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Abstract. Circular balancing numbers are introduced and several special cases are explored.

1. Introduction

A balancing number is a natural number n such that if it is removed from first m (m >
n and m depends on n) natural numbers arranged in a line, then the sum of numbers to the
left of n is equal to the sum to its right [1, 6]. Several generalizations of balancing numbers
have been studied by many authors [2, 3, 4, 5, 6, 7, 8]. In this paper, our focus is on another
exciting generalization of balancing numbers, which we call circular balancing numbers.

Instead of arranging numbers in a line as in the case of balancing and cobalancing numbers
[1, 3], consider an arrangement of m natural numbers equally spaced on a circle. Fix a number
k on this circle. By deleting two numbers corresponding to a chord whose one end is k and
other end is x(> k), the circular arrangement of numbers will be divided into two arcs. If the
sums of numbers on those two arcs are the same, then we call x a k-circular balancing number.
More precisely, we can define circular balancing numbers as follows.

Definition 1.1. Let k be a fixed positive integer. We call a positive integer n, a k-circular
balancing number if the Diophantine equation

(k + 1) + (k + 2) + · · ·+ (n− 1) = (n + 1) + (n + 2) + · · ·+ m + (1 + 2 + · · ·+ k − 1) (1.1)

holds for some natural number m.

It is possible to simplify equation (1.1) as

Tm + k2 = n2, k + 2 < n < m

where Tm is the mth triangular number. The Diophantine equation Tm + k2 = n2 is a variant
of the Pythagorean equation x2 + y2 = z2 with one square replaced by a triangular number.
However, unlike the Pythagorean equation, it is difficult to find a compact form of solutions
for the equation Tm + k2 = n2.

Observe that if k = 0, then the circular balancing numbers coincide with the balancing
numbers [1, 6]. If k = 1, then the circular balancing numbers are almost balancing numbers
[5].

Example 1.2. Since 2 + 3 = 5, 4 is a 1-circular balancing number. Similarly, since 11 + · · ·+
19 = 21 + · · ·+ 24 + (1 + · · ·+ 9), 20 is a 10-circular balancing number.

2. 2-Circular Balancing Numbers

By definition, a natural number x is a 2-circular balancing number if

3 + 4 + · · ·+ (x− 1) = (x + 1) + · · ·+ m + 1
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holds for some natural number m. Equivalently, a natural number x > 2 is a 2-circular
balancing number if and only if 8x2 − 31 is a perfect square. Setting 8x2 − 31 = y2, the
calculation of 2-circular balancing numbers reduces to solving the generalized Pell equation

y2 − 8x2 = −31. (2.1)

It is easy to see that the fundamental solution of the Pell equation y2− 8x2 = 1 is 3 +
√

8 and
1+2

√
8 is a fundamental solution of (2.1). Using the theory of generalized Pell equations, one

class of 2-circular balancing numbers can be obtained from

yn +
√

8xn = (1 + 2
√

8)(3 +
√

8)n−1, n = 1, 2, . . . .

Thus, the nth member of this class of 2-circular balancing numbers is given by

xn =
(1 + 4

√
2)(3 + 2

√
2)n−1 − (1− 4

√
2)(3− 2

√
2)n−1

4
√

2
, n = 1, 2, . . . .

Using the Binet form for balancing numbers [see [1],[6]], one can have

xn = 2Bn − 5Bn−1, n = 1, 2, . . . .

It is well-known that y−n +
√

8x−n is also a solution of the generalized Pell equation (2.1).
Since xn = 2Bn − 5Bn−1 and B−n = −Bn, it follows that

x′n = x−n = 2B−n − 5B−n−1 = 5Bn+1 − 2Bn

which is positive and greater than 2 for n = 0, 1, 2, . . . and therefore, represents another class
of 2-circular balancing numbers. Using the theory of generalized Pell’s equation, one can easily
verify that there is no other class of 2-circular balancing numbers. Hence, the set

{2Bn − 5Bn−1, 5Bn − 2Bn−1 : n = 1, 2, . . . }
is an exhaustive list of 2-circular balancing numbers. Each of the two classes of 2-circular
balancing numbers can be recursively calculated by a binary recurrence identical to that for
balancing numbers. In particular, these recurrences are

xn+1 = 6xn − xn−1

and
x′n+1 = 6x′n − x′n−1

with initial values x0 = 5, x1 = 2, x′0 = 2, x′0 = 5. We can summarize the above discussion in
the following theorem.

