
EXTRAORDINARY SUBSETS: A GENERALIZATION
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Abstract. For n a positive integer, a subset S of [n] (= {1, 2, 3, . . . , n}) is called extraordi-

nary if |S| is equal to the smallest element of S. The number of such subsets S, for a given
n, is counted by Fn, the nth Fibonacci number.

For positive integers k, n, where 1 < k ≤ n, we now investigate those subsets S of [n],
where |S| is equal to the kth smallest element of S. We call such subsets S k-extraordinary.

1. Extraordinary Subsets

For a positive integer n, let an count the number of subsets S of [n] (= {1, 2, 3, . . . , n}),
where |S| is equal to the smallest element of S. We find that a1 = 1, for the subset {1}, and
that a2 = 1, also for the subset {1}.

For n ≥ 3, it follows that an = an−1 + an−2;

1) If S is counted in an with n /∈ S, then S is counted in an−1.
2) If S is counted in an with n ∈ S, upon removing n from S and then subtracting 1 from

each remaining element of S, we obtain the corresponding subset counted in an−2. [To
go in the reverse direction, for each subset S counted in an−2, increase each element
by 1 and then add in the element n.] Consequently, an = Fn, n ≥ 1, and there are Fn

extraordinary subsets of [n].

Alternately, for n ≥ 1 and 1 ≤ k ≤ ⌊n−1
2 ⌋, the number of extraordinary subsets, where k is

the smallest element, is given by
(

n−i
i−1

)

. Consequently,

an =

⌊n−1

2
⌋

∑

i=0

(

n− 1− i

i

)

= Fn, n ≥ 1.

(See [5, Theorem 12.4, pp. 155–156].)
[Note: The idea of an extraordinary subset is introduced in Exercise 50 [1, pp. 263–264] .

Further results on these subsets are examined in [3, 4].]

2. k-Extraordinary Subsets

For positive integers n, k, where 1 < k ≤ n, let an,k count the number of subsets S of [n],
where |S| is equal to the kth smallest element of S. We use An,k to denote this collection
of subsets of [n], so |An,k| = an,k. [If we allow k to equal 1, then an,1 is simply an (= Fn),
as shown in Section 1.] When n = 6 and k = 3, for instance, we find that a6,3 = 7, for the
collection A6,3 made up of

{1, 2, 3}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}.
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For the general case, if 1 < k ≤ n, then

an,k =

(

k − 1

k − 1

)(

n− k

0

)

+

(

k

k − 1

)(

n− k − 1

1

)

+

(

k + 1

k − 1

)(

n− k − 2

2

)

+ · · ·

+

(

k − 1 + ⌊n−k
2 ⌋

k − 1

)(

n− k − ⌊n−k
2 ⌋

⌊n−k
2 ⌋

)

=

⌊n−k

2
⌋

∑

i=0

(

k − 1 + i

k − 1

)(

n− k − i

i

)

.

Here, for example,

(i) The summand
(

k−1
k−1

)(

n−k
0

)

in an,k accounts for the unique subset {1, 2, 3, . . . , k} of [n].

(ii) The summand
(

k
k−1

)(

n−k−1
1

)

accounts for the subsets S of [n] which include k − 1 of

the elements of [k], the element k + 1, and one element selected from the n − k − 1
elements in {k + 2, k + 3, . . . , n}. These are the subsets S of [n] of size k + 1, where
k + 1 is the kth smallest element of S.

In general, for 0 ≤ i ≤ ⌊n−k
2 ⌋, the summand

(

k−1+i
k−1

)(

n−k−i
i

)

accounts for the subsets S of

[n] which include k− 1 of the elements of [k− 1+ i], the element k+ i, and i elements selected
from the n − k − i elements in {k + i+ 1, k + i+ 2, . . . , n}. These are the subsets S of [n] of
size k where k + i is the kth smallest element of S.

To further investigate the values of an,k, for 1 ≤ k ≤ n, we consider the results in Table 1,
where we find an,k, for 1 ≤ n ≤ 12 and 1 ≤ k ≤ n.

Table 1

n \ k 1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 1 1
3 2 1 1
4 3 3 1 1
5 5 5 4 1 1
6 8 10 7 5 1 1
7 13 18 16 9 6 1 1
8 21 33 31 23 11 7 1 1
9 34 59 62 47 31 13 8 1 1
10 55 105 119 101 66 40 15 9 1 1
11 89 185 227 205 151 88 50 17 10 1 1
12 144 324 426 414 321 213 113 61 19 11 1 1

Once again we see here that an,1 = an−1,1 + an−2,1, for n ≥ 3. For the results in the first
column of Table 1, where k = 1, are the Fibonacci numbers. However, for k > 1, we do not
find that an,k = an−1,k + an−2,k.

