
DIVISIBILITY OF THE MIDDLE LUCASNOMIAL COEFFICIENT

CHRISTIAN BALLOT

Abstract. Pomerance established several theorems about the number of integers n for which
n + k divides the binomial coefficient

(

2n

n

)

, k a given integer. We conduct a similar inquiry

about the number of integers n for which Un+k divides
(

2n

n

)

U
, where U is a fundamental Lucas

sequence and
(

2n

n

)

U
the corresponding middle Lucasnomial coefficient. In a final digression,

we argue that central Fibonomials prime to 105 should be about as rare as middle binomial
coefficients prime to 105, and we compute the first few examples.

1. Introduction

In a beautifully lucid arithmetical paper [13], Pomerance studied how often the middle

binomial coefficient
(2n
n

)

is divisible by n+ k, when k is a fixed arbitrary integer. Three main
theorems were proved which we recall here. The first asserts the singularity of the Catalan
numbers Cn = 1

n+1

(2n
n

)

since for k = 1, we have that n+ 1 divides
(2n
n

)

for all n ≥ 0, whereas
for k 6= 1, we have

Theorem 1.1. Let k be an integer not equal to 1. There are infinitely many integers n ≥ 1
such that n+ k does not divide

(2n
n

)

.

The second and third theorems indicate a drastic difference in behavior depending on
whether k ≥ 1, or k ≤ 0.

Theorem 1.2. Suppose k ≥ 1. Then, the set of integers n ≥ 1 such that n + k divides
(

2n
n

)

has asymptotic density one.

Theorem 1.3. Suppose k ≤ 0. Then, the set of integers n ≥ 1 such that n+ k divides
(2n
n

)

is
infinite, but has upper asymptotic density at most 1− log 2.

Pomerance [13, bottom of page 7] conjectured the existence of a positive lower asymptotic

density for the set of positive integers n with n+ k |
(2n
n

)

, when k ≤ 0, although this remains
an open question. As a consequence of [13, Theorem 4], a positive lower density exists for all
k ≤ 0 iff it exists for k = 0.

A fundamental Lucas sequence U = U(P,Q) is a binary linear recurrent sequence defined
by the initial values U0 = 0, U1 = 1 and the recurrence

Un+2 = PUn+1 −QUn, (1)

for all integers n ≥ 0, where P and Q are nonzero integers. When (P,Q) = (2, 1), we find that
Un = n. We restrict ourselves to nondegenerate fundamental Lucas sequences, i.e., to those
sequences with Un 6= 0, for all n ≥ 1. The condition U4U6 6= 0 is a necessary and sufficient
condition for the non-degeneracy of U = (Un) – see for instance [3, Section 2]. For m ≥ n ≥ 1,
the Lucasnomial coefficient

(

m
n

)

U
is defined as

(

m

n

)

U

:=
UmUm−1 · · ·Um−n+1

UnUn−1 · · ·U1
, (2)
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and as 1, if m ≥ 0 and n = 0, and, otherwise, as 0. From the identity Um = Un+1Um−n −
QUnUm−n−1, one deduces [3, Section 5] that

(

m

n

)

U

= Un+1

(

m− 1

n

)

U

−QUm−n−1

(

m− 1

n− 1

)

U

, for m ≥ n ≥ 1. (3)

Using (3) and an induction, one sees that all Lucasnomials are integers. Indeed, identity
(3) enables one to prove the integrality of Lucasnomials on the mth row of the Lucasnomial
Pascal triangle from their integrality at row m− 1. Note in passing that one may view (3) as

a generalization of the binomial identity
(

m
n

)

=
(

m−1
n

)

+
(

m−1
n−1

)

. For (P,Q) = (2, 1), Un = n

and the RHS of (3) becomes

(n+ 1)

(

m− 1

n

)

− (m− n− 1)

(

m− 1

n− 1

)

=

(

m− 1

n

)

+

(

m− 1

n− 1

)

+ Em,n,

where

Em,n = n

(

m− 1

n

)

− (m− n)

(

m− 1

n− 1

)

= 0.

We were curious to know whether theorems similar to Theorems 1.1, 1.2, and 1.3 held with
respect to middle Lucasnomial coefficients. The paper answers those questions. Besides this
introduction, it contains five sections. In Section 2, Theorem 2.1 establishes the integrality
of the Lucasnomial Catalan numbers 1

Un+1

(2n
n

)

U
for all nondegenerate fundamental Lucas se-

quence U and all n ≥ 0. Section 3 is concerned with Theorem 1.1. Theorem 3.1 generalizes
Theorem 1.1 to all nondegenerate Lucas sequences when k ≤ 0. However, for k ≥ 2, we
find two exceptional sequences, namely U(±1, 2) for which, when k = 2 and 2 only, Un+k

divides
(

2n
n

)

U
for all n ≥ 0. Otherwise, for all other regular Lucas sequences, Theorem 1.1 also

generalizes to the case k ≥ 2 as we establish in Theorem 3.5.

A Lucas sequence U(P,Q) is regular whenever it is nondegenerate and gcd(P,Q) = 1. This
latter condition is well-known to be logically equivalent to the property:

gcd(Um, Un) = |Ugcd(m,n)|, for all nonnegative m and n.

