# A COMBINATORIAL PROOF FOR THE GENERATING FUNCTION OF POWERS OF THE FIBONACCI SEQUENCE

#### YIFAN ZHANG AND GEORGE GROSSMAN

ABSTRACT. We derive a formula for the generating function of powers of the Fibonacci sequence. We illustrate the formula with an example, the generating function for the fourth powers of the Fibonacci sequence.

#### 1. Introduction

Let  $\mathcal{F}_k(x)$  be the generating function for kth power of Fibonacci numbers, defined by

$$\mathfrak{F}_k(x) = \sum_{n=0}^{\infty} F_n^k x^n, \ k \in \mathbb{N}^+.$$

**Example 1.1.**  $\mathcal{F}_1(x) = x/(1-x-x^2)$  is known.

The following recurrence relation is due to Riordan [6],

$$(1 - L_k x + (-1)^k x^2) \mathcal{F}_k(x) = 1 + kx \sum_{j=1}^{\lfloor \frac{k}{2} \rfloor} (-1)^j \frac{A_{kj}}{j} \mathcal{F}_{k-2j}((-1)^j x),$$

where  $L_k$  is the kth Lucas number and the doubly-indexed sequence  $A_{kj}$  has the generating function given by,

$$(1 - x - x^2)^{-j} = \sum_{k=2j}^{\infty} A_{kj} x^{k-2j}, \ j \ge 0,$$

which was improved by Dujella [2].

Also, in [2], Dujella gave a bijective proof for Riordan's result by using Morse codes. Stănică [7] obtained a closed form for generating function of the powers of the nondegenerate second-order recurrence relation,

$$U_{n+2} = aU_{n+1} + bU_n$$
, with  $a, b, U_0, U_1 \in \mathbb{Z}$ ,

such that  $\delta=a^2+4b\neq 0$ . Let  $\alpha=\frac{1}{2}(a+\sqrt{a^2+4b}), \ \beta=\frac{1}{2}(a-\sqrt{a^2+4b})$  and  $A=\frac{U_1-U_0\beta}{\alpha-\beta}, \ B=\frac{U_1-U_0\alpha}{\alpha-\beta}, \ V_n=\alpha^n+\beta^n$  with initial conditions  $V_0=2, \ V_1=a$ . Stănică [7] showed that, if k is odd, then

$$U_k(x) = \sum_{j=0}^{\frac{k-1}{2}} (-AB)^j \binom{k}{j} \frac{A^{k-2j} - B^{k-2j} + (-b)^j ((B\alpha)^{k-2j} - (A\beta)^{k-2j})x}{1 - (-b)^j V_{k-2j} x - b^k x^2}.$$

He also showed that, if k is even, then

$$U_k(x) = \sum_{j=0}^{\frac{k}{2}-1} (-AB)^j \binom{k}{j} \frac{B^{k-2j} + A^{k-2j} - (-b)^j ((B\alpha)^{k-2j} + (A\beta)^{k-2j}) x}{1 - (-b)^j V_{k-2j} x + b^k x^2} + \binom{k}{\frac{k}{2}} \frac{(-AB)^{\frac{k}{2}}}{1 - (-b)^{\frac{k}{2}} x}.$$

AUGUST 2017 235



FIGURE 1. Two examples.

Mansour [4] obtained a formula for  $\mathcal{F}_k(x)$  by using the determinant of certain matrices.

Horadam [3] defined the second-order linear recurrence sequence  $W_n(a, b; p, q)$ , or  $W_n$ , by  $W_{n+2} = pW_{n+1} + qW_n$  with initial condition  $W_0 = a$  and  $W_1 = b$ . The Fibonacci sequence  $\{F_n\}$  in this notation is given by  $W_n(0, 1; 1, 1)$ .

The Fibonacci number  $F_{n+1}$  gives the number of ways for  $1 \times 2$  dominoes and squares to cover a  $1 \times n$  checkerboard. In the next section, we begin with a series of definitions and lemmas, modifying this approach. We develop a counting method to find the generating function for powers of Fibonacci numbers which is the main result.

