RELATIONSHIPS BETWEEN k-GONAL NUMBERS THAT ARE CENTERED k-GONAL, AND LUCAS AND RELATED NUMBERS

RUSSELL EULER AND JAWAD SADEK

ABSTRACT. Relationships between k-gonal numbers, centered k-gonal numbers and Lucas numbers, and between k-gonal, centered k-gonal numbers and Pell-Lucas numbers are explored in this paper.

1. INTRODUCTION

For a positive integer $k \ge 3$, the *n*th term of the *k*th polygonal number, G(n;k), and the *n*th term of the *k*th centered polygonal number, C(n;k), are given by

$$G(n;k) = \frac{(k-2)n^2 + (4-k)n}{2}$$

and

$$C(n;k) = \frac{kn^2 - kn + 2}{2},$$

respectively (see [5]). It was shown in [1] that the numbers that are both k-gonal and centered k-gonal are given by

$$u(n;k) = \frac{k}{16(k-2)} \left\{ \frac{-2k^2 + 18k - 32}{k} + \left[k - 1 + \sqrt{k(k-2)}\right]^{2n+1} + \left[k - 1 - \sqrt{k(k-2)}\right]^{2n+1} \right\}$$
(1.1)

for $n \ge 0$ and $k \ge 3$. The Pell numbers, P_n , are defined recursively by $P_0 = 0$, $P_1 = 1$, and $P_{n+2} = 2P_{n+1} + P_n$ for all $n \ge 0$. The Pell-Lucas numbers, Q_n , are defined recursively by $Q_0 = 2$, $Q_1 = 2$, and $Q_{n+2} = 2Q_{n+1} + Q_n$ for all $n \ge 0$. The Binet formulas for P_n and Q_n are

$$P_n = \frac{1}{\sqrt{8}} \left(r^n - s^n \right)$$

and

$$Q_n = r^n + s^n,$$

respectively, for $n \ge 0$ where $r = 1 + \sqrt{2}$ and $s = 1 - \sqrt{2}$.

Relationships between k-gonal numbers, Fibonacci, Lucas, and related numbers have not been widely investigated. We highlight two sources. In [4], it was shown that the only Fibonacci numbers that are also triangular numbers are 0, 1, 3, 21, and 55. Also, in [2], Chapter 7, some results about pentagonal Pell-Lucas numbers, and heptagonal Pell numbers are given. In this paper, we prove some relationships between k-gonal, centered k-gonal numbers and Lucas numbers, and between k-gonal, centered k-gonal numbers. Other relationships to related numbers are also indicated.

NOVEMBER 2017

THE FIBONACCI QUARTERLY

2. k-gonal, Centered k-gonal Numbers and Lucas Numbers

The idea is based on the observation that, in (1.1), $\sqrt{k(k-2)}$ can be an integral multiple of $\sqrt{5}$. In fact, we consider equation

$$k(k-2) = 5j^2 \tag{2.1}$$

for some integer j. Equation (2.1) can be written as

$$(k-1)^2 - 5j^2 = 1. (2.2)$$

Equation (2.2) is a Pell equation of the form $x^2 - 5y^2 = 1$ with x = k - 1 and y = j. To solve (2.2) we find that (k - 1, j) = (9, 4) is the smallest solution with k - 1 > 1. The generator is $\theta = 9 + 4\sqrt{5} = \alpha^6$ with $\alpha = \frac{1+\sqrt{5}}{2}$. Thus all solutions are given by

$$\theta^{l} = (9 + 4\sqrt{5})^{l}$$

= α^{6l}
= $\frac{L_{6l}}{2} + \frac{F_{6l}}{2}\sqrt{5}$.

It follows that $k = x + 1 = \frac{1}{2}L_{6l} + 1$ for $l \ge 1$. And so, after simplification, we have the following relationship.

Theorem 2.1. Let u(n,k) be as in (1.1) and L_i be the *i*th Lucas number. Then

$$u(n; 1 + \frac{1}{2}L_{6l}) = \frac{1}{-16 + 8L_{6l}} \left\{ -17 + 7L_{6l} - \frac{1}{2}L_{12l} + (1 + \frac{1}{2}L_{6l})L_{6l(2n+1)} \right\}.$$
 (2.3)

Remark 2.2. Using the identities $L_{2m} = L_m^2 - 2(-1)^m$ and

$$L_m^2 = 5F_m^2 + 4(-1)^m, (2.4)$$

a relationship between $u(n; 1 + \frac{1}{2}L_{6l})$ and Fibonacci numbers follows from (2.3).