A primitive prime divisor of the nth term Un of a Lucas sequence U is a prime factor of Un,
which does not divide U2U3 . . . Un−1.

The discriminant ∆ of a Lucas sequence U(P,Q) is P 2 − 4Q. Theorem 3.5 utilizes the
primitive prime divisor theorems of [1, 6]. That is, for regular nonzero-discriminant Lucas
sequences U = (Un), Un has a primitive prime divisor, not dividing ∆, for all n > 30. Moreover,
these theorems tell us exactly what Lucas sequences U and what values of n ≤ 30 are such that
Un does not have a primitive divisor. One easily checks that the only regular Lucas sequence
with ∆ = 0 is Un = n. But, in this paper, we call a regular Lucas sequence, ∆-regular, if it
is not Un = n. The distinction is important, as depending on whether our theorems address
regular, or ∆-regular sequences, we may (at best) get a generalization, or an analog, of the
theorems for ordinary binomial coefficients.

Theorem 4.3 of Section 4 generalizes Theorem 1.2 to all regular Lucas sequences when
k ≥ 1. However, Theorem 5.1 in Section 5 shows that division of

(

2n
n

)

U
by Un+k, if k ≤ 0,

occurs for only finitely many integers n when U is ∆-regular. Thus, we only have an analog
of Theorem 1.3. The contrast between the cases k ≥ 1 and k ≤ 0 is even sharper than for
ordinary binomial coefficients. The sixth and last section lists a few open questions and extends
a heuristic of Pomerance about the number of integers n for which

(2n
n

)

is prime to 105 to
middle Fibonomials. The Fibonacci sequence F is the Lucas sequence U(1,−1). Lucasnomials
with respect to F are called Fibonomials and have been the object of more studies than general
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Lucasnomials. The paper is sprinkled with special Fibonacci examples of the general theorems
(see Propositions 3.2 and 4.2, Example 5.2, and Problem 4 of Section 6).

Notation. Extending the notation used in [13, Section 7], given a Lucas sequence U and an

integer k, we write DU,k for the set of integers n ≥ 1 such that Un+k divides
(

2n
n

)

U
. We let

D̄U,k denote the complementary set of DU,k in the positive integers.
The proofs of the theorems in Pomerance’s article rely much on Kummer’s rule [12], which

gives the p-adic valuation of the binomial
(

m+n
n

)

as the number of carries in the addition of m
and n performed in base p, p a prime. This rule was extended to Lucasnomials; see [11] and
[3, Section 4]. The crucial point is that n ∈ DU,k iff for each prime p, the p-adic valuation of
(2n
n

)

U
is at least that of Un+k. The rank ρU (p), or ρ, of a prime p in a Lucas sequence U is

the smallest positive index t such that p divides Ut. It is guaranteed to exist when p ∤ Q. The
next two propositions are basic working tools of this paper.

Putting together statement (4.4) and Theorem 4.1 of [2, Section 4], we obtain the p-adic
valuation of all terms of a fundamental Lucas sequence U = U(P,Q) for all primes p ∤ Q.

Proposition 1.4. Let U = U(P,Q) be a nondegenerate fundamental Lucas sequence and p ∤ Q
be a prime of rank ρ in U . Then, for all nonnegative integers m and n, we have

ρ | p−

(

∆

p

)

, if p is odd,

p | Un ⇐⇒ ρ | n,

νp(Uρm) = νp(Uρ) + νp(m) + δ = a+ x+ δ,

where ∆ = P 2 − 4Q,
(

∗
∗

)

is the Legendre symbol, a = νp(Uρ), x = νp(m) and

δ = δp,P,Q,m =

{

ν2
(

(P 2 − 3Q)/2
)

, if p = 2, PQ is odd, and m is even,

0, otherwise.

The notation x, a, and δ is used consistently with the utilization of Proposition 1.4 through-
out the paper.

The most general Kummer rule for Lucasnomials can be stated as follows [2, Section 4].

Proposition 1.5. 1 Let U = U(P,Q) be a nondegenerate Lucas sequence and p ∤ Q be a
prime of rank ρ in U . Let m and n be two positive integers. Then the p-adic valuation of the
Lucasnomial

(

m+n
n

)

U
is equal to the number of carries that occur to the left of the radix point

when m/ρ and n/ρ are added in base-p notation, plus νp(Uρ) if a carry occurs across the radix
point. However, if p is 2, P is odd and Q ≡ −1 (mod 4), one must add δ = ν2

(

(P 2 − 3Q)/2
)

to the previous counts if a carry occurs from the first to the second digit to the left of the radix
point.

This theorem suggests we distinguish carries across or to the left of the radix point from the
other carries. Thus, as in [2], when adding n/ρ + n/ρ in base p, we will call a carry relevant
when it occurs across or to the left of the radix point.

Although we usually write the p-adic valuation of an integer m, i.e., the highest exponent
e of p such that pe divides m as νp(m), we omit the parentheses when m is a Lucasnomial

coefficient
(

ℓ
k

)

U
and write instead νp

(

ℓ
k

)

U
. The paper assumes familiarity with Lucas sequences.

