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ABSTRACT. Recently, we extended to Fibonacci polynomials a complex, but interesting, re-
currence studied by C.R. Diminnie. We then studied the corresponding versions to Lucas,
Pell, and Pell-Lucas polynomials, and extracted the respective number-theoretic counterparts.
In this article, we explore extensions to Jacobsthal, Jacobsthal-Lucas, Vieta, and Chebyshev
polynomials.

1. INTRODUCTION

The extended gibonacci polynomials g, (x) are defined by the second-order recurrence g, 4+2(z) =
a(x)gn+1(z) + b(x)gn(z), where x is an arbitrary complex variable; a(x), b(x), go(z), and g1 ()
are arbitrary complex polynomials; and n > 0.

Suppose a(z) = z and b(zx) = 1. When go(x) = 0 and g1(x) = 1, gp(x) = fu(x), the
nth Fibonacci polynomial; and when go(x) = 2 and ¢1(z) = z, gn(x) = l,(z), the nth Lucas
polynomial. Clearly, f,(1) = F,, the nth Fibonacci number; and [,,(1) = L, the nth Lucas
number [1, 7, 9, 15].

The Pell polynomials p,(z) and Pell-Lucas polynomials g,(x) are defined by p,(x) = f,(2x)
and gn(z) = 1,(2x), respectively. The corresponding Pell numbers P, and Pell-Lucas numbers
Q@ are given by P, = p,(1) = fn(2) and 2Q,, = ¢, (1) = [,,(2), respectively [6, 8, 9].

Suppose a(x) = 1 and b(x) = x. When go(z) = 0 and ¢1(z) = 1, gn(x) = Jp(z), the nth
Jacobsthal polynomial; and when go(z) = 2 and ¢1(z) = 1, gn(x) = jn(z), the nth Jacobsthal-
Lucas polynomial [3, 4, 9]. Correspondingly, J,, = J,,(2) and j,, = j,(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, J,(1) = F,, and j,(1) = L,.

Let a(x) = z and b(z) = —1. When go(z) = 0 and ¢1(z) = 1, gn(x) = Vp(z), the nth
Vieta polynomial; and when go(z) = 2 and g1(z) = z, gn(x) = vy(z), the nth Vieta-Lucas
polynomial [5, 9, 12].

On the other hand, let a(x) = 2z and b(z) = —1. When go(z) = 1 and ¢i(z) = =,
gn(x) = Ty(z), the nth Chebyshev polynomial of the first kind; and when go(x) = 1 and
g1(x) = 2z, gn(x) = Uy(z), the nth Chebyshev polynomial of the second kind [5, 8, 9, 11].

1.1. Fibonacci Extension of the Diminnie Delight. Recently, we investigated a Fibonacci
polynomial extension of the recurrence [2, 14]

dpy1 = 5dp (5dE — 5d2 + 1),
where dy = 1 and n > 0. We found that the solution of the generalized recurrence
any1 = an(A%a} — 5A%a% 4 5),

where a, = an(z),a0 =1, and A = V22 + 4 is a,(x) = f5n [10].
Polynomials ¢, (), defined by the recurrence ¢, 12(x) = zepmi1(x) — em(x), played a major
part in the polynomial investigation. They are related to the polynomials T),(x) and [, (z) :
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em(x) = 2T, (x2/2) = iy (—iz), where i = y/—1. In addition, they satisfy a delightful

property:
1 m 1
cm |y + ; =y + =

Yy
where y # 0 and m > 0 [10, 14].
In the interest of brevity and convenience, we omit the argument in the functional notation,
when there is no ambiguity; so g, will mean g, ().
Using the polynomials ¢,,, we studied an infinite class of recurrences, as in the following
theorem [10].

Theorem 1.1. The solution of the recurrence
Aap+1 = cm(Aay), (1.1)

is ap = flamn, where ap = an(x), ag = fx, km is an odd positive integer, k #= m, m > 3, and
n > 0.

This theorem plays a pivotal role in our exploration of the extensions to Jacobsthal poly-
nomials J,(z), Vieta polynomials V;,(z), and Chebyshev polynomials U, (z). In the interest
of brevity, we omit a lot of basic, but messy algebra.

2. RELATIONSHIPS AMONG THE GIBONACCI SUBFAMILIES

Interestingly, Fibonacci, Pell, and Jacobsthal polynomials, and Chebyshev polynomials of
the second kind are closely linked; and so are the Lucas, Pell-Lucas, and Jacobsthal-Lucas
polynomials, and Chebyshev polynomials of the first kind [5, 9, 12]:

a(x) = 2V (1)) Ju() = 21, (1/V/z)

V() = i" 1 f,(—ix) vp(x) = i"l,(—izx)

Vo(z) = Up—1(x/2) vp(x) = 2T, (2/2)
IVn(CL‘2 +2) = fon xvn(an +2) =1y,

Jon(z) = 2"V, <2x;— 1) Jon(x) = 2"y, <2x;_ 1> .