# 2. New Closed Form of $\mathcal{F}_k(x)$

**Definition 2.1.** Let  $\mathcal{F}_k(x) = \sum_{n=0}^{\infty} F_n^k x^n$  be the generating function of kth power of  $F_n$  where  $F_{n+2} = F_{n+1} + F_n$  with initial conditions  $F_0 = 0$  and  $F_1 = 1$ .

The following lemma is Combinatorial Theorem 1 from Benjamin and Quinn's book [1].

**Lemma 2.2.** Let  $f_n$  count the ways to tile a length n board with squares and dominoes. Then  $f_n$  is a Fibonacci number, namely  $f_n = F_{n+1}$  with  $f_{-1} = 0$  and  $f_1 = 1$ .

**Definition 2.3.** For  $k \geq 1$  and  $n \geq 1$ , the Fibonacci  $k \times n$  checkerboard,  $F_{k \times n}$  board in short, is a checkerboard with height k and length n covered by squares and dominoes such that the dominoes can only be placed horizontally.  $|F_{k \times n}|$  is the number of different Fibonacci  $k \times n$  checkerboards.

The Fibonacci  $k \times n$  minimal checkerboard,  $M_{k \times n}$  board in short, is an  $F_{k \times n}$  board that cannot be vertically divided into two Fibonacci checkerboards. Let  $m_{k \times n}$  be the number of different Fibonacci  $k \times n$  minimal checkerboards.

**Lemma 2.4.** 
$$|F_{k\times n}| = f_n^k = F_{n+1}^k \text{ for } k \ge 1 \text{ and } n \ge 1.$$

*Proof.* From Lemma 2.2,  $|F_{1\times n}|=f_n$  for  $n\geq 1$ . Since an  $F_{k\times n}$  board has k layers, and each layer is an  $F_{1\times n}$  board, there are  $f_n$  of them. Therefore,  $|F_{k\times n}|=f_n^k=F_{n+1}^k$ .

In Figure 1, there are two examples of M boards. Figure 1(b) is not an  $M_{4\times5}$ , since it can be divided into an  $F_{4\times3}$  and an  $F_{4\times2}$ .

Table 1 contains values of  $m_{4\times n}$  for small n. Small values were obtained by counting and large values were obtained from Lemma 2.23. These values are used to explain Examples 2.8 and 2.13.

## COMBINATORIAL PROOF OF GENERATING FUNCTIONS OF FIBONACCI NUMBERS

**Lemma 2.5.** Each  $F_{k\times n}$  board, which is not an  $F_{k\times n}$  minimal board, can be uniquely divided into at most n Fibonacci minimal boards.

*Proof.* The proof is straightforward.

Table 1.  $m_{4\times n}$  for small n

| n                | 1   | 2  | 3  | 4   | 5    | 6    | 7     | 8      | 9      | 10      |
|------------------|-----|----|----|-----|------|------|-------|--------|--------|---------|
| $m_{4 \times r}$ | . 1 | 15 | 50 | 254 | 1202 | 5774 | 27650 | 132494 | 634802 | 3041534 |

**Definition 2.6.** If an  $F_{k\times n}$  board can be divided into  $M_{k\times n_1}$ ,  $M_{k\times n_2}$ , ...,  $M_{k\times n_j}$  boards, where order matters,  $n_i \in \mathbb{N}^+$  for  $i \in \{1, 2, ..., j\}$ , then the  $F_{k\times n}$  board can be written as an  $M_{k\times (n_1, n_2, ..., n_j)}$  board. Let  $m_{k\times (n_1, n_2, ..., n_j)}$  be the number of  $M_{k\times (n_1, n_2, ..., n_j)}$  boards. With this notation,  $m_{k\times (2,3)} \neq m_{k\times (2+3)}$ .

An  $M_{4\times(3,2)}$  board is shown in Figure 1(b).