1See Proposition 6.1 at the end of the paper for an alternative wording of Proposition 1.5
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2. Lucasnomial Catalan Numbers

Perhaps Gould [9], [17, A003150] was the first to introduce Fibonomial Catalan numbers
and to prove their integrality. The integrality proof found in [10, Section 7] would readily
generalize to all regular Lucas sequences. The Lucasnomial Catalan numbers were considered
in the paper [15, Section 6.4] as special values of Lucas-Catalan polynomials, but an earlier
talk [16, Last remark] mentions them, as did the subsequent note [7]. We are not aware
of other appearances. The term ‘generalized Catalan number’ usually refers to the numbers

1
an+1

(

an+n
n

)

, a ≥ 1.

We provide two proofs, one algebraic, the other arithmetic, of the integrality of Lucasnomial
Catalan numbers. Finding a combinatorial proof would require a combinatorial interpretation
of these numbers. Several papers [4, 14, 5] have found, or explained, combinatorial interpreta-
tions for Lucasnomials. However, the search of a combinatorial interpretation for Lucasnomial
Catalan numbers does not seem to have succeeded yet [15, 16] in spite of the many interpre-
tations ordinary Catalan numbers possess. Proving their integrality came immediately out of
the classical formula (3), but, as it turned out and not surprisingly, we had been anticipated
[10, 16, 7].

Theorem 2.1. Let U = (Un)n≥0 be a fundamental Lucas sequence with U4U6 6= 0. The
Lucasnomial Catalan rational number,

1

Un+1

(

2n

n

)

U

,

is integral for all n ≥ 0.

Proof 1. Putting m = 2n in (3) and dividing through by Un+1, we obtain

1

Un+1

(

2n

n

)

U

=

(

2n− 1

n

)

U

−Q
Un−1

Un+1

(

2n− 1

n− 1

)

U

=

(

2n− 1

n

)

U

−Q

(

2n− 1

n− 2

)

U

, (4)

which is an integer. �

The second proof is less general as we assume, for simplicity, the regularity of U .

Proof 2. A prime p that divides Q does not divide any term of U because, by the recurrence
(1), Un ≡ Pn−1 (mod p). However, p ∤ P by the regularity assumption. If a prime p ∤ Q of
rank ρ divides Un+1, then, there is an integer λ > 0 prime to p such that n+1 = λpxρ. Then,
with the notation of Proposition 1.4, νp(Un+1) = a+ x+ δ. Now,

n

ρ
= λpx −

1

ρ
= (λpx − 1) +

ρ− 1

ρ
.

In the base-p addition of n/ρ to itself, we see there is a carry across the radix point since the
fractional part of n/ρ, (ρ − 1)/ρ, is at least 1/2. The first x digits of n/ρ to the left of the
radix point are all p− 1. Thus, there are at least x carries in the addition of λpx − 1 to itself.
By Proposition 1.5, we see that the p-adic valuation of

(2n
n

)

U
is at least that of νp(Un+1). This

holds for all primes p that divide Un+1. �

Remark. Proof 2 actually shows that νp
(2n
n

)

U
≥ νp(Un+1) for all p ∤ gcd(P,Q) and all

nondegenerate U(P,Q).

3. Theorem 1.1 and Lucasnomials

Theorem 3.1. Let U be a nondegenerate fundamental Lucas sequence and k ≥ 0 be an integer.
Then, there are infinitely many integers n ≥ 1 such that Un−k does not divide

(2n
n

)

U
.
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Proof. Because U is nondegenerate, there are only finitely many primes of rank ≤ 2k. Choose
any odd prime p of rank ρ > 2k. Let n = pxρ + k ≥ 1 for some x ≥ 0 large enough. By
Proposition 1.4, pa+x divides Un−k with a = νp(Uρ). But ⌊n/ρ⌋ = px and {n/ρ} = k/ρ < 1/2,
so there are no relevant carries in the base-p addition of n/ρ to itself. By Proposition 1.5,

p ∤
(2n
n

)

U
. Hence, Un−k ∤

(2n
n

)

U
. �

We treat separately the Fibonacci case F = U(1,−1) and central Fibonomial coefficients.
This serves as an introduction to the general case. The next result shows that k = 1 enjoys
the same status it has with respect to ordinary middle binomial coefficients.

Proposition 3.2. Let k be an integer. For k 6= 1, there are infinitely many values of n such
that Fn+k does not divide

(2n
n

)

F
. Otherwise, Fn+1 divides

(2n
n

)

F
for all n ≥ 1.

Proof. The cases k ≤ 0 and k = 1 are given respectively by Theorems 3.1 and 2.1.
If k = 2, then consider an n of the form 3 · 2x − 2, x ≥ 1. Then, by Proposition 1.4,

ν2(Fn+2) = x+1+ δ = x+2. However, the base-2 addition of n/3 to itself, i.e., of 2x − 2/3 =
2x − 1 + 1/3 yields no carry across the radix point, since 2{n/3} = 2/3 < 1, and exactly x

carries to the left of that point. Thus, by Proposition 1.5, ν2
(2n
n

)

F
= x + δ = x + 1. Hence,

Fn+2 ∤
(

2n
n

)

F
.

