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Abstract. In this paper, we present closed forms for certain finite sums in which the sum-
mand is a product of generalized Fibonacci numbers. We present our results in the form
of six theorems that feature a generalized Fibonacci sequence {Wn}, and an accompanying

sequence
{

Wn

}

. We add a further layer of generalization to our results with the use of three
parameters s, k, and m.

The inspiration for this paper comes from a website of Knott that lists so-called order 2

summations involving the Fibonacci and Lucas numbers. Probably the most well-known of
these summations is

n
∑

i=1

F
2
i = FnFn+1.

1. Introduction

We begin by establishing the notation for the integer sequences that feature in this paper.
Let a and b be integers with (a, b) 6= (0, 0). For any non-zero integer p, we define, for all
integers n, the sequences {Wn} and

{

W n

}

by

Wn(a, b, p) = Wn = pWn−1 +Wn−2, W0 = a, W1 = b, (1.1)

and

Wn(a, b, p) = Wn = Wn−1 +Wn+1.

Setting ∆ = p2 + 4, we leave to the reader the simple task of showing that

Wn = ∆Wn. (1.2)

For (a, b, p) = (0, 1, 1), we have {Wn} = {Fn}, and
{

W n

}

= {Ln}, which are the Fi-
bonacci and Lucas sequences, respectively. Taking (a, b) = (0, 1), we write {Wn(p)} = {Un},
and

{

W n(p)
}

= {Vn}, which are integer sequences that generalize the Fibonacci and Lucas
sequences, respectively.

Let α and β denote the two distinct real roots of x2 − px − 1 = 0. Set A = b − aβ and
B = b− aα. Then the Binet forms for {Wn} and

{

W n

}

are, respectively,

Wn =
Aαn −Bβn

α− β
, (1.3)

and

W n = Aαn +Bβn. (1.4)

Note that the closed forms for all the sequences that we consider in this paper can be obtained
from (1.3) and (1.4). In the sequel, we require the constant eW = AB = b2 − pab− a2. It is
immediate that eF = 1 and eL = −5.
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The motivation for this paper comes from the many formulas in Section 9.4 of [1] that Knott
calls order 2 summations. These formulas are finite sums for the Fibonacci numbers, probably
the most well-known being

n
∑

i=1

F 2
i = FnFn+1.

Some other formulas that appear in [1] are

2n
∑

i=1

FiFi−1 = F 2
2n,

2n+1
∑

i=1

FiFi−1 = F 2
2n+1 − 1,

n−1
∑

i=0

F 2
2i+1 =

1

5
(F4n + 2n) ,

n
∑

i=0

F 2
2i =

1

5
(F4n+2 − 2n− 1) .

For each formula in [1], Knott also records the Lucas counterpart.
In this paper, we present similar formulas that involve the more general sequence {Wn},

so that each of our finite sums can be specialized to both the Fibonacci and Lucas numbers.
Furthermore, the formulas that we present involve several parameters. This adds another
level of generalization, thus enabling us to capture most of the formulas in Section 9.4 of [1]
as special cases.

The title of our paper contains the description second order products. By this we mean
that, in each of our formulas, either the summand or the closed form involves a product of
two terms from Fibonacci/generalized Fibonacci sequences. In the formulas that Knott lists,
it is the summand that is a product of two terms from the Fibonacci/Lucas sequences.

In Section 2, we give our main results in the form of six theorems, and in Section 3 we
provide a sample proof. Finally, in Section 4, we clarify the extent to which our results imply
the order 2 summations listed in Section 9.4 of Knott [1].

2. The Main Results

In all that follows, n ≥ 1 is an integer. We employ some conventional notation to present
our results. Throughout we take i to be the dummy variable, so for instance [Wsi]

n2

n1
means

Wsn2
−Wsn1

.

Theorem 2.1. Let s 6= 0 and m be integers. Then

n
∑

i=1

W2si+m =











1
Us

UsnWs(n+1)+m, s even;
1
Vs

[

WsiVs(i+1)+m

]n

0
, s odd and n even;

1
Vs
VsnWs(n+1)+m, s odd and n odd.

Theorem 2.2. Let s 6= 0 and m be integers. Then

n
∑

i=1

(−1)iW2si+m =











(−1)n

Us
UsnWs(n+1)+m, s odd;

1
Vs

[

WsiVs(i+1)+m

]n

0
, s even and n even;

−1
Vs

VsnWs(n+1)+m, s even and n odd.
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We have arranged the different cases in Theorems 2.1 and 2.2 in order to highlight the
comparisons between the various outcomes.

