EXTRAORDINARY SUBSETS: A GENERALIZATION

RALPH P. GRIMALDI

ABSTRACT. For n a positive integer, a subset S of [n] (= {1,2,3,...,n}) is called extraordi-
nary if |S| is equal to the smallest element of S. The number of such subsets S, for a given
n, is counted by F},, the nth Fibonacci number.

For positive integers k, n, where 1 < k < n, we now investigate those subsets S of [n],
where |S| is equal to the kth smallest element of S. We call such subsets S k-eztraordinary.

1. EXTRAORDINARY SUBSETS

For a positive integer n, let a, count the number of subsets S of [n](= {1,2,3,...,n}),
where |S] is equal to the smallest element of S. We find that a; = 1, for the subset {1}, and
that ag = 1, also for the subset {1}.

For n > 3, it follows that a,, = ap_1 + ap_o;

1) If S is counted in a,, with n ¢ S, then S is counted in a,_1.

2) If S is counted in a,, with n € S, upon removing n from S and then subtracting 1 from
each remaining element of S, we obtain the corresponding subset counted in a,_s. [To
go in the reverse direction, for each subset S counted in a,_o, increase each element
by 1 and then add in the element n.] Consequently, a,, = F},, n > 1, and there are F),
extraordinary subsets of [n].

Alternately, for n > 1 and 1 < k < {"T_IJ, the number of extraordinary subsets, where k is
the smallest element, is given by (?__f) Consequently,

(See [5, Theorem 12.4, pp. 155-156].)
[Note: The idea of an extraordinary subset is introduced in Exercise 50 [1, pp. 263-264] .
Further results on these subsets are examined in [3, 4].]

2. k-EXTRAORDINARY SUBSETS

For positive integers n, k, where 1 < k < n, let a,,j count the number of subsets S of [n],
where |S| is equal to the kth smallest element of S. We use A, to denote this collection
of subsets of [n], so |Ap k| = an k. [If we allow k to equal 1, then a,; is simply a, (= F,),
as shown in Section 1.] When n = 6 and k = 3, for instance, we find that ag3 = 7, for the
collection Ag 3 made up of

{1,2,3},{1,2,4,5},{1,2,4,6},{1,3,4,5},{1,3,4,6},{2,3,4,5},{2,3,4,6}.

114 VOLUME 55, NUMBER 2



EXTRAORDINARY SUBSETS: A GENERALIZATION

For the general case, if 1 < k < n, then
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) in a, j accounts for the unique subset {1,2,3,...,k} of [n].
) accounts for the subsets S of [n] which include k — 1 of

the elements of [k], the element k + 1, and one element selected from the n —k — 1
elements in {k + 2,k + 3,...,n}. These are the subsets S of [n] of size k + 1, where

k + 1 is the kth smallest element of S.

In general, for 0 < ¢ < L”T_kj, the summand ( P

’f—lH) ("‘Z’?—i) accounts for the subsets S of

[n] which include k — 1 of the elements of [k — 1+ 1], the element k + ¢, and 7 elements selected
from the n — k — i elements in {k+i+ 1,k + 7+ 2,...,n}. These are the subsets S of [n] of

size k where k 4 ¢ is the kth smallest element of S.
To further investigate the values of a, 1, for 1 < k < n, we consider the results in Table 1,

where we find a,,, for 1 <n <12 and 1 <k < n.

n\k 1 2
1 1
2 1 1
3 2 1
4 3 3
) ) )
6 8 10
7 13 18
8 21 33
9 34 39
10 55 105
11 89 185
12 144 324

I

7
16
31
62
119
227
426

S

9
23
47
101

205

TABLE 1

5 6 7 8 9 10 11 12

1
1 1
6 1 1

1 7 1 1

31 13 8 1 1

66 40 15 9 1 1
1561 88 50 17 10 1 1

414 321 213 113 61 19 11 1 1

Once again we see here that a, 1 = ap—1,1 + an—21, for n > 3. For the results in the first
column of Table 1, where k = 1, are the Fibonacci numbers. However, for k£ > 1, we do not
find that Ank = Ap—1k + An_2 k.

