CIRCULAR BALANCING NUMBERS

A. K. PANDA AND G. K. PANDA

Abstract. Circular balancing numbers are introduced and several special cases are explored.

1. Introduction

A balancing number is a natural number n such that if it is removed from first m ($m>$ n and m depends on n) natural numbers arranged in a line, then the sum of numbers to the left of n is equal to the sum to its right $[1,6]$. Several generalizations of balancing numbers have been studied by many authors $[2,3,4,5,6,7,8]$. In this paper, our focus is on another exciting generalization of balancing numbers, which we call circular balancing numbers.

Instead of arranging numbers in a line as in the case of balancing and cobalancing numbers $[1,3]$, consider an arrangement of m natural numbers equally spaced on a circle. Fix a number k on this circle. By deleting two numbers corresponding to a chord whose one end is k and other end is $x(>k)$, the circular arrangement of numbers will be divided into two arcs. If the sums of numbers on those two arcs are the same, then we call x a k-circular balancing number. More precisely, we can define circular balancing numbers as follows.

Definition 1.1. Let k be a fixed positive integer. We call a positive integer n, a k-circular balancing number if the Diophantine equation

$$
\begin{equation*}
(k+1)+(k+2)+\cdots+(n-1)=(n+1)+(n+2)+\cdots+m+(1+2+\cdots+k-1) \tag{1.1}
\end{equation*}
$$

holds for some natural number m.
It is possible to simplify equation (1.1) as

$$
T_{m}+k^{2}=n^{2}, \quad k+2<n<m
$$

where T_{m} is the m th triangular number. The Diophantine equation $T_{m}+k^{2}=n^{2}$ is a variant of the Pythagorean equation $x^{2}+y^{2}=z^{2}$ with one square replaced by a triangular number. However, unlike the Pythagorean equation, it is difficult to find a compact form of solutions for the equation $T_{m}+k^{2}=n^{2}$.

Observe that if $k=0$, then the circular balancing numbers coincide with the balancing numbers $[1,6]$. If $k=1$, then the circular balancing numbers are almost balancing numbers [5].

Example 1.2. Since $2+3=5$, 4 is a 1 -circular balancing number. Similarly, since $11+\cdots+$ $19=21+\cdots+24+(1+\cdots+9)$, 20 is a 10 -circular balancing number.

2. 2-Circular Balancing Numbers

By definition, a natural number x is a 2-circular balancing number if

$$
3+4+\cdots+(x-1)=(x+1)+\cdots+m+1
$$

THE FIBONACCI QUARTERLY

holds for some natural number m. Equivalently, a natural number $x>2$ is a 2 -circular balancing number if and only if $8 x^{2}-31$ is a perfect square. Setting $8 x^{2}-31=y^{2}$, the calculation of 2-circular balancing numbers reduces to solving the generalized Pell equation

$$
\begin{equation*}
y^{2}-8 x^{2}=-31 \tag{2.1}
\end{equation*}
$$

It is easy to see that the fundamental solution of the Pell equation $y^{2}-8 x^{2}=1$ is $3+\sqrt{8}$ and $1+2 \sqrt{8}$ is a fundamental solution of (2.1). Using the theory of generalized Pell equations, one class of 2-circular balancing numbers can be obtained from

$$
y_{n}+\sqrt{8} x_{n}=(1+2 \sqrt{8})(3+\sqrt{8})^{n-1}, \quad n=1,2, \ldots
$$

Thus, the nth member of this class of 2 -circular balancing numbers is given by

$$
x_{n}=\frac{(1+4 \sqrt{2})(3+2 \sqrt{2})^{n-1}-(1-4 \sqrt{2})(3-2 \sqrt{2})^{n-1}}{4 \sqrt{2}}, \quad n=1,2, \ldots .
$$

Using the Binet form for balancing numbers [see [1],[6]], one can have

$$
x_{n}=2 B_{n}-5 B_{n-1}, \quad n=1,2, \ldots
$$

It is well-known that $y_{-n}+\sqrt{8} x_{-n}$ is also a solution of the generalized Pell equation (2.1). Since $x_{n}=2 B_{n}-5 B_{n-1}$ and $B_{-n}=-B_{n}$, it follows that

$$
x_{n}^{\prime}=x_{-n}=2 B_{-n}-5 B_{-n-1}=5 B_{n+1}-2 B_{n}
$$

which is positive and greater than 2 for $n=0,1,2, \ldots$ and therefore, represents another class of 2 -circular balancing numbers. Using the theory of generalized Pell's equation, one can easily verify that there is no other class of 2 -circular balancing numbers. Hence, the set

$$
\left\{2 B_{n}-5 B_{n-1}, 5 B_{n}-2 B_{n-1}: n=1,2, \ldots\right\}
$$

is an exhaustive list of 2 -circular balancing numbers. Each of the two classes of 2-circular balancing numbers can be recursively calculated by a binary recurrence identical to that for balancing numbers. In particular, these recurrences are

$$
x_{n+1}=6 x_{n}-x_{n-1}
$$

and

$$
x_{n+1}^{\prime}=6 x_{n}^{\prime}-x_{n-1}^{\prime}
$$

with initial values $x_{0}=5, x_{1}=2, x_{0}^{\prime}=2, x_{0}^{\prime}=5$. We can summarize the above discussion in the following theorem.

