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Abstract. The subprime function, introduced by Conway (s(n) = n if n is prime, otherwise
s(n) = n/p where p is the least prime factor of n) was used to design interesting analogues
of the Fibonacci sequence that are conjectured to be ultimately periodic. In the present
article we prove that the binary operation ◦ on N defined by x ◦ y = s(x + y) induces a
magma structure that is cyclic with generator 1, i.e., N = 〈1〉. Moreover, if we consider,
in this context, the sequence of subsets of natural numbers {Cn}n≥0 defined by C0 = {1}
and Cn+1 = Cn ∪ (Cn ◦ Cn) thereafter, we provide computational evidence to the effect that

limn→∞
|Cn+1|
|Cn| = 1+

√
5

2
, thus providing an unexpected appearance of the Golden ratio ϕ.

1. Introduction

Conway’s subprime function s is defined [9, 8] as follows. If n is a prime number, we set
s(n) = n. If n is composite, define s(n) = n/p where p is the least prime factor of n. We may
set s(1) = 1 to complete the definition of an arithmetic function s : N→ N.

The function s is instrumental in the definition of subprime Fibonacci sequences, i.e. integer
sequences {xk}k≥0 satisfying the recursion xk = s (xk−1 + xk−2). Sequences in this class are
conjectured to be ultimately periodic regardless of the choice of the initial seed (x0, x1). Among
the cycle lengths discovered so far [5] are 1, 10, 11, 18, 19, 56, 136. The interesting phenomenon
of ultimate periodicity suggests an analogy between the subprime Fibonacci recursion and the
perennial 3x + 1 conjecture [4, 6, 11]. Sequences similar to the subprime Fibonacci ones that
involve the greatest prime factor function gpf instead of s were proved to be ultimately periodic
with the (unique) limit cycle (7, 3, 5, 2) [1]. A conjecture of ultimate periodicity for general
prime sequences of the form xk = P (c1xk−1 + c2xk−2 + · · ·+ cdxk−d) was also formulated [1].

In the present paper we will consider a shift in the usage of Conway’s subprime function s,
from a study of the sequences arising from s to the algebraic structures arising from s. Towards
this end we will introduce a binary operation ◦ on the set of positive integers N = {1, 2, 3, . . .}
defined as follows:

x ◦ y := s(x + y), (1)

for any x, y ∈ N.
The operation (1) displays no immediate, textbook properties (it is commutative, not asso-

ciative, and has no identity element), which makes (N, ◦) just a seemingly amorphous magma
[3]. However a closer look suggests an interesting property stated in Theorem 1 below.

Let C0 be a set of integers. Consider the sequence {Cn}n≥0 defined by

Cn+1 = Cn ∪ (Cn ◦ Cn) , (2)

where we used the notation A ◦B := {a ◦ b|a ∈ A and b ∈ B} for A,B ⊆ N.
We define

〈C0〉 :=

∞⋃
n=0

Cn. (3)

NOVEMBER 2017 327



THE FIBONACCI QUARTERLY

We have the following interesting result.

Theorem 1. (N, ◦) is a cyclic structure generated by 1, i.e.,

N = 〈1〉. (4)

Corollary 2. Let C0 = {1}. Then using (3) and (4) we have
∞⋃
n=0

Cn = N. (5)

We will prove Theorem 1 in Section 3. In the next section we discuss a surprising conjecture
that emerged from Theorem 1.

2. A Conjecture Involving the Golden Ratio

An analysis of the cardinalities of the sets Cn satisfying (2) starting with C0 = {1} is
presented in the Table 1.

Table 1: Consecutive quotients for the sequence {Cn}n≥0
n |Cn| |Cn|/|Cn−1| n |Cn| |Cn|/|Cn−1|
1 2 2.000000000 17 1429 1.620181406
2 3 1.500000000 18 2299 1.608817355
3 4 1.333333333 19 3705 1.611570248
4 6 1.500000000 20 5961 1.608906883
5 8 1.333333333 21 9615 1.612984399
6 12 1.500000000 22 15524 1.614560582
7 18 1.500000000 23 25057 1.614081422
8 25 1.388888889 24 40442 1.614000080
9 38 1.520000000 25 65247 1.613347510
10 56 1.473684211 26 105412 1.615583858
11 89 1.589285714 27 170224 1.614844610
12 138 1.550561798 28 274963 1.615301015
13 218 1.579710145 29 444156 1.615330063
14 342 1.568807339 30 717551 1.615538234
15 547 1.599415205 31 1159406 1.615782014
16 882 1.612431444 32 1873356 1.615789465

The computations were done by using a Julia program running in a Google cloud envi-
ronment and were fairly intensive [2]. Table 1 suggests an unexpected relationship between

the subprime function s, defined in terms of primes and the golden ratio ϕ = 1+
√
5

2 . This is
summarized in the following conjecture.

Conjecture 3. ϕ = limn→∞
|Cn+1|
|Cn| .

The last computed quotient satisfies:

|C32|
|C31|

− ϕ = −0.00224453 . . . .

A few words about the programming method that was used: first, preliminary calculations
done with MATLAB were used to calculate (fairly quickly) the sets Cn for n ≤ 17, together
with their maximum elements. The maximum element of C17 turns out to be 2143. Since at
every step of the iteration the maximal element of Cn+1 is less than twice the maximal element
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of Cn we estimated that the elements of C32 (our target at the moment) are necessarily less
than 2143 · 215 = 70221824.