**Lemma 2.7.** The number of  $F_{k \times n}$  boards is,

$$F_{n+1}^k = f_n^k = \sum_{j=1}^n \sum_{\substack{n_1 + n_2 + \dots + n_j = n \\ n_i \in \mathbb{N}^+}} m_{k \times (n_1, n_2, \dots, n_j)} = \sum_{j=1}^n \sum_{\substack{n_1 + n_2 + \dots + n_j = n \\ n_i \in \mathbb{N}^+}} \prod_{i=1}^j m_{k \times n_i}.$$

*Proof.* From Lemma 2.5, each  $F_{k\times n}$  board is either an  $M_{k\times n}$  board or can be uniquely divided into j minimal boards,  $2 \le j \le n$ , and the number of  $M_{k\times n_i}$  boards is  $m_{k\times n_i}$ ,  $1 \le i \le j$ .

Example 2.8. 
$$F_4^4 = f_3^4 = m_{4\times 3} + m_{4\times (2,1)} + m_{4\times (1,2)} + m_{4\times (1,1,1)} = 50 + 15 \cdot 1 + 1 \cdot 15 + 1 \cdot 1 \cdot 1 = 81$$
.

From Mazur [5, p. 111], we have the following question: "In how many ways can we distribute n identical objects to 6 distinct recipients if each recipient receives at least one object?" Then the answer is the coefficient of  $x^n$  in the expansion of  $(x + x^2 + x^3 + \cdots)^6 = (\frac{x}{1-x})^6$ .

This is equivalent to: "If there is exactly one word for each length, in how many ways can we write an *n*-letter sentence with 6 words?"

Question 2.9. In how many ways can we write an n-letter sentence?

The following examples answer Question 2.9 with different conditions.

**Example 2.10.** If there is exactly one word for each length and we are not sure how many words are there, then the answer to Question 2.9 is the coefficient of  $x^n$  in

$$\sum_{j=1}^{\infty} (x + x^2 + x^3 + \dots)^j = \frac{1}{1 - (x + x^2 + \dots)} - 1 = \frac{1}{1 - \frac{x}{1 - x}} - 1 = \frac{x}{1 - 2x}.$$

**Example 2.11.** Suppose there is one 1-letter word and one 2-letter word, then the number of ways of writing an n-letter sentence is the coefficient of  $x^n$  in

$$\sum_{i=1}^{\infty} (x+x^2)^j = \frac{1}{1-(x+x^2)} - 1 = \frac{x(1+x)}{1-x-x^2}.$$

AUGUST 2017 237

**Example 2.12.** Now, if there are  $m_{k\times i}$  different i-letter words, then  $f_n^k$  is the number of ways to write an n-letter sentence.

**Example 2.13.** Suppose there are one 1-letter word, 15 2-letter words, 50 3-letter words, ..., and  $m_{4\times n}$  n-letter words,  $n \ge 1$ . Then the answer to Question 2.9 is the coefficient of  $x^n$  in

$$\sum_{j=1}^{\infty} (x + 15x^2 + 50x^3 + 254x^4 + \dots)^j = \frac{1}{1 - (x + 15x^2 + 50x^3 + 254x^4 + \dots)} - 1.$$

We have the following lemma.

**Lemma 2.14.** Let  $e_k = \sum_{n=1}^{\infty} m_{k \times n} x^n$ . Then

$$\sum_{n=1}^{\infty} \left( \left( \sum_{j=1}^{n} \sum_{\substack{n_1 + n_2 + \dots + n_j = n \\ n_i \in \mathbb{N}^+}} \prod_{i=1}^{j} m_{k \times n_i} \right) x^n \right) = \frac{1}{1 - e_k} - 1.$$