We now define an additional four finite sums whose closed forms we present in this section.
In the definitions that follow, s 6= 0 is an integer, and k and m are integers.

T1(n) = T1(n, s, k,m) =

n
∑

i=1

Wsi+kWsi+m,

T2(n) = T2(n, s, k,m) =

n
∑

i=1

(−1)iWsi+kWsi+m,

T3(n) = T3(n, s, k,m) =

n
∑

i=1

Wsi+kW si+m,

T4(n) = T4(n, s, k,m) =
n
∑

i=1

(−1)iWsi+kW si+m.

As for Theorems 2.1 and 2.2, we have arranged the different cases in Theorems 2.3 and 2.4
in order to highlight the comparisons between the various outcomes. We have done likewise
for Theorems 2.5 and 2.6.

Theorem 2.3. For T1(n) as defined above,

T1(n) =















1
∆

(

1
Us

[

WsiW s(i+1)+k+m

]n

0
− (−1)meWVk−mn

)

, s even;

1
Vs

[

WsiWs(i+1)+k+m

]n

0
, s odd and n even;

1
Vs

(

Wsn+kWs(n+1)+m −Ws+kWm

)

, s odd and n odd.

In Theorem 2.3, let (s, k,m) = (1, 1, 5) and take Wn = Fn. We then have
n
∑

i=1

Fi+1Fi+5 = FnFn+7, n even.

Theorem 2.4. For T2(n) as defined above,

T2(n) =















1
∆

(

1
Us

[

(−1)iWsiW s(i+1)+k+m

]n

0
− (−1)meWVk−mn

)

, s odd;

1
Vs

[

WsiWs(i+1)+k+m

]n

0
, s even and n even;

−1
Vs

(

Wsn+kWs(n+1)+m +Ws+kWm

)

, s even and n odd.

In Theorem 2.4, let (s, k,m) = (2, 1, 5) and take Wn = Fn. We then obtain
n
∑

i=1

(−1)iF2i+1F2i+5 =
1

3
F2nF2n+8, n even.

Theorem 2.5. For T3(n) as defined above,

T3(n) =











1
Us

[

WsiWs(i+1)+k+m

]n

0
+ (−1)meWUk−mn, s even;

1
Vs

[

WsiW s(i+1)+k+m

]n

0
, s odd and n even;

1
Vs

(

Wsn+kW s(n+1)+m −Ws+kWm

)

, s odd and n odd.

In Theorem 2.5, let (s, k,m) = (1, 3, 5) and take Wn = Fn. This yields
n
∑

i=1

Fi+3Li+5 = Fn+3Ln+6 − 33, n odd.
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Theorem 2.6. For T4(n) as defined above,

T4(n) =











1
Us

[

(−1)iWsiWs(i+1)+k+m

]n

0
+ (−1)meWUk−mn, s odd;

1
Vs

[

WsiW s(i+1)+k+m

]n

0
, s even and n even;

−1
Vs

(

Wsn+kW s(n+1)+m +Ws+kWm

)

, s even and n odd.

In Theorem 2.6, let (s, k,m) = (2, 1, 5) and take Wn = Fn. We then see that

n
∑

i=1

(−1)iF2i+1L2i+5 =
1

3
F2nL2n+8, n even.

3. A Sample Proof

In this section, we give a detailed proof of Theorem 2.5. The method that we use employs
the Binet forms (1.3) and (1.4), and serves as a template for the proofs of the other theorems in
Section 2. Some of the algebra that follows is lengthy and detailed, so we find it appropriate to
declare that we have checked each step carefully with the use of the computer algebra system
c©Mathematica 9.0.
Expressing Wsi+kW si+m in terms of the Binet forms, then expanding and summing the

finite geometric progressions that arise, we see that

n
∑

i=1

Wsi+kW si+m

=
1

α− β

(

A2αk+m+2s
(

α2sn − 1
)

(α2s − 1)
−

B2βk+m+2s
(

β2sn − 1
)

(β2s − 1)

)

+AB(−1)s+mUk−m

n−1
∑

i=0

(−1)is.