Theorem 2.1. The 2-circular balancing numbers are solutions in x of the generalized Pell equation $y^{2}-8 x^{2}=-31$. These solutions partition into two classes given by $x_{n}=2 B_{n}-$ $5 B_{n-1}, \quad x_{n}^{\prime}=5 B_{n}-2 B_{n-1}: n=1,2, \ldots$ and satisfy the binary recurrences $x_{n+1}=6 x_{n}-x_{n-1}$ and $x_{n+1}^{\prime}=6 x_{n}^{\prime}-x_{n-1}^{\prime}$ with initial values $x_{0}=5, x_{1}=2, x_{0}^{\prime}=2$, and $x_{1}^{\prime}=5$.

3. 3-Circular Balancing Numbers

In view of the Definition 1.1, a natural number x is a 3 -circular balancing number if

$$
4+5+(x-1)=(x+1)+\cdots+m+1+2
$$

holds for some natural number m. After simplification, we can conclude that a natural number $x>3$ is a 3 -circular balancing number if and only if $8 x^{2}-71$ is a perfect square. Writing $8 x^{2}-71=y^{2}$, the calculation of 3-circular balancing numbers requires solving of the generalized Pell equation

$$
\begin{equation*}
y^{2}-8 x^{2}=-71 \tag{3.1}
\end{equation*}
$$

In the last section, we have already noticed that the fundamental solution of the Pell equation $y^{2}-8 x^{2}=1$ is $3+\sqrt{8}$ and a fundamental solution of (3.1) is $1+3 \sqrt{8}$. Using the theory of generalized Pell equations, one class of 3 -circular balancing numbers is contained in

$$
y_{n}+\sqrt{8} x_{n}=(1+3 \sqrt{8})(3+\sqrt{8})^{n-1}, \quad n=1,2, \ldots
$$

Thus, the nth member of this class is given by

$$
x_{n}=\frac{(1+6 \sqrt{2})(3+2 \sqrt{2})^{n-1}-(1-6 \sqrt{2})(3-2 \sqrt{2})^{n-1}}{4 \sqrt{2}}, \quad n=1,2, \ldots .
$$

Using the Binet form for balancing numbers [6], it is easy to see that

$$
x_{n}=3 B_{n}-8 B_{n-1}, \quad n=1,2, \ldots .
$$

It is well-known that $y_{-n}+\sqrt{8} x_{-n}$ is also a solution of the generalized Pell equation (3.1). Since $x_{n}=3 B_{n}-8 B_{n-1}$ and $B_{-n}=-B_{n}$, it follows that

$$
x_{n}^{\prime}=x_{-n}=3 B_{-n}-8 B_{-n-1}=8 B_{n+1}-3 B_{n}
$$

is positive and greater than 3 for $n=0,1,2, \ldots$ and hence, represents another class of 3 circular balancing numbers. One can verify that there are just two fundamental solutions of (3.1). Hence, the set

$$
\left\{3 B_{n}-8 B_{n-1}, \quad 8 B_{n}-3 B_{n-1}: n=1,2, \ldots\right\}
$$

contains all the 3 -circular balancing numbers. The two classes of 3 -circular balancing numbers can also be expressed by means of the binary recurrences

$$
x_{n+1}=6 x_{n}-x_{n-1}
$$

and

$$
x_{n+1}^{\prime}=6 x_{n}^{\prime}-x_{n-1}^{\prime}
$$

with initial values $x_{0}=8, x_{1}=3, x_{0}^{\prime}=3, x_{1}^{\prime}=8$. The above discussion proves the following theorem.

Theorem 3.1. The values of x satisfying the generalized Pell equation $y^{2}-8 x^{2}=-71$ partition into two classes given by $x_{n}=3 B_{n}-8 B_{n-1}$ and $x_{n}^{\prime}=8 B_{n}-3 B_{n-1}: n=1,2, \ldots$ that represent all the 3 -circular balancing numbers. These two classes of solutions satisfy the binary recurrences $x_{n+1}=6 x_{n}-x_{n-1}$ and $x_{n+1}^{\prime}=6 x_{n}^{\prime}-x_{n-1}^{\prime}$ with initial values $x_{0}=8, x_{1}=3$, $x_{0}^{\prime}=3$, and $x_{1}^{\prime}=8$.