Moreover,  $\mathfrak{F}_k(x) = \frac{x}{1-e_k}$ 

*Proof.* The first part of the lemma follows from Lemma 2.7 and as in Example 2.13. From Lemma 2.7 we obtain,

$$\begin{split} \mathcal{F}_k(x) &= \sum_{n=0}^{\infty} F_n^k x^n = F_0^k + F_1^k x + \sum_{n=2}^{\infty} f_{n-1}^k x^n \\ &= x + x \sum_{n=1}^{\infty} f_n^k x^n = x + x \left( \frac{1}{1 - e_k} - 1 \right) = \frac{x}{1 - e_k}. \end{split}$$

**Example 2.15.**  $e_4 = \sum_{n=1}^{\infty} m_{4 \times n} x^n = x + 15x^2 + 50x^3 + \cdots, \mathfrak{F}_4(x) = \frac{x}{1 - e_4}.$ 

In order to find the closed form of  $e_4$ , or the closed form for  $e_k$ , we will utilize the following lemma.

**Lemma 2.16.** Let  $S_{1,n}, S_{2,n}, \ldots, S_{m,n}$  be sequences (not necessarily distinct) with

$$S_{1,n+1} = a_{1,1}S_{1,n} + a_{1,2}S_{2,n} + \dots + a_{1,m}S_{m,n},$$

$$S_{2,n+1} = a_{2,1}S_{1,n} + a_{2,2}S_{2,n} + \dots + a_{2,m}S_{m,n},$$

$$\dots,$$

$$S_{m,n+1} = a_{m,1}S_{1,n} + a_{m,2}S_{2,n} + \dots + a_{m,m}S_{m,n}.$$

$$If [a_{i,j}]_{m \times m} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,m} \end{bmatrix}_{m \times m}, [S_{j,n}]_{m \times 1} = \begin{bmatrix} S_{1,n} \\ S_{2,n} \\ \vdots \\ S_{m,n} \end{bmatrix}_{m \times 1}, B_{m+1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}_{1 \times m}^{T},$$

then  $\sum_{j=1}^{m} S_{j,n} = B_{m+1}[a_{i,j}]_{m \times m}^{n-l}[S_{j,l}]_{m \times 1} \in \mathbb{R}$ .

*Proof.* Since

$$\begin{split} [a_{i,j}]_{m\times m}^{n-l}[S_{j,l}]_{m\times 1} &= [a_{i,j}]_{m\times m}^{n-l-1}[a_{i,j}]_{m\times m}[S_{j,l}]_{m\times 1} \\ &= [a_{i,j}]_{m\times m}^{n-l-1}[S_{j,l+1}]_{m\times 1} = \dots = [S_{j,n}]_{m\times 1}, \end{split}$$

then

$$\sum_{j=1}^{m} S_{j,n} = B_{m+1}[S_{j,n}]_{m \times 1} = B_{m+1}[a_{i,j}]_{m \times m}^{n-l}[S_{j,l}]_{m \times 1}.$$

**Example 2.17.** Since  $F_{n-1} = F_{n-2} + F_{n-3}$  and  $F_{n-2} = F_{n-2} + 0 \cdot F_{n-3}$ , then

$$F_n = F_{n-1} + F_{n-2} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, n \ge 2.$$

The matrix  $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$  is called the Fibonacci Q-matrix.

**Definition 2.18.** Let  $S_{j,k\times n}$  board  $(j \in \{1,2,3,\ldots,k\}, k \geq 1, n \geq 2)$  be an  $M_{k\times n}$  board with j dominoes in the last two columns. Let  $s_{j,k\times n}$  be the number of different  $S_{j,k\times n}$  boards and  $s_{j,k\times n} = 0$  if there does not exist any  $S_{j,k\times n}$  board.

**Example 2.19.** Figure 1(a) is an  $S_{1,4\times5}$  board and Figure 1(b) is a combination of an  $S_{1,4\times3}$  board and  $S_{2,4\times2}$  board.