With these tools at our finger tips, we are now ready for the explorations.

3. JACOBSTHAL EXTENSIONS
Let b, = by(x) = k™" =D/2q (1/\/z) = 2Fm"=D/2f . (1/\/z). Tt follows from recur-

rence (1.1) that
V2 +4 frn =, [\/ 2 + 4fk.mn:| )

Replacing = with 1/4/x, and then multiplying both sides of the resulting equation by x

yields
4IE + 1 . (k-m"+171)/2 4LE + 1 1
\ x by = m V T . p(k-mn—1)/2 by

o+l e +1
Viar +1 bn+1 = x(k )/2cm [ W bn] s (31)

(k-mntl-1)/2

where by = zF~V/2f,.(1//z) = Jp(2).
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The solution of recurrence (3.1) is b, = & ™" =V/2fi 0 (1//T) = Jpmn ().
In particular, let = 2 and B,, = b,(2). It then follows from (3.1) that

_ o(kmntl)/2 3

where By = bp(2) = Ji. The solution of the recurrence is By, = Jg.yn.
Suppose we let m = 3. It then follows from recurrence (3.2) that

3Bni = 203" 2e(u)
2(k-3”+1)/2(u3 — 3u)
Bny1 = 9B3-3.28"pB,, (3.3)
3B,
where u = W; By = Ji; and hence B,, = Ji.3n, where n > 0.
Letting m = 5 in (3.2), we similarly get

Bpy1 =81B3 —45.2M5"B3 4 5.485" B, | (3.4)

where By = Jj; and the solution of the recurrence is B,, = Ji.5», where n > 0.
Similarly, by letting m = 7, we get the recurrence

By =T29B7 —567-27" B> 4126 - 47" B3 —7.8*7"B,,, (3.5)

where By = Ji. The solution is B,, = Ji.7n, where n > 0.
In particular, let k = 1. Since By = J; = 43, By = 729 - 437 — 567 - 27 - 435 4126 - 47 - 433 —
7-87 .43 = 187,649,984,473,771 = Jo2.

Next we explore Vieta extensions.

4. VIETA EXTENSIONS

This time, we let b, = by,(z) = i*™" ~la,(—iz) = i*™" ! fi . (—ix). Replacing x with —ixz

in recurrence (1.1), and then multiplying both sides of the resulting equation by mk'mnﬂ_l,

we get
Jomn 1 Vi — 22
Va—a2bu = ey, Lkmn—l bn] ’ .

where by = i*71 f,.(—ix) = Vi(z). Since b, = i*™" =1 fn(—ix), it follows that b, = Vi (),
where n > 0.
Suppose m = 3. Then recurrence (4.1) yields

Jeegn+l_
VA — 22y = i3 Les(u)

= #3143 — 3u)

byt = (22 — 4)b3 4 3b,,, (4.2)
N
where u = Tni b, and by = Vi (z). The solution of this recurrence is b, = Vi.3n ().
i

For example, when k = 1,b; = 22 — 1 = V3(z) and by = (22 —4)(2? — 1) +3(z2 — 1) =
28 — 725 + 152% — 1022 + 1 = Vi ().

The cases m = 5 and m = 7 can be studied similarly.

Next we present three charming byproducts of recurrence (4.1).
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4.1. A Fibonacci Byproduct. Let d, = d,(7) = b, (2 + 2). Replacing = with 2 + 2 in
(4.1), we get

jhmn—1 n

n Ai
Aidpq =™ e, (Zd >

_ ckemntl_2 A
A dn+1 =1 Cm <Zk:1’n"—2 dn) y (43)

where dy = xbo(2? + 2) = 2Vi(2? + 2) = for. The solution of this recurrence is d,, =
2by (22 4+ 2) = 2Vieun (2% + 2) = for.mn, where n > 0.
In particular, let d, (1) = D,,. Then equation (4.3) yields the recurrence

el V5
VBDy i1 = iF o2, (W D, |, (4.4)

where Dy = Fy. Clearly, D, = Fop.pn, where n > 0.
Letting k = 5 and m = 3, it follows from equation (4.4) that

Dpy1=5D3 + 3D, (4.5)
where Dy = Fy9 = 55. Then D,, = Fig.3n, where n > 0.
For example, D1 = SDS +3Dg = 832,040 = Fy9.3 and hence, Dy = 5-832040% + 3 - 832040 =
2,880,067,194, 370,816,120 = Fjq.32.