Suppose k ≥ 3. Then, Fk > 1. Consider a prime divisor p of Fk of rank ρ. Thus ρ | k.
Suppose n ≥ 1 is an integer of the form pxρ − k with x ≥ 1 and large enough. Then,
νp(Fn+k) = a + x, or x + 2 in case p = 2, where again a = νp(Fρ). But, n/ρ = px − k/ρ

is a positive integer. Thus, by Proposition 1.5, the p-adic valuation of
(2n
n

)

F
is at most x,

unless p = 2 when it can potentially be x + 1. In all cases, νp
(2n
n

)

F
< νp(Fn+k) so that

Fn+k ∤
(

2n
n

)

F
. �

Lemma 3.3. Let U(P,Q) be a regular Lucas sequence and k ≥ 2 be an integer. Suppose some
prime p of rank ρ divides Uk. Then,

Un+k ∤

(

2n

n

)

U

, for all n = ρpx − k, with x ≥ 1 large enough so n > 0.

Proof. Assume n = ρpx − k ≥ 1 for some x ≥ 1. Suppose p | Uk. As seen at the beginning of
the second proof of Theorem 2.1, p ∤ Q. Hence, by Proposition 1.4, ρ | k. Thus, n/ρ = px−k/ρ
is an integer ≤ px− 1. Therefore, there are at most x relevant carries when adding n/ρ to n/ρ

in base p. We conclude that νp
(

2n
n

)

U
≤ x + δ, whereas, with the notation of Proposition 1.4,

νp(Un+k) = a+ x+ δ > x+ δ. Therefore, Un+k ∤
(2n
n

)

U
. �

Remark. Theorem 1.1 is a corollary of Theorems 3.1 and Lemma 3.3. Indeed, Un = n is the
regular sequence U(2, 1) and Uk has a prime divisor for all k ≥ 2.

Lemma 3.4. Let U(P,Q) be a regular Lucas sequence and k ≥ 2 be an integer. Suppose one
of the three conditions i) |Uk| ≥ 2, or ii) Uk+1 has a primitive prime divisor, or iii) Uk+2 has
a primitive prime divisor, holds. Then, unless k = 2 and U = U(±1, 2), there are infinitely
many integers n ≥ 1 such that

Un+k ∤

(

2n

n

)

U

.

For (P,Q) = (±1, 2), we find that 1
Un+2

(2n
n

)

U
is integral for all n ≥ 0.

Proof. Let p, a prime of rank ρ, designate either a factor of Uk, or a primitive divisor of Uk+1,
or of Uk+2. Suppose m ≥ 1 is of the form ρpx − k, x ≥ 1. Note that, in all cases, p ∤ Q. By
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Lemma 3.3, if p | Uk, then m ∈ D̄U,k for all x ≥ 1. So we assume Uk = ±1. If p has rank
ρ = k + ℓ, ℓ = 1 or 2, then m/ρ = (px − 1) + ℓ/ρ. The fractional part of m/ρ is

ℓ

ρ
=

{

1
k+1 ≤ 1

3 , if ℓ = 1,
2

k+2 , if ℓ = 2,

which is < 1/2, unless k = 2 and ℓ = 2. So unless k = 2 and ℓ = 2, the base-p addition
m/ρ + m/ρ produces exactly x carries to the left of the radix point and none across that

point. Hence, we find that νp(Um+k) > νp
(

2m
m

)

U
. Thus, by the foregoing argument, for D̄U,k

to be finite, we need to have k = 2, ρ = 4 and both U2 and U3 equal to ±1. Indeed, a prime
dividing U3 would have to be of rank 3. But U2 = P and U3 = P 2 − Q. Since P 2 − Q = 1
would imply Q = 0, we see that P 2 −Q = −1 and Q = 2. Now the nth terms of U(1, 2) and
U(−1, 2) have the same absolute values for all n ≥ 0. If P = 1, then the first few terms of U
are 0, 1, 1,−1,−3,−1, 5, 7,−3,−17,−11.

It remains to show that Un+2 divides
(

2n
n

)

U
for all n ≥ 0, when U = U(1, 2). We will do so

by proving that for all primes p, νp(Un+2) ≤ νp
(2n
n

)

U
. There is nothing to prove if the prime

p does not divide Un+2. Suppose p divides Un+2 for some n ≥ 0. Then, as all terms of U are
odd, p is odd. By Proposition 1.4, as p ∤ Q, n+ 2 is of the form λpxρ, (p ∤ λ, x ≥ 0) and

νp(Un+2) = a+ x, (with a = νp(Uρ)).

Now, n/ρ = λpx − 1 + (ρ − 2)/ρ and {n/ρ} = (ρ − 2)/ρ. In the addition of n/ρ to itself in
base p, there is a carry across the radix point because, as ρ ≥ 4, 2{n/ρ} ≥ 1. Moreover, as
the least x significant digits of λpx − 1 are all p − 1, there are at least x additional carries to
the left of the radix point. By Proposition 1.5,

νp

(

2n

n

)

U

≥ a+ x.