When k = 2, for instance, we find that a7,2 = 18 6= 10+5 = a6,2+a5,2. But we do notice that
a7,2 = 18 = 10+ 5+ 3 = a6,2 + a5,2 + a4,1. Likewise, although a8,3 = 31 6= 16+ 7 = a7,3 +36,3,
we do find that a8,3 = 31 = 16 + 7 + 5 + 3 = a7,3 + a6,3 + a5,2 + a4,1. Lastly, we observe that

a10,4 = a9,4 + a8,4 + a7,3 + a6,2 + a5,1 = a9,4 +
∑4

i=1 a4+i,i. Is there a pattern here? Could it
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be that for n ≥ k > 1

an,k = an−1,k +

k
∑

i=1

an−k−2+i,i?

To help establish this pattern, recall that an,k counts those subsets S of [n] where the kth
smallest element of S equals |S|. Consider the case where n = 9 and k = 5. Among the

a9,5 = 31 subsets S where the fifth smallest element of S equals |S|, there are
(

4
4

)(

3
0

)

+
(

5
4

)(

2
1

)

=
11 such subsets which do not include 9. These are precisely the subsets T of [8] where the
fifth smallest element of T equals |T |. This is a8,5 = 11. We then partition the remaining
a9,5 − a8,5 subsets counted in the collection A9,5 according to the smallest element of [9] that
is missing from each of these subsets. For example, consider those subsets U of [9] which
contain 9 but do not contain 1. How many such subsets are there? Here the fifth smallest
element is either 6 or 7 and the number of such subsets U is

(4
4

)(2
0

)

+
(5
4

)(1
1

)

, where
(4
4

)(2
0

)

accounts for the subset {2, 3, 4, 5, 6, 9} and
(5
4

)(1
1

)

for the five subsets that contain four of
the elements from {2, 3, 4, 5, 6}, the element 7, and the element 8 (along with 9). But then
(

4
4

)(

2
0

)

+
(

5
4

)(

1
1

)

= 6 = a7,5.
[Note that we can also set up a one-to-one correspondence between the subsets counted in

A7,5 with these subsets U in A9,5 as follows. Map U in A9,5 to the subset U ′ in A7,5 by deleting
9 from U and decreasing each of the remaining elements in U by 1 — or, by taking a subset
V ′ in A7,5 and corresponding it with the subset V in A9,5, after increasing each element of V ′

by 1 and then adding in the element 9.]
For the general case, consider n ≥ k > 1 and the collection An,k, where |An,k| = an,k.

(1) The collection of subsets S ⊆ [n], where S ∈ An,k and n /∈ S is the same collection of
subsets T ⊆ [n − 1], where T ∈ An−1,k, and the number of these subsets T is counted
by an−1,k.

(2) The remaining an,k − an−1,k subsets in An,k are then partitioned as follows.

For 1 ≤ j ≤ k, let An,k,j be the collection of subsets S in An,k which contain n and where
the smallest positive integer that is missing from S is j. So each such subset S contains n and
1, 2, 3, . . . , j − 1 but not j. This then provides the partition

An,k = An−1,k ∪
(

·∪k
j=1 An,k,j

)

.

For if S ∈ An,k,j and S ∈ An,k,j′, where j < j′, then S ∈ An,k,j ⇒ j /∈ S, while S ∈ An,k,j′ ⇒
j ∈ S, so An,k,j ∩An,k,j′ = ∅.

Further, for each S ∈ An,k,j, if we remove 1, 2, 3, . . . , j − 1 and n, then subtract j from the
remaining elements, we have the corresponding subset in An−j−1,k−j+1. Consequently,

|An,k,j| = |An−j−1,k−j+1| = an−j−1,k−j+1, so

an,k = |An,k| = |An−1,k|+ | ·∪k
j=1An,k,j|

= |An−1,k|+
k
∑

j=1

|An−j−1,k−j+1|

= an−1,k +

k
∑

j=1

an−j−1,k−j+1.

116 VOLUME 55, NUMBER 2



EXTRAORDINARY SUBSETS: A GENERALIZATION

If we let i = k − j + 1, then as j varies from 1 to k, i varies from k to 1, and

an,k = an−1,k +

k
∑

i=1

an−k−2+i,i.