Theorem 2.1. The 2-circular balancing numbers are solutions in x of the generalized Pell
equation y2 − 8x2 = −31. These solutions partition into two classes given by xn = 2Bn −
5Bn−1, x′n = 5Bn−2Bn−1 : n = 1, 2, . . . and satisfy the binary recurrences xn+1 = 6xn−xn−1
and x′n+1 = 6x′n − x′n−1 with initial values x0 = 5, x1 = 2, x′0 = 2, and x′1 = 5.

3. 3-Circular Balancing Numbers

In view of the Definition 1.1, a natural number x is a 3-circular balancing number if

4 + 5 + (x− 1) = (x + 1) + · · ·+ m + 1 + 2

holds for some natural number m. After simplification, we can conclude that a natural number
x > 3 is a 3-circular balancing number if and only if 8x2 − 71 is a perfect square. Writing
8x2−71 = y2, the calculation of 3-circular balancing numbers requires solving of the generalized
Pell equation

y2 − 8x2 = −71. (3.1)
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In the last section, we have already noticed that the fundamental solution of the Pell equation
y2 − 8x2 = 1 is 3 +

√
8 and a fundamental solution of (3.1) is 1 + 3

√
8. Using the theory of

generalized Pell equations, one class of 3-circular balancing numbers is contained in

yn +
√

8xn = (1 + 3
√

8)(3 +
√

8)n−1, n = 1, 2, . . . .

Thus, the nth member of this class is given by

xn =
(1 + 6

√
2)(3 + 2

√
2)n−1 − (1− 6

√
2)(3− 2

√
2)n−1

4
√

2
, n = 1, 2, . . . .

Using the Binet form for balancing numbers [6], it is easy to see that

xn = 3Bn − 8Bn−1, n = 1, 2, . . . .

It is well-known that y−n +
√

8x−n is also a solution of the generalized Pell equation (3.1).
Since xn = 3Bn − 8Bn−1 and B−n = −Bn, it follows that

x′n = x−n = 3B−n − 8B−n−1 = 8Bn+1 − 3Bn

is positive and greater than 3 for n = 0, 1, 2, . . . and hence, represents another class of 3-
circular balancing numbers. One can verify that there are just two fundamental solutions of
(3.1). Hence, the set

{3Bn − 8Bn−1, 8Bn − 3Bn−1 : n = 1, 2, . . .}
contains all the 3-circular balancing numbers. The two classes of 3-circular balancing numbers
can also be expressed by means of the binary recurrences

xn+1 = 6xn − xn−1

and
x′n+1 = 6x′n − x′n−1

with initial values x0 = 8, x1 = 3, x′0 = 3, x′1 = 8. The above discussion proves the following
theorem.

Theorem 3.1. The values of x satisfying the generalized Pell equation y2−8x2 = −71 partition
into two classes given by xn = 3Bn − 8Bn−1 and x′n = 8Bn − 3Bn−1 : n = 1, 2, . . . that
represent all the 3-circular balancing numbers. These two classes of solutions satisfy the binary
recurrences xn+1 = 6xn − xn−1 and x′n+1 = 6x′n − x′n−1 with initial values x0 = 8, x1 = 3,
x′0 = 3, and x′1 = 8.

4. 4-Circular Balancing Numbers

By virtue of Definition 1.1, a natural number x is a 4-circular balancing number if

5 + 6 + (x− 1) = (x + 1) + · · ·+ m + 1 + 2 + 3

holds for some natural number m. After simplification, it follows that a natural number
x > 4 is a 4-circular balancing number if and only if 8x2 − 127 is a perfect square. Setting
8x2−127 = y2, the calculation of 4-circular balancing numbers requires solving the generalized
Pell equation.

y2 − 8x2 = −127. (4.1)

We already know that the fundamental solution of the Pell equation y2−8x2 = 1 is 3+
√

8 and
a fundamental solution of (4.1) is 1 + 4

√
8. Thus, one class of 4-circular balancing numbers is

contained in
yn +

√
8xn = (1 + 4

√
8)(3 +

√
8)n−1, n = 1, 2, . . .
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Using this equation, the nth member of this class of 4-circular balancing numbers can be
written as

xn =
((1 + 8

√
2)(3 + 2

√
2)n−1 − (1− 8

√
2)(3− 2

√
2)n−1)

4
√

2
, n = 1, 2, . . .

and referring to the Binet form for balancing numbers, one can get

xn = 4Bn − 11Bn−1, n = 1, 2, . . . .