4. 4-Circular Balancing Numbers

By virtue of Definition 1.1, a natural number x is a 4 -circular balancing number if

$$
5+6+(x-1)=(x+1)+\cdots+m+1+2+3
$$

holds for some natural number m. After simplification, it follows that a natural number $x>4$ is a 4 -circular balancing number if and only if $8 x^{2}-127$ is a perfect square. Setting $8 x^{2}-127=y^{2}$, the calculation of 4-circular balancing numbers requires solving the generalized Pell equation.

$$
\begin{equation*}
y^{2}-8 x^{2}=-127 . \tag{4.1}
\end{equation*}
$$

We already know that the fundamental solution of the Pell equation $y^{2}-8 x^{2}=1$ is $3+\sqrt{8}$ and a fundamental solution of (4.1) is $1+4 \sqrt{8}$. Thus, one class of 4 -circular balancing numbers is contained in

$$
y_{n}+\sqrt{8} x_{n}=(1+4 \sqrt{8})(3+\sqrt{8})^{n-1}, \quad n=1,2, \ldots
$$

THE FIBONACCI QUARTERLY

Using this equation, the nth member of this class of 4 -circular balancing numbers can be written as

$$
x_{n}=\frac{\left((1+8 \sqrt{2})(3+2 \sqrt{2})^{n-1}-(1-8 \sqrt{2})(3-2 \sqrt{2})^{n-1}\right)}{4 \sqrt{2}}, \quad n=1,2, \ldots
$$

and referring to the Binet form for balancing numbers, one can get

$$
x_{n}=4 B_{n}-11 B_{n-1}, \quad n=1,2, \ldots
$$

As usual, $y_{-n}+\sqrt{8} x_{-n}$ is also a solution of the generalized Pell equation (4.1). Since $x_{n}=$ $4 B_{n}-11 B_{n-1}$ and $B_{-n}=-B_{n}$, it follows that

$$
x_{n}^{\prime}=x_{-n}=4 B_{-n}-11 B_{-n-1}=11 B_{n+1}-4 B_{n}
$$

is positive and greater than 4 for $n=0,1,2, \ldots$ and hence, represents another class of 4 -circular balancing numbers. One can verify that (4.1) has just two fundamental solutions. Therefore, the set

$$
\left\{4 B_{n}-11 B_{n-1}, \quad 11 B_{n}-4 B_{n-1}: n=1,2, \ldots\right\}
$$

gives the complete list of 4 -circular balancing numbers. The two classes of 4 -circular balancing numbers can also be recursively expressed as

$$
x_{n+1}=6 x_{n}-x_{n-1}
$$

and

$$
x_{n+1}^{\prime}=6 x_{n}^{\prime}-x_{n-1}^{\prime}, \quad n=1,2, \ldots
$$

with initial values $x_{0}=11, x_{1}=4, x_{0}^{\prime}=4$, and $x_{1}^{\prime}=11$. In view of the above discussion, we have the following theorem
Theorem 4.1. The 4-circular balancing numbers are solutions in x of the generalized Pell equation $y^{2}-8 x^{2}=-127$ and can be realized in two classes as $x_{n}=4 B_{n}-11 B_{n-1}$ and $x_{n}^{\prime}=11 B_{n}-4 B_{n-1} ; n=1,2, \ldots$. Further, the two classes of 4 -circular balancing numbers obey the recurrence relations $x_{n+1}=6 x_{n}-x_{n-1}$ and $x_{n+1}^{\prime}=6 x_{n}^{\prime}-x_{n-1}^{\prime}$ with initial values $x_{0}=11, x_{1}=4, x_{0}^{\prime}=4$, and $x_{1}^{\prime}=11$.

5. k-Circular Balancing Numbers

By virtue of Definition 1.1, a natural number $x>k$ is a k-circular balancing number if and only if $8 x^{2}-8 k^{2}+1$ is a perfect square. Writing $8 x^{2}-8 k^{2}+1=y^{2}$, the k-circular balancing numbers are values of x satisfying the generalized Pell equation

$$
\begin{equation*}
y^{2}-8 x^{2}=-8 k^{2}+1 . \tag{5.1}
\end{equation*}
$$

A fundamental solution of the above equation is $1+k \sqrt{8}$. Thus, one class of k-circular balancing numbers can obtained from

$$
y_{n}+\sqrt{8} x_{n}=(1+k \sqrt{8})(3+\sqrt{8})^{n-1}, \quad n=1,2, \ldots .
$$

The nth member of this class is given by

$$
x_{n}=\frac{(1+2 k \sqrt{2})(3+2 \sqrt{2})^{n-1}-(1-2 k \sqrt{2})(3-2 \sqrt{2})^{n-1}}{4 \sqrt{2}} .
$$