Note 2.20. There are some special cases:

- (1) If k = 1 and n = 2, then j = 1,  $S_{1,1\times 2}$  is a  $1\times 2$  domino and  $S_{1,1\times 2} = 1$ .
- (2) If k = 1 and  $n \ge 3$ , then j = 1,  $S_{1,1 \times n}$  does not exist and  $s_{1,1 \times n} = 0$ .
- (3) If n = 2,  $k \ge 2$  and  $1 \le j \le k$ , then  $s_{j,k \times 2} = \binom{k}{j}$ .
- (4) If  $n \geq 3$ ,  $k \geq 2$  and j = k, then  $s_{k,k \times n} = 0$ .
- (5) If n = 1, then  $m_{k \times 1} = 1$ .
- (6) If n = 2, then  $m_{k \times 2} = 2^k 1 = \sum_{j=1}^k s_{j,k \times 2} = \sum_{j=1}^{k-1} s_{j,k \times 2} + 1$ .
- (7) If  $n \ge 3$ , then  $m_{k \times n} = \sum_{j=1}^k s_{j,k \times n} = \sum_{j=1}^{k-1} s_{j,k \times n}$ .

**Lemma 2.21.**  $s_{j,k\times(n+1)} = \sum_{i=1}^{k-j} {k-i \choose j} s_{i,k\times n} \text{ for } 1 \leq j \leq k-1, k \geq 2, n \geq 2.$ 

Proof. Each  $S_{j,k\times(n+1)}$  board,  $1\leq j\leq k-1$ , can be obtained from any  $S_{i,k\times n}$  board with  $1\leq i\leq k-j$ . An  $S_{i,k\times n}$  board with  $1\leq i\leq k-j$ , has k-i squares in the last column; choose j squares from them, replace the chosen squares by dominoes, then fill the  $S_{j,k\times(n+1)}$  board with squares. Figure 2 illustrates this with an example. Hence,  $s_{j,k\times(n+1)}=\sum_{i=1}^{k-j} {k-i\choose j} s_{i,k\times n}$  for  $1\leq j\leq k-1$ .

**Definition 2.22.** For k > 2, define matrices

$$A_{k} = \begin{bmatrix} \binom{k-1}{1} & \binom{k-2}{1} & \cdots & \binom{1}{1} \\ \binom{k-1}{2} & \binom{k-2}{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \binom{k-1}{k-1} & 0 & \cdots & 0 \end{bmatrix}_{(k-1)\times(k-1)}, C_{k} = \begin{bmatrix} \binom{k}{1} \\ \binom{k}{2} \\ \vdots \\ \binom{k}{k-1} \end{bmatrix}_{(k-1)\times1}, B_{k} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}_{1\times(k-1)}^{T}$$

and  $I_k$  is the  $(k-1) \times (k-1)$  identity matrix. If k=1, let  $A_1 = B_1 = C_1 = 0$ ,  $I_1 = 1$ . Note that the matrix  $A_k$  contains portions of Pascal's triangle.

**Lemma 2.23.** For  $k \geq 2$ ,  $m_{k \times 2} = 1 + B_k A_k^0 C_k$ ,  $m_{k \times n} = B_k A_k^{n-2} C_k$  for  $n \geq 3$ .

AUGUST 2017 239

## THE FIBONACCI QUARTERLY



FIGURE 2. Transforming an  $S_{1,4\times5}$  board to an  $S_{2,4\times6}$  board.

*Proof.* From Lemmas 2.16, 2.21, and Note 2.20, for  $k \geq 2$  and  $n \geq 3$ , we have

$$m_{k \times n} = \sum_{j=1}^{k-1} s_{j,k \times n} = B_k A_k^{n-2} \begin{bmatrix} s_{1,k \times 2} \\ s_{2,k \times 2} \\ \vdots \\ s_{k-1,k \times 2} \end{bmatrix}_{(k-1) \times 1} = B_k A_k^{n-2} C_k.$$

Further,  $m_{k\times 2} = 1 + B_k A_k^0 C_k$  follows from Note 2.20.