Hence, Un+2 divides
(2n
n

)

U
. �

In [6], a ∆-regular Lucas sequence U was defined to be k-defective iff for all primes p ∤ Q∆,
the rank of p in U is not k, that is, if Uk has no primitive prime divisor, where primes dividing
∆ were not considered as primitive divisors. Their main result is that for all k > 30 no ∆-
regular Lucas sequence is k-defective. In addition they listed, up to equivalence, all ∆-regular
Lucas sequences that are k-defective in the range 2 ≤ k ≤ 30. Two sequences U = U(P,Q)
and U ′ = U(P ′, Q′) are equivalent iff P = ±P ′ and Q = Q′. In case of equivalence, we have
|Un| = |U ′

n| for all n ≥ 0. To be more precise, Table 1 of [6] lists, up to equivalence, all
k-defective Lucas sequences with k = 5 and 7 ≤ k ≤ 30. Table 3 of [6] lists the remaining
values 2 ≤ k ≤ 4 and k = 6, but contains a few errors and misses some sequences. One can
find a corrected table, Table 3 in [1, Théorème 4.1]. The sequences in those lists are written
in the form (P,∆), where ∆ = P 2 − 4Q.

Theorem 3.5. Suppose U(P,Q) is a regular Lucas sequence and k is a fixed integer not 1.
Then there exist infinitely many integers n such that

Un+k ∤

(

2n

n

)

U

,

unless (P,Q) = (±1, 2) and k = 2, in which case

Un+2 |

(

2n

n

)

U

for all n ≥ 0.
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Proof. By Theorem 3.1, we need only consider the cases k ≥ 2. By Theorem 1.1, we assume
U is ∆-regular. By Lemma 3.4, if Un+k divides

(2n
n

)

U
for all but finitely many n, then, unless

k = 2 and (P,Q) = (±1, 2), the following conditions must hold

Uk = ±1 and U is simultaneously k, (k + 1) and (k + 2)− defective. (5)

Therefore, we consult the above-mentioned tables in [1] and [6] and search for Lucas sequences
U that satisfy the conditions (5) with 2 ≤ k ≤ 28. However, the only values of k that contain
defective sequences for k, k+1 and k+2 are k = 2, k = 3, k = 4, k = 5, and k = 6. Inspecting
those tables further, we see that there are no 4-defective Lucas sequences with P = ±1. Since
U2 = P , the conditions (5) cannot be met when k = 2. Conditions (5) are not met either
when k = 3 or k = 4. Indeed, there is only a finite list of seven sequences with P > 0 that
are 5-defective. Four of them, namely (P,∆) = (1, 5), (1,−7), (1,−11), and (1,−15), have
P = 1, but again there are no 4-defective sequences with P = 1. The three remaining ones
are (2,−40), (12,−76), and (12,−1364). However, 4-defective sequences with P even are all
of the form (P,±4 − P 2) and our three 5-defective sequences with P even do not match this
form. Now, the only sequence with P > 0 that is both 5 and 7-defective is (P,∆) = (1,−7).
It is also the only sequence simultaneously 7 and 8-defective. But 6-defective sequences with
P = 1 have discriminant ∆ = (4(−2)ν − 1)/3, (ν ≥ 1), and −7 is not of this form. Hence, (5)
cannot hold for either k = 5 or k = 6. �

Corollary 3.6. For the two Lucas sequences U(P,Q) = U(±1, 2) = (Un)n≥0, the rational
numbers

1

Un+1Un+2

(

2n

n

)

U

are integers for all n ≥ 0. (6)

For no other regular Lucas sequences do we have that the numbers in (6) are integers for all
n sufficiently large.

Proof. Combine Theorems 2.1 and 3.5 with the fact that if U is regular, then gcd(Un+1, Un+2) =
1 for all n ≥ 0. �

Remark. The sequence U(1, 2) is somewhat of an anomaly. Remarkably, if it were not for the
two exceptional sequences U(±1, 2), all ∆-regular Lucas sequences (Un) would have a primitive
prime divisor for all n > 12, rather than 30; see [6, Table 1].

4. Theorem 1.2 and Lucasnomials, (i.e., The Case k ≥ 1)

A subset S of the positive integers has asymptotic density d iff limz→+∞#S(z)/z = d,
where S(z) = S ∩ [1, z]. Lower and upper asymptotic densities are obtained by replacing the
limit by (resp.) the liminf and the limsup.

We proceed in several steps before proving a generalization of Theorem 1.2 to all regular
Lucas sequences.

Proposition 4.1. Suppose U(P,Q) is a regular Lucas sequence and k ≥ 1 is a fixed integer.

Then the set of positive integers n such that Un+k divides
(2n
n

)

U
has a positive lower asymptotic

density.

Proof. Suppose p, a prime, divides Un+k. As seen in the second proof of Theorem 2.1, we may
assume p ∤ Q. We know n + k is of the form λpxρ, where λ is prime to p, x ≥ 0 and ρ is the
rank of p. By Proposition 1.4, νp(Un+k) = a+ x+ δ, where a = νp(Uρ). Now,

n

ρ
=

λpxρ− k

ρ
= (λpx − 1) +

ρ− k

ρ
. (7)
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If ρ−k
ρ

≥ 1
2 , i.e., if ρ ≥ 2k, then, by Proposition 1.5, the p-adic valuation of the Lucasnomial

(

2n
n

)

U
is at least a+x+ δ. We conclude that {n; p | Un+k =⇒ ρ(p) ≥ 2k} is a subset of DU,k.