Using the Binet form for balancing numbers, it is easy to see that

$$
x_{n}=k B_{n}-(3 k-1) B_{n-1}, \quad n=1,2, \ldots .
$$

It is well-known that $y_{-n}+\sqrt{8} x_{-n}$ is also a solution of (5.1). Since $x_{n}=k B_{n}-(3 k-1) B_{n-1}$ and $B_{-n}=-B_{n}$, it follows that $x_{n}^{\prime}=x_{-n}=k B_{-n}-(3 k-1) B_{-n-1}=(3 k-1) B_{n+1}-k B_{n}$
is positive and greater than k for $n=0,1,2, \ldots$ and hence, gives another class of k-circular balancing numbers. Thus, the set

$$
\left\{k B_{n}-(3 k-1) B_{n-1}, \quad(3 k-1) B_{n}-k B_{n-1}: n=1,2, \ldots\right\}
$$

represents two classes of k-circular balancing numbers. These two classes can be recursively defined as

$$
x_{n+1}=6 x_{n}-x_{n-1}
$$

and

$$
x_{n+1}^{\prime}=6 x_{n}^{\prime}-x_{n-1}^{\prime}
$$

with initial values $x_{0}=3 k-1, x_{1}=k, x_{0}^{\prime}=k, x_{1}^{\prime}=3 k-1$. The above discussion can be summarized as follows.

Theorem 5.1. For any arbitrary positive integer k, the k-circular balancing numbers are solutions in x of the generalized Pell equation $y^{2}-8 x^{2}=-8 k^{2}+1$. It is always possible to extract two classes of k-circular balancing numbers given by $x_{n}=k B_{n}-(3 k-1) B_{n-1}$, $x_{n}^{\prime}=(3 k-1) B_{n}-k B_{n-1}: n=1,2, \ldots$. These two classes can be described in terms of binary recurrences as $x_{n+1}=6 x_{n}-x_{n-1}$ and $x_{n+1}^{\prime}=6 x_{n}^{\prime}-x_{n-1}^{\prime}$ with initial terms $x_{0}=3 k-1$, $x_{1}=k, x_{0}^{\prime}=k$, and $x_{1}^{\prime}=3 k-1$.

6. Scope for Future Work

It is important to note that two classes of k-circular balancing numbers appearing in Theorem 5.1 may not provide an exhaustive list for some values of k. In particular, the 6 -circular balancing numbers are solutions of $y^{2}-8 x^{2}=-287$ and these solutions partition into four classes and hence there are four classes of 6 -circular balancing numbers. One can verify that these four classes constitute the set

$$
\left\{6 B_{n}-17 B_{n-1}, \quad 17 B_{n}-6 B_{n-1}, \quad 8 B_{n}-9 B_{n-1}, \quad 9 B_{n}-8 B_{n-1}: n=1,2, \ldots\right\} .
$$

It is not possible to explore all classes of circular balancing numbers for an arbitrary positive integer k as it requires solving the generalized parametrized Pell's equation (5.1). However, there is ample scope for exploring all k-circular balancing numbers at least for certain subclasses of natural numbers. We leave this as an open problem for future researchers.

References

[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, The Fibonacci Quarterly, $\mathbf{3 7 . 2}$ (1999), 98-105.
[2] K. Liptai, F. Luca, A. Pinter, and L. Szalay, Generalized balancing numbers, Indagat. Math. New Ser., 20.1 (2009), 87-100.
[3] G. K. Panda and P. K. Ray, Cobalancing numbers and cobalancers, Internat. J. Math. Math. Sci., 8 (2005), 1189-1200.
[4] G. K. Panda and S. S. Rout, Gap balancing numbers, The Fibonacci Quarterly, 51.3 (2013), 239-248.
[5] G. K. Panda and A. K. Panda, Almost balancing numbers, J. Indian Math. Soc., 82(3-4) (2015), 147-156.
[6] P. K. Ray, Balancing and cobalancing numbers, Ph.D. thesis, National Institute of Technology, Rourkela, India, 2009.
[7] S. S. Rout and G. K. Panda, k-Gap balancing numbers, Period. Math. Hungar., 70.1 (2015), 109-121.
[8] T. Szakács, Multiplying balancing numbers, Acta Univ. Sapientiae. Mathematica, 3.1 (2011), 90-96.

THE FIBONACCI QUARTERLY

MSC2010: 11B39, 11B83
Department of Mathematics, KIIT University, Bhubaneswar, Odisha, India, 751024
E-mail address: akpandamath@gmail.com
Department of Mathematics, National Institute of Technology, Rourkela, Odisha, India, 769008

E-mail address: gkpanda_nit@rediffmail.com