3. Determining an,k for Some Specific Values of k

(i) For k = 1 we know that an,k = an,1 = an = Fn.
(ii) For k = 2, we have the recurrence relation

an,2 = an−1,2 + an−2,2 + an−3,1

= an−1,2 + an−2,2 + Fn−3

= an−1,2 + an−2,2 +
1√
5

(

αn−3 − βn−3
)

,

where α = 1+
√
5

2 and β = 1−
√
5

2 . To solve this recurrence relation we use the techniques given

in Chapter 7 of [1] or Chapter 10 of [2]. We find that an,2 = a
(h)
n,2 + a

(p)
n,2, where a

(h)
n,2 denotes

the homogeneous part of the solution and a
(p)
n,2 the particular part. Since a

(h)
n,2 = c1 α

n + c2 β
n,

it follows that a
(p)
n,2 = Anαn + Bnβn. To determine A we substitute an,2 = Anαn into the

recurrence relation an,2 = an−1,2 + an−2,2 +
1√
5
αn−3. This gives us Anαn = A(n − 1)αn−1 +

A(n−2)αn−2+ 1√
5
αn−3, which leads to Anα3 = A(n−1)α2+A(n−2)α+ 1√

5
. Since α2 = α+1,

we find that A = 3
10 − 1

10

√
5, and then a similar calculation yields B = 3

10 +
1
10

√
5. So

an,2 = c1α
n + c2β

n +

(

3

10
− 1

10

√
5

)

nαn +

(

3

10
+

1

10

√
5

)

nβn.

From a2,2 = 1 and a3,2 = 1 we learn that c1 =
√
5

25 and c2 = −
√
5

25 . So, for n ≥ 2,

an,2 =

√
5

25
αn −

√
5

25
βn +

(

3

10
− 1

10

√
5

)

nαn +

(

3

10
+

1

10

√
5

)

nβn

=
1

5
Fn +

3

10
nLn − 1

2
nFn,

where Ln denotes the nth Lucas number.

(iii) Continuing for k = 3, we now consider the recurrence relation

an,3 = an−1,3 + an−2,3 + an−3,2 + an−4,1

= an−1,3 + an−2,3 +

[

1

5
Fn−3 +

3

10
(n− 3)Ln−3 −

1

2
(n− 3)Fn−3

]

+ Fn−4.

Once again the homogeneous part of the solution has the form c1α
n+ c2β

n, but now the form

of the particular part of the solution is given by a
(p)
n,3 = A1nα

n +A2n
2αn +B1nβ

n +B1n
2βn.

To determine A1, A2 we substitute an,3 = A1nα
n + A2n

2αn into the recurrence relation
an,3 = an−1,3+an−2,3+

1
5
√
5
αn−3+ 3

10nα
n−3− 9

10α
n−3− 1

2
√
5
nαn−3+ 3

2
√
5
αn−3+ 1√

5
αn−4. Upon
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dividing through by αn−4 and simplifying, this leads to

A1nα
4 +A2n

2α4 = A1(n− 1)α3 +A2(n− 1)2α3 +A1(n− 2)α2

+A2(n− 2)2α2 +
1

5
√
5
α+

3

10
nα− 9

10
α− 1

2
√
5
nα+

3

2
√
5
α+

1√
5
.

When this expression is expanded, we compare the coefficients for n and n0 (the constant
terms) to learn that

10A2 + 4
√
5A2 =

1

10

√
5− 1

10
and

5A1 + 2
√
5A1 − 8A2 − 3

√
5A2 =

2

5
− 2

√
5

25
.

Solving these equations simultaneously, we arrive at A1 = 19
100 − 7

√
5

100 and A2 = − 3
20 +

√
5

100 .

Then a similar calculation yields B1 = 19
100 + 7

√
5

100 and B2 = − 3
20 −

√
5

100 . So an,3 = c1α
n +

c2β
n +

(

19
100 − 7

√
5

100

)

nαn +
(

− 3
20 +

7
√
5

100

)

n2αn +
(

19
100 + 7

√
5

100

)

nβn +
(

− 3
20 − 7

√
5

100

)

n2βn. From

a3,3 = 1 and a4,3 = 1 it follows that c1 = − 1
125

√
5 and c2 =

1
125

√
5. Consequently,

an,3 = − 1

125

√
5αn +

1

125

√
5βn +

(

19

100
− 7

√
5

100

)

nαn

+

(

− 3

20
+

7
√
5

100

)

n2αn +

(

19

100
+

7
√
5

100

)

nβn +

(

− 3

20
− 7

√
5

100

)

n2βn

= − 1

25
Fn +

19

100
nLn − 7

20
nFn − 3

20
n2Ln +

7

20
n2Fn.

