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Abstract. The question of enumerating the sequence of the prime numbers is one of the
oldest and most fruitful in all of mathematics. In this paper, we propose a simple new
recursive technique (essentially different from all sieve methods, including the original one due
to Eratosthenes) for explicitly listing the primes; and it is based only on a new general density
hypothesis concerning their overall distribution. The currently conditional status of this
iterative device is offset by at least one major advantage: formulation of a self-perpetuating
principle unhindred by fixed magnitudes and bounds that limit all sieves.

1. Introduction

In Book IX of Elements [10] of Euclid, written sometime after 300 B.C., one finds the
oldest extant proof of the infinitude of the prime numbers, now known as Euclid’s Theorem
(a fundamental result that has since been proved in many other ways, see [11], [22], [23], etc.)
Less than a century later, also in Alexandria, Eratosthenes was the first to invent an ingenious
sieve method for the evaluation of all prime numbers below a given magnitude x, a method
that still carries his name (see [13], [12] or [17] for more details). For the longest time, the
sieve of Eratosthenes provided the only way of computing complete lists of primes ≤ x.

Following Legendre’s idea of quantifying the sieve of Eratosthenes, i.e.

π(x) :=
∑
p≤x

1 =
∑
d

µ(d)
[x
d

]
+ π(
√
x)− 1,

(where the sum is extended over all positive integers d divisible by primes ≤ x only, and
µ(d) denotes the versatile Möbius function: µ(1) = 1, µ(d) = (−1)m when d is the product
of m distinct primes, and µ(d) = 0 otherwise) and then Brun’s revolutionary refinement of
it (cf. [4], [3] and [2]), the sieve theory has developed dramatically during the 20th century,
significantly expanding the scope of its applicability; it has helped establish many deep results
concerning the prime gaps and differences, even though, in spite of all the efforts, certain
questions addressing the finer aspects of the distribution of prime numbers – the existence of
infinitely many twin primes being the most notorious example – still remain unsolved to this
day.

In this short paper, we look at things from a different angle, and propose a new systematic
method for listing the prime numbers. Not only does our prime number device not refer to
a sieve, it is something of a reverse of it; defined recursively, it works forward by looking
back, and is not limited by any fixed upper bounds on intervals of interest, its underlining
principle possessing a useful self-perpetuating property: it could be started up once and would,
henceforth, compute the list of consecutive primes forever. Moreover, it employs only the
simplest congruence properties of the prime gaps, the sequence of which we define as:

G = {2, 4, 2, 4, 2, 4, 6, . . .}, where gn = pn+1 − pn, for pn ≥ 5.

For convenience, we denote by Gn the truncation of G after the gap gn.
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2. Properties of Prime Gaps

One of the oldest unsolved problems in number theory remains the question of existence of
infinitely many pairs of prime numbers p and p+2, that differ by 2 – e.g. (3, 5) and (11, 13) and
(2027, 2029) – the so-called twin primes, mentioned above. In 1859, de Polignac [19] realized
that there was nothing special about the prime gap having size 2 and he explicitly conjectured
that every even integer k ≥ 2 will appear infinitely often in G; in other words, if we define the
counting function g(x, k) := #{pn ≤ x : pn+1 − pn = k}, then g(x, k)→∞, as x→∞. This
important conjecture is still open for all fixed even integers k, despite that in 1919 Brun [3]
proved that g(x, 2) � x/(log x)2, for all x, and in 1923 Hardy and Littlewood [14] supplied
convincing heuristics (their Conjecture B, on p. 42 of [14]) why we should expect

g(x, k) ∼ Ck
x

(log x)2
, (1)

where

Ck := 2
∞∏
p=3

(
1− 1

(p− 1)2

)∏
p|k
p>2

(
1 +

1

p− 2

)
are well-defined constants; in particular, C2 = C4 = C8 = 1.32032 . . . , C6 = 2.64064 . . ., etc.

Studying more carefully the gap sequence G, one could ask an even more general question
about frequencies of occurrences of various prime gap groupings, and quickly discover that,
for example, the sequences {2, 2} and {4, 4} never occur in G, while {2, 4} (and {4, 2}) are
popular (and are the prototypical prime triplets). The reason for the impossibility of the
former two cases is easily found to be due to a trivial congruence restriction: one of the
integers p, p+ 2, p+ 2 + 2 (resp. p, p+ 4, p+ 4 + 4) must be divisible by 3, and thus cannot be
a prime. In general, a sequence (or a constellation) of gaps is called admissible, if it does not
in similar fashion cover the full residue system modulo any prime number. For instance, the
grouping {6, 6} is admissible, but {6, 6, 6, 6} is not, since it fails modulo 5.