2 1
vt . Re-

kemntl—1

placing z with u in equation (4.1), and then multiplying the resulting equation by x ,
we get the recurrence

n n V4 1
Vixr +leptr = gFm =2 pkm Hcm [H en] , (4.6)

Z‘k’-m"—Q xk-m"

4.2. A Jacobsthal Byproduct. Let e, = e,(x) = 2¥™"~1b,(u), where u =

where eg = Jop(x). Its solution is e, = x*™" ~1b, (u) = 2™ "W un(2) = Jopmn (), where
n > 0.
In particular, let e, (2) = E,,. Then equation (4.6) yields the recurrence

N Lb.apnt+1 _3
3B = —(20)"™" e |:(2Z)k7nn En:| ; (4.7)
where Ey = Joi. Its solution is E, = Jo.;un, where n > 0.
When k& =5 and m = 3, equation (4.7) yields
Epi1 =9E3 +3-1024%"E,,, (4.8)

where Ey = J19 = 341. The solution of this recurrence is E,, = Jig.3n, where n > 0.

For example, 4 = 9Eg +3-1024 Ey = 357,913,941; and hence, Ey = 9(357913941)3 + 3 -
10243 - 357913941 = 412,646, 679, 761,793, 424, 966, 374, 741 = J;(.52.

Next we present a byproduct to Chebyshev polynomials.

4.3. A Chebyshev Byproduct. Let h,, = hy,(z) = b,(22). Replacing x with 2z in equation
(4.1), we get the recurrence

n 2v1 — 22
2V/1 = a2 by = ™" ey (zgmn:f h") ’ (4.9)
i
where hg = Ui_1(x). The solution of this recurrence is h,, = b, (22) = Vi.pun (22) = U —1 ().
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In particular, when m = 3, equation (4.10) yields the recurrence
Pyt = 4(2? — 1)h3 + 3hy,

where hg = U_1(z). Its solution is h,, = Ug.gn_1, where n > 0.
For example, let k = 5. Then hy = Uy(z) = 162* — 1222 + 1. Consequently,

hy = 4(x? — 1)(162* — 1222 + 1)® + 3(162* — 1222 + 1)
= 16384z — 53248x'2 + 6758420 — 4224028 + 134402° — 20162* + 11222 — 1
= U5.3_1.

Next we focus on recurrence (1.1), where m is an even positive integer. Theorem 1.1 has a
parallel result, as the following theorem shows.

Theorem 4.1. Let m be an even positive integer and k a positive integer such that m ) k.
Then the solution of the recurrence

Ap+1 = cm(an) (4.10)
is ap = lg.mn, where an = an(x),a1 = lgm, and n > 1. O
The proof follows by the Binet-like formula for /,, [10], the property that

1 1
on(45) ="+

and induction on n, where y # 0 and m is an even positive integer. In the interest of brevity,
we omit the proof.
Theorem 4.1 also has interesting implications to Jacobsthal, Vieta, and Chebyshev families.

5. JACOBSTHAL-LUCAS EXTENSIONS
Let b, = «(®™")/2q,(1/\/x). Now replace z with 1/,/z in (4.10) and then multiply the

mn+1)

resulting equation by (" /2. We then get the recurrence

mn 1 1
R G T [W bn] , (5.1)

where by = z¥™)/2],,.(1/1/Z) = jrm(z). The solution of this recurrence is

by = 2 F ™20 (1/Z) = framn (2).
Suppose we let x = 2 and B,, = b,(2). Then equation (5.1) yields the recurrence

o k.mn+1 2 BTL
By =20 2 [W] : (5.2)

where B1 = jim,,. The corresponding solution is B, = jp.mn, where n > 1.
When m = 2, we get
Bpy1 = Bj, — 28", (5.3)
where B; = jog.
Similarly, the cases m = 4 and m = 6 yield the recurrences

B, = B} — 4. 284" B2 4 gk4" (5.4)
Byy1 = B8 —6-280"B2 49 476" g2 9. gk 0" (5.5)

where B = j4 and B1 = jg, respectively.
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For example, let k& = 1 in recurrence (5.5). Then B; = jg = 65, and hence, By = 65% — 6 -
26.65% 4945 .652 — 2. 80 = 68,719,476, 737 = jge.
Next we pursue Vieta-Lucas polynomial extensions.

6. VIETA-LUCAS EXTENSIONS
Since vy, () = ", (—iz), we let b, = by(z) = i*™" a,(—iz). Replacing z with —iz in (4.10)
and multiplying the resulting equation by ghomn yields the recurrence

1
n — Cm ‘ e bn 5 6.1
bnt1 =c <zk'm ) (6.1)

where by = i* "l (—iz) = Vgm (). Tts solution is b, = i ™" I} pn (—ix) = Vgpn (2).
Next we study three interesting implications of recurrence (6.1).