(iv) To determine an,4, we consider the recurrence relation

an,4 = an−1,4 + an−2,4 + an−3,3 + an−4,2 + an−5,1

= an−1,4 + an−2,4 +

[

− 1

25
Fn−3 +

19

100
(n − 3)Ln−3

− 7

20
(n− 3)Fn−3 −

3

20
(n− 3)2Ln−3 +

7

20
(n− 3)2Fn−3

]

+

[

1

5
Fn−4 +

3

10
(n− 4)Ln−4 −

1

2
(n− 4)Fn−4

]

+ Fn−5.

Here the solution has the form an,4 = c1α
n + c2β

n + (A1n + A2n
2 + A3n

3)αn + (B1n +
B2n

2 + B3n
3)βn. Calculations, somewhat more complicated but comparable to those that

were performed in (ii) and (iii), yield

A1 =
9

100
− 59

1500

√
5, A2 = − 17

100
+

39

500

√
5, A3 =

3

50
− 2

75

√
5

B1 =
9

100
+

59

1500

√
5, B2 = − 17

100
− 39

500

√
5, B3 =

3

50
+

2

75

√
5.
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The initial conditions a4,4 = 1 and a5,4 = 1 then lead to c1 = − 1
125

√
5 and c2 =

1
125

√
5. So,

for n ≥ 4,

an,4 = − 1

125

√
5αn +

1

125

√
5βn

+

[(

9

100
− 59

1500

√
5

)

n+

(

− 17

100
+

39

500

√
5

)

n2 +

(

3

50
− 2

75

√
5

)

n3

]

αn

+

[(

9

100
+

59

1500

√
5

)

n+

(

− 17

100
− 39

500

√
5

)

n2 +

(

3

50
+

2

75

√
5

)

n3

]

βn

=

(

− 2

15
n3 +

39

100
n2 − 59

300
n− 1

25

)

Fn +

(

3

50
n3 − 17

100
n2 +

9

100
n

)

Ln.

4. Sums of Consecutive Column Entries

(i) For k = 1, it follows that for n ≥ 1,
∑n

i=1 ai,1 =
∑n

i=1 Fi = Fn+2 − 1. (See [5,
Theorem 5.1, pp. 69–70].)

(ii) For k = 2, consider the n equations

ai,2 = ai−1,2 + a1−2,2 + Fi−3, 3 ≤ i ≤ n+ 2.

Summing these n equations we find that

n
∑

i=1

ai,2 =
n
∑

i=2

ai,2 = an+2,2 − a2,2 −
n−1
∑

i=0

Fi

= an+2,2 − 1− [Fn+1 − 1] = an+2,2 − Fn+1

= an+2,2 − an+1,1.

(iii) When k = 3, the n− 1 equations

ai,3 = ai−1,3 + ai−2,3 + ai−3,2 + Fi−4, 4 ≤ i ≤ n+ 2,

can be rewritten as

ai−2,3 = ai,3 − ai−1,3 − ai−3,2 − Fi−4, 4 ≤ i ≤ n+ 2.

Upon summing and simplifying we find that

n
∑

i=1

ai,3 =

n
∑

i=2

ai,3 =

n
∑

i=3

ai,3 = an+2,3 − a3,3 −
n−1
∑

i=1

ai,2 −
n−2
∑

i=0

Fi

= an+2,3 − 1− [an+1,2 − Fn]− [Fn − 1] = an+2,3 − an+1,2.

(iv) Continuing for k = 4, the system of n− 2 equations

ai,4 = ai−1,4 + ai−2,4 + ai−3,3 + ai−4,2 + Fi−5, 5 ≤ i ≤ n+ 2

provides the corresponding system

ai−2,4 = ai,4 − ai−1,4 − ai−3,3 − ai−4,2 − Fi−5, 5 ≤ i ≤ n+ 2.
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Upon summing these n− 2 equations we arrive at the following.

n
∑

i=3

ai,4 =
n
∑

i=4

ai,4 = an+2,4 − a4,4 −
n−1
∑

i=2

ai,3 −
n−2
∑

i=1

ai,2 −
n−3
∑

i=0

Fi

= an+2,4 − 1− [an+1,3 − an,2]− [an,2 − Fn−1]− [Fn−1 − 1]

= an+2,4 − an+1,3

(v) When k = 5 we have the following system of n− 3 equations — namely,

ai,5 = ai−1,5 + ai−2,5 + ai−3,4 + ai−4,3 + ai−5,2 + Fi−6, 6 ≤ i ≤ n+ 2.