That is, DU,k contains the set {n; ρ(p) ∤ n+ k for all p’s such that ρ(p) < 2k}. In particular,
DU,k contains the set {n; q ∤ n + k for all primes q with q < 2k}. This latter set is a union
of

∏

q<2k(q − 1) distinct arithmetic progressions with common difference
∏

q<2k q, (q prime).

This set has asymptotic density equal to
∏

q<2k(q − 1)× (
∏

q<2k q)
−1 =

∏

q<2k(1 − 1/q) > 0,

(q prime). Thus, the lower asymptotic density of DU,k is positive. �

We look at the particular instance of the Fibonacci sequence F and k = 2 and prove that
DF,2 has asymptotic density 1. The exceptional integers not in DF,2 are those outlined while
proving the case k = 2 of Proposition 3.2.

Proposition 4.2. The set DF,2 of integers n such that Fn+2 divides
(

2n
n

)

F
contains all natural

numbers but those of the form 3 · 2x − 2, x ≥ 1. Hence, DF,2 has asymptotic density 1.

Proof. By the proof of Proposition 4.1, for Fn+2 to divide
(2n
n

)

F
it suffices that all the ranks

of the prime factors of Fn+2 be ≥ 4. But, only the prime 2 has Fibonacci rank less than 4.
So, the only potential exceptions are n’s satisfying n + 2 = λ2x · 3 for some x ≥ 0, (λ odd).
Say λ = 2µ + 1, and assume µ ≥ 1. Then, using (7), we see that

⌊n

ρ

⌋

= λ2x − 1 = µ2x+1 + 2x − 1 and
{n

ρ

}

=
ρ− k

ρ
=

3− 2

3
=

1

3
.

So, although there is no carry across the radix point when adding n/3 to itself in base 2, there
are at least x + 1 carries in the base-2 addition of the integral part of n/3 to itself and, in
particular, there is one from the first to the second digit to the right of the radix point if
x ≥ 1. Thus, by Proposition 1.5, the 2-adic valuation of

(2n
n

)

F
is at least x + 1 + δ, which

equals x + ν2(F3) + δ = ν2(Fn+2). But, when λ = 1 and x ≥ 1, according to the proof of

Proposition 3.2 for k = 2, Fn+2 does not divide
(

2n
n

)

F
. Finally, one checks the case x = 0, i.e.,

that F3 divides
(6
3

)

F
. �

It turns out that DU,k, for k ≥ 1 and U regular, always has asymptotic density one as we
prove next. The proof resembles those of Lemmas 1 and 2 in [13]. As in [13, Lemma 1], given

a prime p, we write θp = log(p+1
2 )/ log p.

Theorem 4.3. Suppose U(P,Q) is a regular Lucas sequence and k ≥ 1 is a fixed integer.

Then the set of positive integers n such that Un+k divides
(2n
n

)

U
has asymptotic density 1.

Proof. We will show that D̄U,k has asymptotic density 0. If n /∈ DU,k, then there must exist

a prime p with νp(Un+k) > νp
(2n
n

)

U
. However, by the proof of Proposition 4.1, if p has rank

ρ ≥ 2k, then νp(Un+k) ≤ νp
(

2n
n

)

U
. Therefore, D̄U,k is equal to the finite union

⋃

p∈P Ap, where
P is the set of primes of rank < 2k, and

Ap :=

{

n; νp(Un+k) > νp

(

2n

n

)

U

}

.

Thus, it suffices to prove that each Ap, p ∈ P , has asymptotic density 0. So we fix some p ∈ P .
Now if p | Un+k, as is the case of integers n in Ap, then n+ k = mρ = λpxρ, for some positive
integer λ prime to p and x ≥ 0. Hence, n/ρ = m − k/ρ. Using euclidean division, one may
write k = ℓρ+ r, 0 ≤ r < ρ. Thus,

n

ρ
= (m− 1)− ℓ+

ρ− r

ρ
= (λ− 1)px + (px − 1)− ℓ+

ρ− r

ρ
. (8)
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Let z > 0 be a large real number. Suppose n ≤ z. Define y := z/ρ and D := ⌊1+ log y/ log p⌋,
the maximal number of p-ary digits ⌊n/ρ⌋ may have. Write

(λ− 1)px = λDp
D + · · ·+ λxp

x, 0 ≤ λi < p, for all i, x ≤ i ≤ D. (9)

Let u be the least integer t with pt > ℓ. For x ≥ 0, define Ax
p as the set of integers n in Ap of

the form n+ k = λpxρ, p ∤ λ.

Suppose first x ≥ u. Subtracting ℓ from px− 1, whose p-ary digits are all p− 1, may alter
at most the u least significant digits of px − 1. If the fractional part of n/ρ, i.e., (ρ− r)/ρ, is
less than 1/2, then the base-p addition of n/ρ to itself, may produce as few as x− u relevant

carries. Thus, a deficit of ap := u + δ + a carries for the p-adic valuation of
(2n
n

)

U
to at least

match that of Un+k. Define Bx
p as the set of integers n such that

n+ k = λpxρ, p ∤ λ, and less than ap carries occur in adding (λ− 1)px to itself.