6.1. A Lucas Byproduct. Let d,, = d,,(z) = xb, (2% +2). Replacing z with 2%+2 in equation
(6.1) and then multiplying the resulting equation by z, we get

1
dn = m - ndn 5 2
1= 2 ( i o) (6.2

where di = TV (22 + 2) = logm. Its solution is d, = 2Vg.n (22 + 2) = lopgyn.
In particular, let d,,(1) = D,,. Then equation (6.2) yields

D,
Dpt1=cm <kan> ) (6.3)

where D1 = Logy,. Clearly, Dy, = Log.yn.
For example, let K =5 and m = 4. Then D,,11 = Cy4(D,,), where Dy = L4y = 228,826, 127.
Then Dy = 2288261274 —4-228826127%2+2 = 2, 741, 715, 832, 729, 650, 778, 856, 894, 742, 296, 127 =

Lyeo.
Next we present an implication to Jacobsthal-Lucas polynomials.

n 2 1
6.2. A Jacobsthal-Lucas Byproduct. Let e, = e,(z) = 2*™"b,(u), where u = Tt It
x
then follows from recurrence (6.1) that
a1 1
entl = .’L‘k m Cm [(zx)km" en:| , (6.4)

where e; = 2" v, (1) = jorm(x). The solution of this recurrence is e, = ™" b,(u) =

x
2R e n (0) = Jogmn (), where n > 1.
Letting E,, = e,(2), it follows that

a1 1
Epy =28 ¢, [W En:| ; (6.5)

where E1 = jorm. The solution of this recurrence is E,, = jog.mn, Wwhere n > 1.
Suppose we let k = 3 and m = 4. Then recurrence (6.5) yields

Eni1 = E} —4-64" E2 424096,

where B = joq = 16,777,217. Consequently, Ey = Ef — 4 -64*E? 4 2 - 4096* =
79,228,162, 514, 264, 337,593, 543, 950, 337 = jg.42.
Finally, we present an interesting consequence to Chebyshev polynomials 7T, (x).
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1
6.3. A Chebyshev Byproduct. Letting h,, = h,(z) = an(2x), equation (6.1) yields the

recurrence
2
2hp41 = cm <W b |,

1 1 1 1
where hy = §b1(2x) = §Ukm(2l‘) = Tkm(x). Its solution is h, = ibn(Qx) = §Uk.mn(21') =
Tiemn (), where n > 1.

2
When m = 2, it follows that 2h, 11 = ¢ (

T hn>; S0 hpt1 = 2h2 — 1, where hy = Toi(2).
i

Likewise, when m = 4 and m = 6, we get the recurrences
Byt = Shi — 8h2 42
hny1 = 32hS — 48R} + 36h2 — 2,
where hy = Ty, (x) and h; = Tg(x), respectively.
7. ACKNOWLEDGMENT

The authors would like to thank the reviewer for his encouraging words and comments.

REFERENCES

[1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.5 (1970), 407-420.
[2] C. R. Diminnie, Problem 1909, Crux Mathematicorum, 20 (1994), 17.
[3] A. F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly, 34.1 (1996), 40-54.
[4] A. F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quarterly, 35.2 (1997), 137-148.
[5] A. F. Horadam, Vieta polynomials, The Fibonacci Quarterly, 40.3 (2002), 223-232.
[6] A. F. Horadam and Bro. J. M. Mahon, Pell and Pell-Lucas polynomials, The Fibonacci Quarterly, 23.1

(1985), 7-20.

[7] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
[9] T. Koshy, Vieta polynomials and their close relatives, The Fibonacci Quarterly, 54.2 (2016), 141-148.

[10] T. Koshy and Z. Gao, Polynomial extensions of a Diminnie delight, The Fibonacci Quarterly, 55.1 (2017),
13-20.

[11] T. Rivlin, The Chebyshev Polynomials, Wiley, New York, 1974.

[12] N. Robbins, Vieta’s triangular array and a related family of polynomials, International Journal of Mathe-
matics and Mathematical Sciences, 14 (1991), 239-244.

[13] A. G. Shannon and A. F. Horadam, Some relationships among Vieta, Morgan-Voyce and Jacobsthal poly-
nomials, Applications of Fibonacci Numbers (ed. F. T. Howard), Kluwer, Dordrecht, 1999, 307-323.

[14] A. Sinefakopoulos, Solution to Problem 1909, Crux Mathematicorum, 20 (1994), 295-296.

[15] M. N. S. Swamy, Generalized Fibonacci and Lucas polynomials and their associated diagonal polynomials,

The Fibonacci Quarterly, 37.3 (1999), 213-222.

MSC2010: 11B37, 11B39, 11B50

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MASSACHUSETTS 01701
E-mail address: tkoshy@emeriti.framingham.edu

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MASSACHUSETTS 01701
E-mail address: zgao@framingham. edu

326 VOLUME 55, NUMBER 4