When k = 2, for instance, we find that a7 = 18 # 1045 = ag 2+as2. But we do notice that
aro =18 =10+5+3 = ag2 + as2 + as,1. Likewise, although ag3 = 31 # 16 +7 = a7 3+ 36 3,
we do find that ag3 =31 =16 +7+5+ 3 = ar3 + as3 + as2 + a4,1. Lastly, we observe that
a104 = Q94 +aga + ar3 +ag2 + as1 = ag 4 + Z?:l a4+i;. Is there a pattern here? Could it
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be that forn > k > 1
k

Qn k= An—1,k + § an—k—2+i,i?
i=1

To help establish this pattern, recall that a, j counts those subsets S of [n] where the kth
smallest element of S equals |S|. Consider the case where n = 9 and k = 5. Among the
ag 5 = 31 subsets S where the fifth smallest element of S equals |S], there are (i) (g) + (i) (%) =
11 such subsets which do not include 9. These are precisely the subsets T" of [8] where the
fifth smallest element of T equals |T'|. This is ags = 11. We then partition the remaining
ag 5 — ag s subsets counted in the collection Ag 5 according to the smallest element of [9] that
is missing from each of these subsets. For example, consider those subsets U of [9] which
contain 9 but do not contain 1. How many such subsets are there? Here the fifth smallest

element is either 6 or 7 and the number of such subsets U is (i) (3) + (Z) (}), where (3) (3)

accounts for the subset {2,3,4,5,6,9} and (i) G) for the five subsets that contain four of
the elements from {2,3,4,5,6}, the element 7, and the element 8 (along with 9). But then
(C) +()() =6 ars.

[Note that we can also set up a one-to-one correspondence between the subsets counted in
Ay 5 with these subsets U in Ag 5 as follows. Map U in Ag 5 to the subset U’ in A7 5 by deleting
9 from U and decreasing each of the remaining elements in U by 1 — or, by taking a subset
V' in A7 and corresponding it with the subset V in Ag s, after increasing each element of V'
by 1 and then adding in the element 9.]

For the general case, consider n > k > 1 and the collection A, i, where |4, ;| = ay k-

(1) The collection of subsets S C [n], where S € A, and n ¢ S is the same collection of
subsets T' C [n — 1], where T' € A,,_1 1, and the number of these subsets T is counted
by an—1k-

(2) The remaining a, y — an—1,k subsets in A, ;, are then partitioned as follows.

For 1 <j <k, let A, 1 ; be the collection of subsets S in A, ; which contain n and where
the smallest positive integer that is missing from S is j. So each such subset S contains n and
1,2,3,...,7 — 1 but not j. This then provides the partition

An,k = An—l,k U (ngl An,k,j) .

For if S € A,k ; and S € Ay 7, where j < j', then S € A, 1 ; = j ¢ S, while S € Ay, 1y =
j €S, so An,k,j N An,k,j’ = 0.

Further, for each S € A, ;, if we remove 1,2,3,...,j — 1 and n, then subtract j from the
remaining elements, we have the corresponding subset in A,,_;_1 ;_j+1. Consequently,

|An,k,j| = |An—j—1,k—j+1| = p—j—1,k—j+1, SO
Ap k. = ’An,k’ = ‘An—l,k‘ + ’ U?:l An,k,j‘

k
= [An—1kl + > [An—jo1p—jsl
=1

k
= Qp-1k+ E Ap—j—1,k—j+1-
Jj=1
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If we let i = k — j + 1, then as j varies from 1 to k, i varies from k to 1, and

Ank = Op—1k + § Ap—k—24i i+
i=1

3. DETERMINING a, } FOR SOME SPECIFIC VALUES OF k

(i) For k =1 we know that a, ; = an1 = a, = F),.
(ii) For k = 2, we have the recurrence relation

ap2 = Ap—-1,2 + An—22 + aAn-31

=ap_12+ an-22+ Fp_3

1
= Qp_12 + Gp_22 + —= ("% = ")

V5

where o = # and § = % To solve this recurrence relation we use the techniques given
in Chapter 7 of [1] or Chapter 10 of [2]. We find that a, 2 = a( % + a; )2, where a(h% denotes
the homogeneous part of the solution and agh)z the particular part. Since agh% =ca" +c ",
it follows that agj ; = Ana" + Bnfp". To determine A we substitute a,2 = Ana™ into the
recurrence relation a, 2 = ap—1,2 + ap—22 + %a”_?’. This gives us Ana” = A(n — 1)a™ ! +
A(n—2)a" 2+ %an_?’, which leads to Ana® = A(n—1)a? +A(n—2)a+ % Since a? = a+1,
we find that A = % — % 5, and then a similar calculation yields B = 10 + 10\/_ So

an,2=01a"+026"+<———f>na +<3 + — xf)nﬁ"

10 10 10
From az2 =1 and a3 = 1 we learn that ¢; = % and ¢y = —%. So, for n > 2,
\/ \f N 3 1 .

1 3 1
where L,, denotes the nth Lucas number.

(iii) Continuing for k£ = 3, we now consider the recurrence relation

an3 = Apn-1,3 T Gn—23 + an—32 + an—41

1 3 1
=ap-13+ an—23+ |zFn_3+ —3)Ly—3 — 5(71 —3)Fu—3| + Fy_4.