The following remarks illustrate a partial converse to the observation at the beginning of this section that lead to theorem (2.1).

Remark 2.3. Assume m is even and (L_m, y_m) is a solution to the Pell equation

$$x^2 - k(k-2)y^2 = 4. (2.5)$$

We show that this implies $k(k-2) = 5j^2$ for some integer j (compare with the fact that the Pell equation $x^2 - 5y^2 = 4$ is solvable in positive integers if and only if $x = L_{2n}$ and $y = F_{2n}$, for $n \ge 1$ [3]).

Since *m* is even, (2.4) and (2.5) imply $5F_m^2 = k(k-2)y_m^2$. If k(k-2) is not a multiple of 5, then y_m^2 must be a multiple of 5, and so y_m is a multiple of 5. Let $y_m = 5^l j$, where *j* is not a multiple of 5. Then

$$5F_m^2 = k(k-2)5^{2l}j^2$$

and so

$$F_m^2 = 5^{2l-1}k(k-2)j^2.$$

Thus, $k(k-2)5^{2l-1}$ is a perfect square. Since k(k-2) is not a multiple of 5, $k(k-2)5^{2l-1}$ cannot be a perfect square. This is a contradiction. Thus, k(k-2) is a multiple of 5. Let k(k-2) = 5a for some integer a. It follows $5F_m^2 = k(k-2)y_m^2 = 5ay_m^2$. Thus, $F_m^2 = ay_m^2$, and

so $a = j^2$ for some integer j. Note that if, in addition, L_m is even as is the case in (2.3), then (2.5) can be written in the form (2.2).

A similar argument holds if m is odd and (L_m, y_m) is a solution to $x^2 - k(k-2)y^2 = -4$.

Remark 2.4. Assume m is odd and (L_m, y_m) is a solution to (2.5). We show that k = 2b+1, where b is an odd integer.

From (2.4) and (2.5), we obtain

$$2L_m^2 = 5F_m^2 + k(k-2)y_m^2, (2.6)$$

and so $5F_m^2$ and $k(k-2)y_m^2$ have the same parity. This implies that k is odd. For if it were even, then $5F_m^2$ and $k(k-2)y_m^2$ would become both even. Since m is odd, $F_m = 2f_m$, where f_m is odd, and $L_m = 2^2 l_m$, where l_m is odd. Now (2.6) implies

$$2 \times 2^2 \times l_m^2 = 5f_m^2 + k'(k'-1)y_m^2, \tag{2.7}$$

where k = 2k'. Since k'(k'-1) is even and f_m is odd, (2.7) yields a contradiction, and so k must be odd.

If $5F_m^2$ and $k(k-2)y_m^2$ are both odd, then, from (2.4) and (2.5), we obtain

$$5F_m^2 = k(k-2)y_m^2 + 8,$$

and equivalently, $5(F_m^2 - 1) = k(k-2)y_m^2 + 3$. Let $F_m = 2i + 1$ and $y_m = 2j + 1$ for some integers *i* and *j*, respectively. It follows that

$$5(4i^{2} + 4i) = k(k - 2)(4j^{2} + 4j + 1) + 3$$

= k(k - 2)(4j^{2} + 4j) + k(k - 2) + 3
= k(k - 2)(4j^{2} + 4j) + (k - 1)^{2} + 2.

Since k is odd, $(k-1)^2$ is a multiple of 4. Thus, $5(4i^2+4i) = k(k-2)(4j^2+4j) + (k-1)^2 + 2$ implies that 2 is a multiple of 4; a contradiction. Thus, $5F_m^2$ and $k(k-2)y_m^2$ are both even. Hence, F_m^2 and y_m^2 are multiples of 4, and so (2.6) implies that L_m is even. It is known that if m is odd and F_m is even, then $F_m = 2f_m$, where f_m is odd, and if m is odd and L_m is even, then $L_m = 2^2 l_m$, where l_m is odd. It follows from (2.6) that $2^3 l_m^2 = 5f_m^2 + k(k-2)z_m^2$, where $y_m = 2z_m$ and z_m is odd. Writing $f_m = 2r_m + 1$ and $z_m = 2s_m + 1$, we obtain

$$2^{3}l_{m}^{2} = 5(r_{m}^{2} + r_{m}) + k(k-2)(s_{m}^{2} + s_{m}) + \frac{(k-1)^{2}}{4} + 1.$$

This implies that $\frac{(k-1)^2}{4}$ must be odd. It follows that k = 2b + 1, where b is odd.