Note 1: A basic, but useful, observation is that if p is the smallest prime not dividing a
given gap d, then {d, d, · · · d} will become inadmissible when the number of ds reaches p− 1.

Many intriguing questions addressing the density and structure of admissibile prime con-
stellations remain unsolved [9]. It is believed, but has never been proved, that if S is admis-
sible, then it will occur infinitely often as a subsequence of the prime gap sequence G; i.e.
π(x, S) → ∞, as x → ∞. This is known as the k-tuplet conjecture of Hardy and Littlewood
[14, Theorem X, p. 61], and also follows from the polynomial Hypothesis H of Schinzel [25],
the quantitative version of which was proposed by Bateman and Horn [1] in 1962. We have

π(x, S) ∼ CS

∫ x

2

dt

(log t)|S|
∼ CS

x

(log x)|S|
, (2)

where (for each finite admissible sequence S) CS are well-defined, explicitly given constants.

Concerning the extreme size of gaps between primes, in 1936 Cramér [5] proved, under the
assumption of the Riemann Hypothesis, that we have

G(x) := max
pn≤x

(pn+1 − pn) �
√
x log x.

But this is far from expectation, and Cramér himself conjectured that, for all x,

G(x)� (log x)2. (3)
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3. Two New Hypotheses

Our main objective is to discuss a new prime-computing device. Instead of employing a
sieving method, it will apply the following principle of maximal density of prime distribution.

Hypothesis 1. For all n ≥ n0, the prime gap sequence G can be constructed iteratively,
where the nth step of the extension consists of appending to Gn the smallest even positive
integer that does not violate any congruence conditions of admissibility.

The idea is simple, but it has some surprisingly far-reaching consequences. To illustrate the
mechanism behind the construction, let us consider the sequence of gaps up to the prime 31:
G10 = {2, 4, 2, 4, 2, 4, 6, 2}. To extend the sequence, we place 2 as the hypothetical next gap,
and we try to see if it creates a disallowed full residue system modulo any prime. It does,
immediately: {2, 2} is an inadmissible pair (mod 3). So 4 becomes the next gap candidate.
But, looking backwards, 4 also creates an inadmissible subsequence {4 + 2, 6, 4 + 2, 4 + 2} =
{6, 6, 6, 6} (mod 5). Therefore, the gap must be at least as large as 6. In the case of 6,
no congruence violation occurs, so 6 is placed as the next gap, extending the sequence to:
G11 = {2, 4, 2, 4, 2, 4, 6, 2, 6}. This process is then repeated automatically: again, 2 is the first
candidate for the extension, but it yields the inadmissible {2+6, 2+6} = {8, 8} (mod 3). The
next option, the gap 4, can be checked promptly not to violate any congruence restrictions,
and is placed as the next term of the gap sequence, yielding: G12 = {2, 4, 2, 4, 2, 4, 6, 2, 6, 4}.

Note 2: The two steps just outlined added the primes 37 and 41 to the list ending with 31.

Plausibility of the recursive principle outlined in Hypothesis 1 will become clearer after it
is shown to follow from the following Goldbach-type conjecture:

Hypothesis 2. For every composite number n ≥ n0, there exists an even d ≥ 2, such that
the set {n− d, n− 2d, . . . , n− kd} contains only prime numbers, where k = minp-d p - 1.

Theorem 3. Hypothesis 2 implies Hypothesis 1.