S 10(

Once again the homogeneous part of the solution has the form c;a™ + ¢o 8", but now the form

of the particular part of the solution is given by ag% = Aina” + Ayn?a™ + Binf" 4+ Bin?p".

To determine A;, Ay we substitute a, 3 = Ajna™ + Asn2a into the recurrence relation
_ 1 -3 3 -3 9 -3 1 3 -3 1 —4

ap3 = an_173+an_2,3+wga” +5gna” T — A 2\/57104” + == 2\[ a +Ea" . Upon
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dividing through by a”~* and simplifying, this leads to

Ana® + Agn?a® = Aj(n — 1)a® + Az (n — 1)%a® + A (n — 2)a?

1 + 3 9 1 + 3 + 1
—a+ —nou— —a— —=na+ —=aoa+ —.
55 10 100 2v5 2v5 Vb

When this expression is expanded, we compare the coefficients for n and n® (the constant
terms) to learn that

+ Ay(n—2)%® +

1 1
m@wﬁ@_mf—mam

2 2v5

&h+2¢&h—8A,—mﬁA2=g—-%;
Solving these equations simultaneously, we arrive at A; = % % and Ao 23—0 + W\/g'
Then a similar calculation yields B, = 11090 + 71\0/0_ and By = —23—0 — %. So anp3 = cra” +

c2f" + (11(?0 71\(£> na’ + ( 20 T 71\(6) n’a” + (100 + 100) nB" + (‘i - %) n®p". From
a33 =1 and a4 3 = 1 it follows that ¢; = —ﬁ\/_ 5and ¢y = 125\/_ Consequently,

e i s o (19T

125 125 100 100
7 19 7 3 75
+——+\f %M——H—J_ﬁ" ———157%"
20 100 100~ 100 20 100
! 19 7 3, 7,

(iv) To determine ay, 4, we consider the recurrence relation

an4 = Op—14 T 0n—24 + 0n—33 + Gn—g2 + an-_51

1 19
=ap-14+ap-24+ |: 25Fn 3+ ﬁ(n —3)L,—3

7

3 7
~ 0 (n—3)2Ln 3+ —

n—BFE%%

1 3 1
+ |:5Fn 4+ 10( - 4)Ln—4 - E(n - 4)Fn—4:| + Fy_s.
Here the solution has the form an4 = c1a” + 6" + (Ain + Aon? + Azn®)a™ + (Bin +
Byn? 4+ B3n?)p". Calculations, somewhat more complicated but comparable to those that
were performed in (ii) and (iii), yield

9 59 17 39
A= — — 2 Ay = — A:———
=100 T00v 2 100 © 500‘/_ 3 50 V5
9 59 17 39
=100 T s00 Y P 100 500\/5’ 3 50+75\/g

118 VOLUME 55, NUMBER 2



EXTRAORDINARY SUBSETS: A GENERALIZATION

The initial conditions a4 4 = 1 and a5 4 = 1 then lead to ¢; = 125\/5 and ¢y = 125\/_ So,
for n > 4,

_ = n
Ind = 125\f0‘ +125f5

9 59 17 39 ) ,
+[<100 1500 5>"+< 100+500\/3>" +<5o ﬁ’)"]
9 59 17 39 ,
[<ﬁ+1500\/5>”+<_ﬁ_% 5> +<5o+ f)”]

+

2 539 5 59 1 3 5 1T 5. 9

l R 1§ Y (P S SR
< 15" 100 ~ 300" 25) " <50” 00" 100" Lo

4. SuMS OF CONSECUTIVE COLUMN ENTRIES

(i) For k = 1, it follows that for n > 1, Y, a;1 = > vy Fi = Fppo — 1. (See [5,
Theorem 5.1, pp. 69-70].)
(ii) For k = 2, consider the n equations

ai2 =a;—12+ai—22+F_3 3<i<n+2

Summing these n equations we find that

n n n—1
g a2 = g ;2 = Qpy22 — A22 — E F;
i=1 i=2 =0

=apt22— 1 — [Fpy1 — 1] = any22 — Frpa

= Gn42,2 — Gn41,1-
(iii) When k = 3, the n — 1 equations
a;3=a;-13+aj23+a;_32+F_4, 4<1<n+2,
can be rewritten as
aj—23=0a;3— ;13— a;—32 — F_4, 4<1<n+2.