This system can then be rewritten as

ai−2,5 = ai,5 − ai−1,5 − ai−3,4 − ai−4,3 − ai−5,2 − Fi−6, 6 ≤ i ≤ n+ 2.

When we sum these n− 3 equations we find that

n
∑

i=4

ai,5 =

n
∑

i=5

ai,5 = an+2,5 − a5,5 −
n−1
∑

i=3

ai,4 −
n−2
∑

i=2

ai,3 −
n−3
∑

i=1

ai,2 −
n−4
∑

i=0

Fi

= an+2,5 − 1− [an+1,4 − an,3]− [an,3 − an−1,2]− [an−1,2 − an−2,1]− [Fn−2 − 1]

= an+2,5 − an+1,4.

(vi) So now we assume that for 2 ≤ k ≤ r,
∑n

i=k ai,k = an+2,k−an+1,k−1, and consider the
following system of n− (k − 2) = n− (r + 1− 2) = n− r + 1 equations.

ai,r+1 = ai−1,r+1 + ai−2,r+1 + ai−3,r + ai−4,r−1

− · · · − ai−r,3 − ai−(r+1),2 − Fi−(r+2), r + 2 ≤ i ≤ n+ 2.

Summing these n− r + 1 equations and simplifying then leads us to

n
∑

i=r

ai,r+1 =

n
∑

i=r+1

ai,r+1 = an+2,r+1 − ar+1,r+1 −
n−1
∑

i=r−1

ai,r

−
n−2
∑

i=r−2

ai,r−1 − . . .−
n−(r−2)
∑

i=2

ai,3 −
n−(r−1)
∑

i=1

ai,2 −
n−r
∑

i=0

Fi

= an+2,r+1 − 1− [an+1,r − an,r−1]− [an,r−1 − an−1,r−2]

− . . .− [an−r+4,3 − an−r+3,2]− [an−r+3,2 − an−r+2,1]

− [Fn−r+2 − 1] = an+2,r+1 − an+1,r.
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5. The Sum of All the Row Entries

We see from Table 1 that for 1 ≤ n ≤ 12,
∑n

k=1 an,k = 2n−1. Assuming that this pattern
continues for all 1 ≤ n ≤ r − 1, we consider the following for the row where n = r.

ar,1 = ar−1,1 + ar−2,1

ar,2 = ar−1,2 + ar−2,2 + ar−3,1

ar,3 = ar−1,3 + ar−2,3 + ar−3,2 + ar−4,1

...

ar,i = ar−1,i + ar−2,i + ar−3,i−1 + · · · + ar−i−1,1

...

ar,r−2 = ar−1,r−2 + ar−2,r−2 + ar−3,r−3 + · · ·+ a1,1

ar,r−1 = ar−1,r−1.

Upon adding the entries in the given columns we now find that

r
∑

k=1

ar,k =

r−1
∑

k=1

ar,k + 1

=

r−1
∑

k=1

ar−1,k +

r−2
∑

k=1

ar−2,k +

r−3
∑

k=1

ar−3,k + · · ·+
1
∑

k=1

a1,k + 1

= (2r−2 + 2r−3 + 2r−4 + · · ·+ 20) + 1 = 2r−1.

Consequently we find that for a given value of n ≥ 1, exactly half of the subsets of [n]
are k-extraordinary for some (unique) k, where 1 ≤ k ≤ n. This suggests that we could
have arrived at this result by counting those subsets of [n] which are not k-extraordinary for
each 1 ≤ k ≤ n. The first such subset would be ∅, the null set. For k = 1, only {1} is
1-extraordinary and the n − 1 subsets {m}, for 2 ≤ m ≤ n, are not 1-extraordinary – nor
are they k-extraordinary for k > 1 since a k-extraordinary subsets needs to contain at least
k elements. In general, for 1 ≤ i ≤ n − 1, the

(

n−1
i

)

subsets of size i which do not contain
i cannot be i-extraordinary because here the ith smallest element is greater than i. Nor can
such a subset be k-extraordinary for k 6= i. If k < i the subset has too many elements, while
if k > i, then it has too few. Therefore, it follows from the binomial theorem that the number
of subsets of [n] which are not k-extraordinary for some 1 ≤ k ≤ n is

∑n−1
i=0

(

n−1
i

)

= 2n−1.
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