

j−1)

=
1

2
F 5
j F

5
j+1F2j+1 (3.7)

where line (3.7) is deduced from the fact that

2FjFj+1 + F 2
j−1 = 2(Fj + Fj−1)Fj + F 2

j−1

= F 2
j + F 2

j + 2FjFj−1 + F 2
j−1

= F 2
j + (Fj + Fj−1)

2

= F 2
j + F 2

j+1

= F2j+1.

Finally, we obtain equation (3.6) by making use of equation (3.7) in (2.5). The proof that
equation (3.4) implies (3.5) is similar and is therefore omitted. �

A couple remarks. First, note that equations (3.4) and (3.5) imply (1.2) that is given in the
introduction. And secondly, we do not obtain a formula of any particular interest if we apply
the method once more to (3.6).

The method of discovery of equations (3.5) and (3.6) does not work quite as gracefully for
Lucas numbers. Nonetheless, each does have a corresponding counterpart. In this case, we
begin with the Lucas counterpart to equation (3.4) [7, equation (3.2)],

n
∑

j=1

L2
jLj+1 =

[LjLj+1Lj+2]
n
0

2
. (3.8)

Here, and later, we follow the convention that j serves as a dummy variable on the right-hand
side of (3.8),

[LjLj+1Lj+2]
n
0 = LnLn+1Ln+2 − L0L1L2.

Assuming (3.8) we easily obtain Proposition 3.6, which we also believe to be original. We have
omitted the proof as it is no more illuminating than the proof of Proposition 3.5.
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Proposition 3.6. Given equation (3.8) we have

n
∑

j=1

L3
jL

3
j+1 =

[L2
jL

2
j+1L

2
j+2]

n
0

4
, (3.9)

n
∑

j=1

L5
jL

5
j+1F2j+1 =

[L4
jL

4
j+1L

4
j+2]

n
0

40
. (3.10)

We conclude with one final result, the proof of which depends on an identity that has re-
cently been considered by Sury [11], and which has received further attention in this Fibonacci
Quarterly [4] and elsewhere (see, e.g., [5] and [6]),

n
∑

j=0

2jLj = 2n+1Fn+1. (3.11)

Using the method outlined in this paper, the reader might like to show that equation (3.11)
yields what we believe is a further original identity,

n
∑

j=0

22jLjFj+3 = 22n+2F 2
n+1. (3.12)

4. Closing Remarks

This paper could not possibly provide a complete account of the Fibonacci and Lucas
summations discoverable by the method that we have detailed. Therefore the reader has
ample opportunity to discover additional results using this method. Moreover, combinatorists
might also like to ponder if the new identities presented here have proofs, similar to those
detailed in Benjamin and Quinn [1].

Acknowledgement

With thanks to Ray Melham who encouraged me to search for Proposition 3.6, and to the
anonymous reviewer whose thoughtful suggestions have substantially improved the presenta-
tion of this paper. Thanks also to my supervisors Heiko Dietrich, Burkard Polster and Marty
Ross for their ongoing help and guidance.

References

[1] A. T. Benjamin and J. Quinn, Proofs and Really Count, The Mathematical Association of America, Wash-
ington, 2003.

[2] D. Block, Curiosum 330: Fibonacci summations, Scripta Mathematica, 19.2–3 (1953), 191.
[3] S. Clary and P. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers,

Springer Netherlands, (1993), 123–136.
[4] T. Edgar, Extending some Fibonacci-Lucas relations, The Fibonacci Quarterly, 54.1 (2016), 79.
[5] H. Kwong, An alternate proof of Sury’s Fibonacci-Lucas relation, Amer. Math Monthly, 121.6 (2014), 79.
[6] D. Marques, A new Fibonacci-Lucas relation, Amer. Math Monthly, 122.7 (2015), 683.
[7] R. S. Melham, Sums of certain products of Fibonacci and Lucas numbers, The Fibonacci Quarterly, 37.3

(1999), 248–251.
[8] R. S. Melham, Sums of certain products of Fibonacci and Lucas numbers - Part II, The Fibonacci Quarterly,

38.1 (2000), 2–7.
[9] S. Rabinowitz, Algorithmic manipulation of Fibonacci identities, Applications of Fibonacci Numbers: Vol-

ume 6, Springer Netherlands, (1994), 389–408.
[10] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
[11] B. Sury, A Polynomial parent to a Fibonacci-Lucas relation, Amer. Math Monthly, 121.3 (2014), 236.

NOVEMBER 2016 333



THE FIBONACCI QUARTERLY

[12] D. Treeby, A moment’s thought: Centers of mass and combinatorial identities, Math. Magazine, (to ap-
pear).

[13] D. Treeby, Hidden formulas in Fibonacci tilings, The Fibonacci Quarterly, 54.1 (2016), 23–30.

MSC2010: 11B39

School of Mathematical Sciences, Monash University, Clayton, 3800, Australia

E-mail address: david.treeby@monash.edu

334 VOLUME 54, NUMBER 4