Since Ax
p ⊂ Bx

p , it suffices to show that the union
⋃

u≤x≤D Bx
p has asymptotic density 0 to see

that
⋃

u≤x≤D Ax
p also has 0-density. By Kummer’s rule for Lucasnomials, for n to be in Bx

p (z),

all digits λi, up to at most ap − 1 of them, have to lie in the interval [0, p/2). Thus, adopting
an overabundant way of counting, the cardinality of Bx

p (z) is bounded above by

(

D − x+ 1

D − x+ 1− (ap − 1)

)⌊

p+ 1

2

⌋D+2−x−ap

pap−1 ≪p D
ap−1 ·

(

p+1
2

)D

⌊

p+1
2

⌋x .

Thus, summing over all x, u ≤ x ≤ D, we obtain

#
⋃

u≤x≤D

Bx
p (z) ≪p D

ap ·

(

p+ 1

2

)D

≪p (log y)
ap

(

p+ 1

2

)
log y

log p

= (log y)apyθp = o(z), (10)

where θp = log p+1
2 / log p < 1.

Suppose now x < u. Then νp(Un+k) ≤ x + δ + a ≤ ap := u + δ + a. Hence, by the
Kummer rule for Lucasnomials, for n ∈ Ax

p , the number of carries in the base-p addition of
n/ρ to itself must be less than ap. Let v be the largest index i > x such that λi is affected by
the subtraction of ℓ+1−px from (λ−1)px (see (8) and (9)). We claim that v is at most equal
to u+ ap. Indeed, if λu ≥ 1, then v ≤ u. If λu = 0 and (ℓ+ 1)− px > λu−1p

u−1 + · · ·+ λxp
x,

then v is the least index j > u with λj ≥ 1. (It must exist if n ≥ ρ by (8).) The subtraction
of (ℓ + 1) − px then decrements λv by 1, puts all digits λi, u < i < v, to p − 1 and again
possibly alters the remaining digits λi, x ≤ i ≤ u. Thus, the base-p addition of n/ρ to itself
produces a minimum of v − u− 1 relevant carries. Hence, if v − u > ap, then n /∈ Ap. Thus,
v ≤ u + ap. Define Cp as the set of integers n such that at most ap − 1 carries occur in the
base-p addition of n/ρ to n/ρ between the places ap + u + 1 and D left of the radix point.
Then, choosing at most ap− 1 p-ary digits λi, ap+u+1 ≤ i ≤ D, outside the interval [0, p/2),
we see, overcounting again some elements of Cp(z), that

#Cp(z) ≤

(

D − ap − u

D − 2ap − u+ 1

)

U

⌊

p+ 1

2

⌋D−2ap−u+1

pap−1 ≪p D
ap

(

p+ 1

2

)D

,

which, as seen in (10), is o(z). Since Ax
p ⊂ Cp for all x, 0 ≤ x < u, we find that

⋃

0≤x<uA
x
p

has 0 asymptotic density. Combining this case with the case x ≥ u, we obtain that Ap has
asymptotic density 0. �
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5. Theorem 1.3 and Lucasnomials, (i.e., The Case k ≤ 0)

The divisibility of middle Lucasnomial coefficients when U is ∆-regular and k ≤ 0 is different
from the behavior of ordinary middle binomial coefficients as described in Theorem 1.3.

Theorem 5.1. Suppose U(P,Q) is a ∆-regular Lucas sequence and k ≥ 0 is a fixed integer.

Then, there are at most finitely many n such that Un−k divides
(2n
n

)

U
.

Proof. For n larger than Mk :=max{3k, 30+ k}, Un−k has a primitive prime divisor, say p, by
the primitive prime divisor theorem [6]. Since its rank ρ satisfies 30 < n− k = ρ ≤ p+ 1, we
find that p ≥ 31. Now,

n

ρ
=

n

n− k
= 1 +

k

n− k
.

But, n > 3k implies that k/(n− k) < 1/2. Thus, in the base-p addition of n/ρ to itself, there

is no relevant carry as 1+1 < 31 ≤ p. By Proposition 1.5, p does not divide
(

2n
n

)

U
. Therefore,

Un−k does not divide
(2n
n

)

U
for all n > Mk. �

Example 5.2. The set DF,0 = {1, 2, 3}, where F is the Fibonacci sequence.

In this example, we may replace Mk by 12 as for the Fibonacci sequence every term larger
than 12 has a primitive prime divisor. However, for n = 4, 5, 7, 8, 9, 10, and 11, Fn has an odd
primitive prime divisor, namely and respectively 3, 5, 13, 7, 17, 11, and 89. It remains to check
the cases n = 1, 2, 3, 6, and 12.

6. The Middle Fibonomial Coefficient and 105, Plus Some Open Questions

We propose a few open problems.

Problem 1. Find a combinatorial interpretation of the Lucasnomial Catalan numbers, a
quest Sagan [16] seems to have worked at. But, would there also be an interpretation for the

numbers 1
Un+2

(2n
n

)

U
and 1

Un+1Un+2

(2n
n

)

U
, when U = U(±1, 2)?

Problem 2. Do Theorems 3.5, 4.3, and 5.1 extend to all nondegenerate Lucas sequences?

Define ΩU,m as the set of integers n such that
(2n
n

)

U
is prime to m, where U is a Lucas

sequence and m ≥ 1 an integer. Let In denote the Lucas sequence In = n, i.e., I = U(2, 1).