As usual, y−n +
√

8x−n is also a solution of the generalized Pell equation (4.1). Since xn =
4Bn − 11Bn−1 and B−n = −Bn, it follows that

x′n = x−n = 4B−n − 11B−n−1 = 11Bn+1 − 4Bn

is positive and greater than 4 for n = 0, 1, 2, . . . and hence, represents another class of 4-circular
balancing numbers. One can verify that (4.1) has just two fundamental solutions. Therefore,
the set

{4Bn − 11Bn−1, 11Bn − 4Bn−1 : n = 1, 2, . . .}
gives the complete list of 4-circular balancing numbers. The two classes of 4-circular balancing
numbers can also be recursively expressed as

xn+1 = 6xn − xn−1

and
x′n+1 = 6x′n − x′n−1, n = 1, 2, . . .

with initial values x0 = 11, x1 = 4, x′0 = 4, and x′1 = 11. In view of the above discussion, we
have the following theorem

Theorem 4.1. The 4-circular balancing numbers are solutions in x of the generalized Pell
equation y2 − 8x2 = −127 and can be realized in two classes as xn = 4Bn − 11Bn−1 and
x′n = 11Bn − 4Bn−1; n = 1, 2, . . .. Further, the two classes of 4-circular balancing numbers

obey the recurrence relations xn+1 = 6xn − xn−1 and x′n+1 = 6x′n − x
′
n−1 with initial values

x0 = 11, x1 = 4, x′0 = 4, and x′1 = 11.

5. k-Circular Balancing Numbers

By virtue of Definition 1.1, a natural number x > k is a k-circular balancing number if and
only if 8x2 − 8k2 + 1 is a perfect square. Writing 8x2 − 8k2 + 1 = y2, the k-circular balancing
numbers are values of x satisfying the generalized Pell equation

y2 − 8x2 = −8k2 + 1. (5.1)

A fundamental solution of the above equation is 1+k
√

8. Thus, one class of k-circular balancing
numbers can obtained from

yn +
√

8xn = (1 + k
√

8)(3 +
√

8)n−1, n = 1, 2, . . . .

The nth member of this class is given by

xn =
(1 + 2k

√
2)(3 + 2

√
2)n−1 − (1− 2k

√
2)(3− 2

√
2)n−1

4
√

2
.

Using the Binet form for balancing numbers, it is easy to see that

xn = kBn − (3k − 1)Bn−1, n = 1, 2, . . . .

It is well-known that y−n +
√

8x−n is also a solution of (5.1). Since xn = kBn− (3k− 1)Bn−1
and B−n = −Bn, it follows that x′n = x−n = kB−n − (3k − 1)B−n−1 = (3k − 1)Bn+1 − kBn
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is positive and greater than k for n = 0, 1, 2, . . . and hence, gives another class of k-circular
balancing numbers. Thus, the set

{kBn − (3k − 1)Bn−1, (3k − 1)Bn − kBn−1 : n = 1, 2, . . .}

represents two classes of k-circular balancing numbers. These two classes can be recursively
defined as

xn+1 = 6xn − xn−1

and

x′n+1 = 6x′n − x′n−1

with initial values x0 = 3k − 1, x1 = k, x′0 = k, x′1 = 3k − 1. The above discussion can be
summarized as follows.

Theorem 5.1. For any arbitrary positive integer k, the k-circular balancing numbers are
solutions in x of the generalized Pell equation y2 − 8x2 = −8k2 + 1. It is always possible
to extract two classes of k-circular balancing numbers given by xn = kBn − (3k − 1)Bn−1,
x′n = (3k− 1)Bn− kBn−1 : n = 1, 2, . . .. These two classes can be described in terms of binary
recurrences as xn+1 = 6xn − xn−1 and x′n+1 = 6x′n − x′n−1 with initial terms x0 = 3k − 1,
x1 = k, x′0 = k, and x′1 = 3k − 1.

6. Scope for Future Work

It is important to note that two classes of k-circular balancing numbers appearing in The-
orem 5.1 may not provide an exhaustive list for some values of k. In particular, the 6-circular
balancing numbers are solutions of y2 − 8x2 = −287 and these solutions partition into four
classes and hence there are four classes of 6-circular balancing numbers. One can verify that
these four classes constitute the set

{6Bn − 17Bn−1, 17Bn − 6Bn−1, 8Bn − 9Bn−1, 9Bn − 8Bn−1 : n = 1, 2, . . .}.

It is not possible to explore all classes of circular balancing numbers for an arbitrary positive
integer k as it requires solving the generalized parametrized Pell’s equation (5.1). However,
there is ample scope for exploring all k-circular balancing numbers at least for certain sub-
classes of natural numbers. We leave this as an open problem for future researchers.
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