Proof. The argument is simple. As noted above, the sequence {d, d, · · · , d} becomes inad-
missible once the set of integers p, p+ d, p+ 2d, p+ 3d, · · · fills all congruence classes modulo
some prime, and that happens exactly when the number of ds reaches the smallest prime that
does not divide d−1. So, if Hypothesis 2 is true, then every sufficiently large composite number
will be (through location of the specific d) discovered to violate the conditions of admissibil-
ity, by just following an arithmetic progression of prime numbers of maximal allowed length
modulo the smallest non-divisor of d. This immediately implies that the extension principle of
Hypothesis 1 can yield only gaps between prime numbers, and since it starts the search from
the smallest possible candidates, it guarantees that pn+1 will always follow pn. �

4. Heuristics

We have shown that Hypothesis 1 will be true if Hypothesis 2 is true. Hypothesis 2 is
likely to work (by providing “witnesses” for rejection of all composite candidates), unless non-
existence of arithmetic progressions of certain required lengths k prevents them from doing
so. Unfortunately, the existence of such arithmetic progressions cannot be guaranteed (see
Note 3 below); however, the two classical hypotheses (2) and (3), stated in the Introduction,
provide a rationale for believing this to be true. First of all, Hypothesis 2 addresses admissible
sequences of length k (in fact, only the special case of arithmetic progressions of length k),
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terminating at the composite integer n, so the k-tuplet conjecture and the estimates (2) should
be able to tell us something about the distribution of such sequences. In our case, k = |S| is
not a fixed constant, which complicates matters slightly. However, the Cramér Hypothesis (3)
ensures that k stays relatively small; since d is roughly of the same order as a gap between
primes ≤ n (and thus bounded above by G(n)� (log n)2), we necessarily have

k < min
p-d

p � log d � log logn. (4)

Therefore, it seems reasonable to conclude that, by extending the heuristics behind the
general conjecture (2), for all “sufficiently large” numbers n, one should always expect existence
of (at least some) arithmetic progressions of this length, since as x→∞ we clearly have:

x

(log x)|S|
� x

(log x)c log log x
= exp(log x− c(log log x)2) → ∞.

Note 3: A few small exceptions to the general rule described in Hypothesis 2 exist (e.g. the
number 25 will show up as “prime,” because of the unusual arithmetic progression 19, 13, 7, 1),
but these special cases can be enumerated. The choice of n0 = 200 appears safe.

5. Final Remarks

I. The prime numbers are believed to be the densest set of pairwise-coprime positive integers.
But, how does one define the meaning of “densest”? Erdős [8] formulated the idea as follows:∑

an≤x

1

an
≤
∑
p≤x

1

p
, (5)

where {an} is any sequence of pairwise-coprime integers ≥ 2. However, certain complications
arise when one tries to transfer (or localize) this property, as Hensley and Richards have shown
in [15]: if the prime k-tuplet conjecture (from [14]) is true, then infinitely often we must have

π(x+ y) > π(x) + π(y), (6)

disproving a speculation of Hardy and Littlewood (also in [14], pp. 52–54), and implying that
the initial subsequences of the prime sequence cannot be the densest possible. Therefore, it is
somewhat surprising that it is actually possible to guarantee a maximal density of the prime
numbers in an iterative manner, as we have outlined above.

II. The algorithm behind the original sieve of Eratosthenes finds all prime numbers below x
after performing O(x log log x) operations, but while doing so it requires O(x) bits of storage.
In computational applications, one always encounters a similar trade-off between the time and
the space. Removing various repetitions and redundancies in the sieving process via the use
of clever segmentation and modern primality tests can help one improve the overall results
with respect to both the speed and the size. Today, the most time-efficient algorithms require
only O(x/ log log x) operations, but need relatively large storage; and the most space-efficient
algorithms use just O(

√
x) bits of storage, but are considerably slower (see [6], [20], and [26]).

Our device seems to compare favorably with the sieves. The mechanism of extension has
π(x) steps (up to x), and for each step it runs through the gap candidates (of average size
log x) and tests arithmetic progressions defined in Hypothesis 2. By equation (4), the length
of these progressions is at most O(log log x), so the time-complexity of the process is expected
to be O(x log log x). As far as space is concerned, the bulk is taken up by storing portions
(the tail-ends) of the sequence of prime gaps required for testing the congruence conditions; in
the worst case this would amount to O(x/ log x), but, in reality, only very small portions are

NOVEMBER 2017 355



THE FIBONACCI QUARTERLY

actually used, and the bound O(
√
x) appears much closer to the truth. Unfortunately, to say

something more precise, one would need accurate information about 1) the extreme size (as a
function of x) of the smallest d for which a candidate for the next prime gap is rejected, and
2) the average size of the corresponding progression lengths k. However, both of these depend
on a better understanding of the variable extensions of (2), unavailable at present.
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[8] P. Erdős, Seminar at the University of Limoges, 1988.
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