**Example 2.24.** In Table 2, there are small values of  $s_{j,4\times n}$ , j=1,2,3. We find that,

$$s_{1,4\times(n+1)} = 3 \cdot s_{1,4\times n} + 2 \cdot s_{2,4\times n} + 1 \cdot s_{3,4\times n},$$

$$s_{2,4\times(n+1)} = 3 \cdot s_{1,4\times n} + 1 \cdot s_{2,4\times n} + 0 \cdot s_{3,4\times n},$$

$$s_{3,4\times(n+1)} = 1 \cdot s_{1,4\times n} + 0 \cdot s_{2,4\times n} + 0 \cdot s_{3,4\times n}.$$

From Lemma 2.23, for  $n \geq 3$ ,

$$m_{4\times n} = s_{1,4\times n} + s_{2,4\times n} + s_{3,4\times n} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{n-2} \begin{bmatrix} 4 \\ 6 \\ 4 \end{bmatrix}.$$

**Lemma 2.25.** For  $k \geq 2$ , there exists an open interval J such that  $\sum_{n=0}^{\infty} (xA_k)^n = (I_k - xA_k)^{-1}$  for all  $x \in J$ .

*Proof.* For  $k \geq 2$ , we have  $\det(A_k) = -1$  or 1; more precisely,  $\det(A_k) = (-1)^{\lfloor \frac{k+3}{2} \rfloor}$ . We can conclude that  $A_k$  is not a singular matrix and 0 is not an eigenvalue of  $A_k$ .

### COMBINATORIAL PROOF OF GENERATING FUNCTIONS OF FIBONACCI NUMBERS

| _ |                   |   |    |    |     |      |      |       |        |         |         |
|---|-------------------|---|----|----|-----|------|------|-------|--------|---------|---------|
|   | n                 | 1 | 2  | 3  | 4   | 5    | 6    | 7     | 8      | 9       | 10      |
|   | $m_{4\times n}$   | 1 | 15 | 50 | 254 | 1202 | 5774 | 27650 | 132494 | 634802  | 3041534 |
|   | $s_{1,4\times n}$ |   | 4  | 28 | 124 | 604  | 2884 | 13828 | 66244  | 317404  | 1520764 |
|   | $s_{2,4\times n}$ |   | 6  | 18 | 102 | 474  | 2286 | 10938 | 52422  | 251154  | 1203366 |
| Ī |                   |   | 4  | 4  | 00  | 104  | CO 4 | 0004  | 12000  | CC0.4.4 | 917404  |

Table 2.  $s_{j,4\times n}$ , j=1,2,3, for small n

Suppose all k-1 eigenvalues of  $A_k$  are  $\lambda_1, \lambda_2, \ldots, \lambda_{k-1}$ . Let  $|x| < \min\{|\lambda_1|^{-1}, |\lambda_2|^{-1}, \ldots, |x| < \min\{|\lambda_1|^{-1}, |\lambda_2|^{-1}, \ldots, |x| < \max\{|\lambda_1|^{-1}, |\lambda_2|^{-1}, \ldots, |x| < \max\{|\lambda_1|$  $|\lambda_{k-1}|^{-1}$ . It follows that,  $|x\lambda_i| < 1$  for  $1 \le i \le k-1$ . Since the k-1 eigenvalues of  $xA_k$  can be written as  $x\lambda_i$  for  $1 \le i \le k-1$ , it follows  $|xA_k| < 1$ . Thus,  $\sum_{n=0}^{\infty} (xA_k)^n = (I_k - xA_k)^{-1}$ .

Thus, 
$$\sum_{n=0}^{\infty} (xA_k)^n = (I_k - xA_k)^{-1}$$
.