Moving on to the Julia program, for the purpose of computing the necessary subprime
functions, we first generated and stored a list of all primes up to 200 million (the last one
being 199999991), so that, if possible, we could advance past C32 (we didn’t, though, due to
the large computing time for C32).

The Julia programming strategy was fairly brute: at each level n > 1 of the computation,
we used a split of the set Cn into old elements (those in Cn−1) and new elements (those in
Cn \ Cn−1), so that instead of applying (2), the calculation of the subsequent set Cn+1 was
done by appending to Cn all possible products of new elements, as well as all possible products
between an old element and a new element (in either order). This is because the products of
old elements are already present in Cn. Afterward, Cn+1 splits itself into its own old and new
elements and the computation proceeds as shown before. This is only a slight improvement
compared to a brute-force application of (2). We believe it would be nice to have a parallel
version of this algorithm: it would run faster, but it would still be exponential.

If the conjecture is true, it would provide an unexpected computation of ϕ with sets de-
fined by primes. The conjecture would also add meaningful context to a problem (Conway’s
subprime Fibonacci recursion [5, 9]) of a 3x + 1-type [1, 11].

3. Proof of N = 〈1〉

For the proof of Theorem 1 we will need an effective result concerning the distribution
of primes in small intervals. For our immediate purposes, the following proposition, due
to Nagura [7] (who follows Ramanujan’s method of proving Bertrand’s postulate) would be
sufficient.

Proposition 4. For x ≥ 8 there exists at least one prime p with

x < p < 3x/2.

Alternatively, this ensures the existence of a prime in the interval (2y/3, y) for every y ≥ 12.

The proof of Theorem 1, presented in Section 2, is based on a basic result involving the
distribution of primes in short intervals.

Proof of Theorem 1. Let {Cn}n≥0 be the ascending sequence of subsets of N satisfying the
recursion (3) starting with C0 = {1}. Since 1 ∈ Cn for all n ≥ 0, we may define An ⊆ Cn to be
the maximal initial segment of N = {1, 2, 3, . . .} included in Cn. Let cn := |Cn| and an := |An|.
Clearly an ≤ cn and An ⊆ An+1 for n ≥ 0 for all n. Theorem 1 would follow once we establish
that

lim
n→∞

an =∞. (6)

A preliminary calculation shows the values

(a0, a1, a2, a3, a4, a5, a6) = (1, 2, 3, 3, 5, 7, 9) (7)

for a0, a1, . . . , a6, respectively. In order to prove (6), we will estimate the rate of growth of the
sequence {an}n≥0.

From the form of the recurrence (3), and since An = {1, 2, . . . , an} ⊆ Cn, it follows that the
set of all possible products of elements in the initial segment An,

An ◦An = {x ◦ y|1 ≤ x, y ≤ an} (8)

is a subset of Cn+1. We will estimate the size of the maximum initial segment of N included
in the set of products (8).
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Lemma 5. If p is any prime with

p < 2an, (9)

then

p ∈ An ◦An. (10)

Proof of Lemma 5. Clearly (10) is vacuous for n = 0 (we refer to the preliminary list (7)). Let
n ≥ 1. If an < p < 2an, p can be written as a sum p = x + y with x, y ∈ An = {1, 2, . . . , an}.
Then, from (1) we have

x ◦ y = s(x + y) = s(p) = p ∈ An ◦An.

If p ≤ an then p ∈ An and p = s(p+ p) = p ◦ p ∈ An ◦An. This concludes the proof of Lemma
5.

Let qn be the largest prime p satisfying (9). If n ≥ 5 (which, according to the preliminary
calculation (7), would imply 2an > 12) setting y := 2an in Proposition 4 demonstrates that
that the largest prime qn less than 2an (necessarily odd) must satisfy the estimate

4an/3 < qn < 2an. (11)

Note that qn ∈ An ◦An ⊆ Cn+1. Then any product of the form

(2k + 1) ◦ qn (12)

where 1 ≤ 2k+1 ≤ an (i.e., 2k+1 is an odd element of An) must necessarily be in An ◦Cn+1 ⊆
Cn ◦ Cn+1 ⊆ Cn+1 ◦ Cn+1 ⊆ Cn+2, according to (3). From the form of the subprime function
s, since 2k + 1 + qn is even, an element in the list (12) can be written as follows:

(2k + 1) ◦ qn = s(2k + 1 + qn) =
2k + 1 + qn

2
= k +

qn + 1

2
. (13)

We thus found a series (13) of
⌈
an/2

⌉
consecutive elements of Cn+2 starting from (qn + 1)/2

upwards.
Since qn < 2an or, equivalently, (qn + 1)/2 ≤ an, (13) represents a extension of the initial

segment An = {1, 2, . . . , an} up to
qn + an − εn

2
,

where εn = 1−(an mod 2). Using the estimate (11) for the prime qn, we find that (13) actually
represents an initial segment of Cn+2 of size bounded from below by

4an/3 + an − 1

2
=

7an − 3

6
,

and consequently, starting from n = 5 (corresponding to a5 = 7) we have

an+2 ≥
7an − 3

6
. (14)

From (14) and the fact that the sequence {an}n≥0 is non-decreasing, (6) follows. This concludes
the proof of Theorem 1 and consequently the validity of (5).
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