Upon summing and simplifying we find that

n n n n—1 n—2
E a3 = E a;3 = E a;3 = apy2,3 — (33 — E a9 — E F;
i=1 i=2 i=3 i=1 i=0

=apy23 — 1 — [ant12 — Fy) — [Fn — 1] = ant23 — any12-

(iv) Continuing for k = 4, the system of n — 2 equations

Aj4 = Qi—14+ @j—24+a;-33+ a;_42+Fi 5 5<i<n+2

provides the corresponding system
Ai—24 = Qj4 — Qi—14— @;—33 — Q42 — F;5, 5<1<n+2.
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Upon summing these n — 2 equations we arrive at the following.

n n n—1 n—2 n—3
E a4 = E (j4 = Opy24 — A44 — E a;3 — E a2 — E F;
i=3 i=4 i=2 i=1 i=0

=apy24 — 1 — [Ant1,3 — an2) — [an2 — Fro1] — [Fm1 — 1]

= Qn+4+2,4 — An+1,3
(v) When k =5 we have the following system of n — 3 equations — namely,
aj5 = ai—15+aj—25+a;—34+ a;j_a3+a;_s52+F_g, 6<1<n-+2.
This system can then be rewritten as
(i—25 = Qj5 — Ai—15 — Aj—34 — Aj—43 — Qi—52 — Fj_¢g, 6 <1 <n+ 2.
When we sum these n — 3 equations we find that

n n n—1 n—2 n—3 n—4
§ aj5 = § A;5 = Ap425 — A55 — g a; 4 — E a;3 — E a9 — g F;
i—4 i=5 i—3 i=2 i=1 i=0

= anpy25 — 1 — [@ny14 — an 3] — [an3 — an—12] — [@n—12 — an—21] — [Frn—2 — 1]

= An42,5 — An+1,4-

(vi) So now we assume that for 2 < k <, Z?:k @ik = Qp42,k — Gn+1,k—1, and consider the
following system of n — (k —2) =n — (r+1—2) =n —r + 1 equations.

Ajp+1 = Gi—1p+1 + Qj—2p4+1 + Qi—3 + Qj—gr—1
— = Qi3 — G (ry1),2 — Firy), TH2<i<n+2.

Summing these n — r 4+ 1 equations and simplifying then leads us to

n n n—1
§ Qjr41 = § Qjr4+1 = Qn42,r4+1 — Ar41r4+1 — § Qi .y

i=r i=r+1 i=r—1
n—2 n—(r—2) n—(r—1) n—r
— g Qi1 — v — g a;3 — E a2 — g F;
i=r—2 =2 i=1 i=0

= An42,r4+1 — 1-— [an-l—l,r - an,r—l] - [an,r—l - an—l,r—2]
BRI [an—r+473 - an—r+3,2] - [an—r+3,2 - an—r+2,1]

- [Fn—r+2 - 1] = An42,r4+1 — An41,r-
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5. THE SuM OoF ALL THE Row ENTRIES

We see from Table 1 that for 1 <n <12, >0, a,x = 27!, Assuming that this pattern
continues for all 1 <n < r — 1, we consider the following for the row where n = r.

Ap1 = Qp—1,1 + Qr-21
ar2 = Qr—12 + Qr—22 + ar_31

Qp3 = Qp—13+ Ar—23 + Ar_32 + Gr_41
Qri = Qr—14+ Q-2+ ar_3;-1+ -+ a—j—11

Qrpr—2 = Qpr—1y-2+ Qr_2p—2+ Qr_3,-3+ -+ a11
Qrr—1 = Qr—1r—1-

Upon adding the entries in the given columns we now find that
r r—1
D k= ark+1
k=1 k=1
r—1 r—2 r—3 1
=Y g+ Y okt Y skt Y aktl
k=1 k=1 k=1 k=1

:(27’—2_’_27“—3_’_27“—4_’_”'_’_20)+1:27“—1.

Consequently we find that for a given value of n > 1, exactly half of the subsets of [n]
are k-extraordinary for some (unique) k, where 1 < k < m. This suggests that we could
have arrived at this result by counting those subsets of [n] which are not k-extraordinary for
each 1 < k < n. The first such subset would be ), the null set. For k = 1, only {1} is
l-extraordinary and the n — 1 subsets {m}, for 2 < m < n, are not l-extraordinary — nor
are they k-extraordinary for £ > 1 since a k-extraordinary subsets needs to contain at least
k elements. In general, for 1 < ¢ < n — 1, the (”Zl) subsets of size ¢ which do not contain
1 cannot be i-extraordinary because here the ith smallest element is greater than ¢. Nor can
such a subset be k-extraordinary for k # ¢. If k < i the subset has too many elements, while
if k > 4, then it has too few. Therefore, it follows from the binomial theorem that the number

of subsets of [n] which are not k-extraordinary for some 1 < k <n is 2?2—01 (";1) =2n1
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