3. k-gonal, Centered k-gonal Numbers and Pell-Lucas Numbers

An argument similar to the one in Section 2 yields a relationship between k-gonal, centered k-gonal numbers and Pell-Lucas numbers. We need only consider when $\sqrt{k(k-2)}$ can be an integral multiple of $\sqrt{2}$. This leads to the Pell equation

$$x^2 - 2y^2 = 1$$

NOVEMBER 2017

THE FIBONACCI QUARTERLY

with x = k - 1 and y = m. Since the generator in this case is $\phi = 3 + 2\sqrt{2}$, the general solution is given by

$$\begin{split} \phi^l &= (3+2\sqrt{2})^l \\ &= \left[(1+\sqrt{2})^2 \right]^l \\ &= (1+\sqrt{2})^{2l} \\ &= r^{2l} \\ &= \frac{1}{2}Q_{2l} + \frac{1}{2}P_{2l}\sqrt{2} \end{split}$$

Now $k = x + 1 = 1 + \frac{1}{2}Q_{2l}$ and so, after simplification, we have the following relationship.

Theorem 3.1. Let u(n,k) be as in (1.1) and Q_i be the *i*th Pell-Lucas number. Then

$$u(n; 1 + \frac{1}{2}Q_{2l}) = \frac{1}{-16 + 8Q_{2l}} \left\{ -2(1 + \frac{1}{2}Q_{2l})^2 + 18(1 + \frac{1}{2}Q_{2l}) - 32 + (1 + \frac{1}{2}Q_{2l})Q_{2l(2n+1)} \right\}.$$
(3.1)

Remark 3.2. Using the identities $Q_{2m}^2 = Q_m^2 - 2(-1)^m$ and $Q_n^2 = 8P_m^2 + 4(-1)^m$, a relationship between $u(n; 1 + \frac{1}{2}Q_{2l})$ and Pell numbers follows from (3.1).

The following remarks illustrate a partial converse to the observation at the beginning of this section that lead to Theorem 3.1.

Remark 3.3. An argument identical to the one used in remark (2.3) yields the following. Let (Q_m, y_m) be a solution to $x^2 - k(k-2)y^2 = 4(-1)^n$. Then $k(k-2) = 2j^2$ for some integer j.

Remark 3.4. If m is odd, then (2.5) cannot have a solution of the form (Q_m, y_m) .

In fact, if it did, then (2.5) and the identity $Q_m^2 = 2P_m^2 - 4$ imply

$$2Q_m^2 = 2P_m^2 + k(k-2)y_m^2.$$
(3.2)

Thus, $k(k-2)y_m^2$ must be even. In fact, whether k is even or odd, $k(k-2)y_m^2$ is even implies $k(k-2)y_m^2 = 4c$ for some integer c. It follows from (3.2) that

$$Q_m^2 = P_m^2 + 2c. (3.3)$$

Since Q_m is even for all values of m and P_m is odd when m is odd, (3.3) yields a contradiction.

References

- R. Euler and J. Sadek, A formula for all k-gonal numbers that are centred k-gonal, The Mathematical Gazette, 95.534 (2011), 501–505.
- [2] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
- [3] C. T. Long, and J. H. Jordan, A limited arithmetic on simple continued fractions, The Fibonacci Quarterly, 5.2 (1967), 113–128.
- [4] M. Luo, On triangular Fibonacci numbers, The Fibonacci Quarterly, 27.2 (1989), 98-108.
- [5] E. W. Weisstein, Centered Polygonal Number, http://mathworld.wolfram.com/CenteredPolygonalNumber.html

RELATIONSHIPS BETWEEN CENTERED K-GONAL NUMBERS AND LUCAS NUMBERS

MSC2010: 11A99

Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468

E-mail address: reuler@nwmissouri.edu

Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468

E-mail address: jawads@nwmissouri.edu