(3.1)

Now, since β2s = α−2s, the middle line in (3.1) can be expressed as

A2αk+m+2s
(

α2sn − 1
)

+B2βk+m
(

β2sn − 1
)

(α− β) (α2s − 1)
. (3.2)

Multiplying both the numerator and denominator of (3.2) by α−s = (−1)sβs, we see that (3.2)
becomes

A2αk+m+s
(

α2sn − 1
)

+B2(−1)sβk+m+s
(

β2sn − 1
)

(α− β) (αs − (−1)sβs)
. (3.3)

Recalling that eW = AB, we then rewrite (3.1) as

n
∑

i=1

Wsi+kW si+m

=
A2αk+m+s

(

α2sn − 1
)

+B2(−1)sβk+m+s
(

β2sn − 1
)

(α − β) (αs − (−1)sβs)

+ eW (−1)s+mUk−m

n−1
∑

i=0

(−1)is.

(3.4)
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To proceed, we require two identities that we state together. These identities are

A2αk+m+s
(

α2sn − 1
)

±B2βk+m+s
(

β2sn − 1
)

= (Aαsn −Bβsn)
(

Aαsn+s+k+m ∓Bβsn+s+k+m

)

− (A−B)
(

Aαs+k+m ∓Bβs+k+m

)

if sn is even.

(3.5)

The interested reader can prove each of the identities in (3.5) by expanding both sides and
noting that αsnβsn = (αβ)sn = (−1)sn = 1.

Now let s be even. Then with the use of (3.5) with the plus option on the left, we see via
the Binet forms that the right side of (3.4) matches the case of Theorem 2.5 that corresponds
to s even. Next, let s be odd and n be even. Accordingly, with the use of (3.5) with the minus
option on the left, we see that the right side of (3.4) matches the case of Theorem 2.5 that
corresponds to s odd and n even.

We next establish the final case of Theorem 2.5 in which s and n are both odd. To this
end, we express the right side of (3.4) as a fraction with denominator (α − β) (αs + βs). The
numerator of this fraction is

A2αk+m+s
(

α2sn − 1
)

−B2βk+m+s
(

β2sn − 1
)

−AB(αβ)m (αs + βs)
(

αk−m − βk−m

)

.
(3.6)

According to the final case of Theorem 2.5, we need to prove that the expression in (3.6) is
equal to

(

Aαsn+k −Bβsn+k

)

(

Aαsn+s+m +Bβsn+s+m
)

−
(

Aαs+k −Bβs+k

)

(Aαm +Bβm) .
(3.7)

The outcome after subtracting (3.7) from (3.6), expanding the result, and then factoring is

AB (1 + (αβ)ns)
(

αm+sβk − αkβm+s

)

. (3.8)

Since αβ = −1 and ns is odd, the expression in (3.8) reduces to zero. This completes the
proof of Theorem 2.5.

4. Concluding Comments

With one exception, our main results yield, as special cases, all the order 2 summations
listed in Section 9.4 of Knott [1]. Regarding this claim, it is clear that we need to address
three formulas that Knott lists.

The first of the formulas in question is

2n−1
∑

i=1

(2n− i)F 2
i = F 2

2n. (4.1)

Since formulas like (4.1) are outside the scope of this paper, none of our main results implies
(4.1).
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The remaining two formulas in question are
n
∑

i=0

(−1)r(1+i)F 2
r(1+i) =

1

5Fr

(

(−1)r(n+1)F(2n+3)r − (2n+ 3)Fr

)

, (4.2)

n
∑

i=0

(−1)r(1+i)L2
r(1+i) =

1

Fr

(

(−1)r(n+1)F(2n+3)r + (2n + 1)Fr

)

. (4.3)

Each of (4.2) and (4.3) cleverly captures both alternating non-alternating sums. Since none
of our main results has this property, then clearly no single result of ours yields (4.2) or (4.3).
However, for r even, the summands in (4.2) and (4.3) are special cases of the summand of T1.
Accordingly, for r even, set s = k = m = r in T1. We then see that (4.2) and (4.3) follow from
the first case of Theorem 2.3. Likewise, for r odd, (4.2) and (4.3) follow from the first case of
Theorem 2.4.
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