Problem 3. If U(P,Q) is nondegenerate with Q odd, then, by [2, Theorem 5.2], ΩU,2 is
either empty or a singleton. If p ∤ Q is an odd prime, then, by Kummer’s rule for Lucasnomials,
it is easy to see ΩU,p is infinite. As mentioned in [13], the set ΩI,pq is known [8] to be infinite,
whenever p and q are two odd primes. Is the set ΩF,pq also infinite, if F is the Fibonacci
sequence? Would it be true that ΩU,pq is infinite, if U(P,Q) is an arbitrary nondegenerate
Lucas sequence, as long as p and q do not divide gcd(P,Q) and are odd primes?

Problem 4. Are there infinitely many integers n with
(

2n
n

)

F
coprime to 105?

Ron Graham offers a reward of $1000 for settling the question of whether the set of integers
n such that

(2n
n

)

is prime to 105 is finite or infinite, observing on heuristic grounds that this
set should be infinite. Hence, a fifth problem: Would the Fibonacci Association offer $987 for
settling Problem 4?

Pomerance [13] proposed a heuristic argument in favor of the infinitude of Graham’s 105-set.
As we understood it, the argument went more or less as follows. If p is an odd prime, then
#ΩI,p(z) is of the order of zθp , as z tends to ∞, with θp = log(p+1

2 )/ log p. Indeed, imagine

for the sake of simplicity that z = pt, t large. Suppose n =
∑t−1

i=0 nip
i, where the ni’s are the
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base-p digits of n and 0 ≤ n < z. By Kummer’s rule, n belongs to ΩI,p iff ni ∈ [0, (p − 1)/2],
for all i, 0 ≤ i < t. Thus, we obtain exactly

#ΩI,p(z) = #{pt}+

(

p+ 1

2

)t

−#{0} = zθp . (11)

Thus, the probability that a random integer in [1, z] be in ΩI,p is 1/z1−θp . Assuming proba-
bilistic independence of the base-p and the base-q representations of a general integer, p and q
being distinct odd primes, we obtain that the probability for an integer in [1, z] to lie in ΩI,105

is
∏

p∈{3,5,7}

1

z1−θp
=

1

zθ
,

where θ is about 0.974. Hence, we expect at least z0.025 integers in ΩI,105(z), as z → ∞.
A similar heuristic applies to the Fibonomial case. Suppose p is an odd prime of rank ρ.

Say z = ρpt to simplify matters. Then, any integer n, 0 ≤ n < z, has a unique representation
in the mixed-base (ρpt−1, ρpt−2, . . . , ρp, ρ, 1) of the form

n = nt−1p
t−1 + nt−2p

t−2 + · · ·+ n0ρ+ d, (12)

where 0 ≤ ni < p, (0 ≤ i < t), and 0 ≤ d < ρ.
Using Proposition 1.5, which we can be rephrased as in Proposition 6.1 below, we find that

n belongs to ΩF,p ∩ [0, z) iff each ni ∈ [0, p/2) and d ∈ [0, ρ/2). Since ρF (p) = p+ 1 for p = 3
and p = 7, we see that

#ΩF,p(z) =
p+ 1

2
·

(

p+ 1

2

)t

=
p+ 1

2
·

(

z

ρ

)θp

=
1

2
(p+ 1)1−θp · zθp . (13)

For p = 5, since ρF (5) = ρI(5) = 5, we still expect about zθp integers in ΩF,p(z).

Conclusion. Although 1
2(3 + 1)1−θ3 · 1

2 (7 + 1)1−θ7 is about 0.758, we can hardly assert
that the proportion of middle Fibonomials prime to 105 is about 3/4 that of middle binomial
coefficients. Indeed, other choices of z than pt in (11) and ρpt in (13) would yield cardinalities
for both ΩI,p(z) and ΩF,p(z) of the type czz

θp with cz = Op(1), but cz 6= 1 in general [13,
Lemma 1]. However, these heuristics suggest that #ΩI,105(z) and #ΩF,105(z) are both of the

order of z1−θ, as z tends to infinity.

The first few middle Fibonomials prime to 105. The only values of n ≤ 20,000 with
(

2n
n

)

prime to 105 are well known to be 1, 10, 756, 757, 3160, 3186, 3187, 3250, 7560, 7561,
and 7651 [17, A030979]. Tinkering with PARI/GP, we believe we found all n ≤ 4050 with
(2n
n

)

F
prime to 105. They are

1, 1312, 3256, 3257, 3936, 3937, 4000, 4001, and 4032.

Unsurprisingly, we find similar clustering phenomena in both sequences.

Proposition 6.1. Let U(P,Q) be a nondegenerate Lucas sequence and p ∤ Q a prime of rank
ρ in U . Let m and n be two positive integers written in the mixed-base {ρpi}, i ≥ 0, as in
(12). Then the p-adic valuation of the Lucasnomial

(

m+n
n

)

U
is obtained by counting carries in

this mixed-base addition of m and n, where a carry at the first place has a weight of νp(Uρ), a
carry at the second place a weight of 1 + δ, with δ equal to ν2

(

(P 2 − 3Q)/2
)

, if p is 2 and PQ
is odd, zero, otherwise, and other carries count for 1.
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