Theorem 2.26. For  $k \in \mathbb{N}$ ,

 $s_{3,4\times n}$ 

$$\mathcal{F}_k(x) = \frac{x}{1 - x - x^2 - x^2 B_k (I_k - xA_k)^{-1} C_k}.$$

*Proof.* For  $k \geq 2$ , according to Lemmas 2.14, 2.23, and 2.25

$$e_k = \sum_{n=1}^{\infty} m_{k \times n} x^n$$

$$= x + x^2 + \sum_{n=2}^{\infty} B_k A_k^{n-2} C_k x^n$$

$$= x + x^2 + x^2 \sum_{n=0}^{\infty} B_k A_k^n C_k x^n$$

$$= x + x^2 + x^2 B_k \sum_{n=0}^{\infty} (x A_k)^n C_k$$

$$= x + x^2 + x^2 B_k (I_k - x A_k)^{-1} C_k.$$

Then

$$\mathfrak{F}_k(x) = \frac{x}{1 - e_k} = \frac{x}{1 - x - x^2 - x^2 B_k (I_k - xA_k)^{-1} C_k}.$$

Since  $B_1(I_1-xA_1)^{-1}C_1=0$ , the theorem is also true for k=1.

Example 2.27. If k = 4 we obtain,

$$(I_4 - xA_4)^{-1} = \frac{1}{1 - 4x - 4x^2 + x^3} \begin{bmatrix} 1 - x & 2x & x(1 - x) \\ 3x & 1 - 3x - x^2 & 3x^2 \\ x(1 - x) & 2x^2 & 1 - 4x - 3x^2 \end{bmatrix}.$$

Also,  $B_4(I_4 - xA_4)^{-1}C_4 = \frac{-2x^2 - 6x + 14}{1 - 4x - 4x^2 + x^3}$ . Hence,

$$\mathcal{F}_4(x) = \frac{x}{1 - x - x^2 - x^2 \frac{-2x^2 - 6x + 14}{1 - 4x - 4x^2 + x^3}} = \frac{x(1+x)(1 - 5x + x^2)}{(1-x)(1 - 7x + x^2)(1 + 3x + x^2)}.$$

AUGUST 2017

## THE FIBONACCI QUARTERLY

Corollary 2.28. If 
$$\det(I_k - xA_k) = a_0 x^{k-1} + a_1 x^{k-2} + \dots + a_{k-1} x^0$$
, then  $a_{k-1} A_k^{k-1} + a_{k-2} A_k^{k-2} + \dots + a_0 A_k^0 = 0$ .

*Proof.* Since  $\det(I_k - xA_k) = x^{k-1} \det(x^{-1}I_k - A_k)$ , then  $\det(x^{-1}I_k - A_k) = a_0x^0 + a_1x^{-1} + \cdots + a_{k-1}x^{1-k}$ . Employing the Cayley-Hamilton Theorem, we obtain

$$a_{k-1}A_k^{k-1} + a_{k-2}A_k^{k-2} + \dots + a_0A_k^0 = 0.$$

### References

- [1] A. T. Benjamin and J. J. Quinn, *Proofs That Really Count: The Art of Combinatorial Proof*, Mathematical Association of America, 2003.
- [2] A. Dujella, A bijective proof of Riordan's theorem on powers of Fibonacci numbers, Discrete Mathematics, 199.1 (1999), 217–220.
- [3] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, **3.3** (1965), 161–176.
- [4] T. Mansour, A formula for the generating functions of powers of Horadam's sequence, Australasian Journal of Combinatorics, **30** (2004), 207–212.
- [5] D. R. Mazur, Combinatorics: A Guided Tour, Mathematical Association of America, 2010.
- [6] J. Riordan, Generating functions for powers of Fibonacci numbers, Duke Mathematical Journal, 29.1 (1962), 5–12.
- [7] P. Stănică, Generating functions, weighted and non-weighted sums for powers of second-order recurrence sequences, The Fibonacci Quarterly, 41.4 (2003), 321–333.

MSC2010: 05A15, 05A05

DEPARTMENT OF MATHEMATICS, CENTRAL MICHIGAN UNIVERSITY, MOUNT PLEASANT, MI 48858 E-mail address: zhang5y@cmich.edu

DEPARTMENT OF MATHEMATICS, CENTRAL MICHIGAN UNIVERSITY, MOUNT PLEASANT, MI 48858 E-mail address: gross1gw@cmich.edu