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Abstract. Recently, we extended to Fibonacci polynomials a complex, but interesting, re-
currence studied by C.R. Diminnie. We then studied the corresponding versions to Lucas,
Pell, and Pell-Lucas polynomials, and extracted the respective number-theoretic counterparts.
In this article, we explore extensions to Jacobsthal, Jacobsthal-Lucas, Vieta, and Chebyshev
polynomials.

1. Introduction

The extended gibonacci polynomials gn(x) are defined by the second-order recurrence gn+2(x) =
a(x)gn+1(x) + b(x)gn(x), where x is an arbitrary complex variable; a(x), b(x), g0(x), and g1(x)
are arbitrary complex polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When g0(x) = 0 and g1(x) = 1, gn(x) = fn(x), the
nth Fibonacci polynomial ; and when g0(x) = 2 and g1(x) = x, gn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 7, 9, 15].

The Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x)
and qn(x) = ln(2x), respectively. The corresponding Pell numbers Pn and Pell-Lucas numbers
Qn are given by Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively [6, 8, 9].

Suppose a(x) = 1 and b(x) = x. When g0(x) = 0 and g1(x) = 1, gn(x) = Jn(x), the nth
Jacobsthal polynomial ; and when g0(x) = 2 and g1(x) = 1, gn(x) = jn(x), the nth Jacobsthal-
Lucas polynomial [3, 4, 9]. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn and jn(1) = Ln.

Let a(x) = x and b(x) = −1. When g0(x) = 0 and g1(x) = 1, gn(x) = Vn(x), the nth
Vieta polynomial ; and when g0(x) = 2 and g1(x) = x, gn(x) = vn(x), the nth Vieta-Lucas
polynomial [5, 9, 12].

On the other hand, let a(x) = 2x and b(x) = −1. When g0(x) = 1 and g1(x) = x,
gn(x) = Tn(x), the nth Chebyshev polynomial of the first kind ; and when g0(x) = 1 and
g1(x) = 2x, gn(x) = Un(x), the nth Chebyshev polynomial of the second kind [5, 8, 9, 11].

1.1. Fibonacci Extension of the Diminnie Delight. Recently, we investigated a Fibonacci
polynomial extension of the recurrence [2, 14]

dn+1 = 5dn(5d4n − 5d2n + 1),

where d0 = 1 and n ≥ 0. We found that the solution of the generalized recurrence

an+1 = an(∆4a4n − 5∆2a2n + 5),

where an = an(x), a0 = 1, and ∆ =
√
x2 + 4 is an(x) = f5n [10].

Polynomials cm(x), defined by the recurrence cm+2(x) = xcm+1(x)− cm(x), played a major
part in the polynomial investigation. They are related to the polynomials Tm(x) and lm(x) :
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cm(x) = 2Tm(x/2) = imlm(−ix), where i =
√
−1. In addition, they satisfy a delightful

property:

cm

(
y +

1

y

)
= ym +

1

ym
,

where y 6= 0 and m ≥ 0 [10, 14].
In the interest of brevity and convenience, we omit the argument in the functional notation,

when there is no ambiguity; so gn will mean gn(x).
Using the polynomials cm, we studied an infinite class of recurrences, as in the following

theorem [10].

Theorem 1.1. The solution of the recurrence

∆an+1 = cm(∆an), (1.1)

is an = fk·mn, where an = an(x), a0 = fk, km is an odd positive integer, k 6= m, m ≥ 3, and
n ≥ 0.

This theorem plays a pivotal role in our exploration of the extensions to Jacobsthal poly-
nomials Jn(x), Vieta polynomials Vn(x), and Chebyshev polynomials Un(x). In the interest
of brevity, we omit a lot of basic, but messy algebra.

2. Relationships Among the Gibonacci Subfamilies

Interestingly, Fibonacci, Pell, and Jacobsthal polynomials, and Chebyshev polynomials of
the second kind are closely linked; and so are the Lucas, Pell-Lucas, and Jacobsthal-Lucas
polynomials, and Chebyshev polynomials of the first kind [5, 9, 12]:

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)

Vn(x) = Un−1(x/2) vn(x) = 2Tn(x/2)

xVn(x2 + 2) = f2n xvn(x2 + 2) = l2n

J2n(x) = xn−1Vn

(
2x + 1

x

)
j2n(x) = xnvn

(
2x + 1

x

)
.

With these tools at our finger tips, we are now ready for the explorations.

3. Jacobsthal Extensions

Let bn = bn(x) = x(k·m
n−1)/2an(1/

√
x) = x(k·m

n−1)/2fk·mn(1/
√
x). It follows from recur-

rence (1.1) that √
x2 + 4 fk·mn+1 = cm

[√
x2 + 4 fk·mn

]
.

Replacing x with 1/
√
x, and then multiplying both sides of the resulting equation by x(k·m

n+1−1)/2

yields √
4x + 1

x
bn+1 = x(k·m

n+1−1)/2cm

[√
4x + 1

x
· 1

x(k·mn−1)/2
bn

]
√

4x + 1 bn+1 = x(k·m
n+1)/2cm

[√
4x + 1

x(k·mn)/2
bn

]
, (3.1)

where b0 = x(k−1)/2fk(1/
√
x) = Jk(x).
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The solution of recurrence (3.1) is bn = x(k·m
n−1)/2fk·mn(1/

√
x) = Jk·mn(x).

In particular, let x = 2 and Bn = bn(2). It then follows from (3.1) that

3Bn+1 = 2(k·m
n+1)/2cm

[
3

2(k·mn)/2
Bn

]
, (3.2)

where B0 = b0(2) = Jk. The solution of the recurrence is Bn = Jk·mn .
Suppose we let m = 3. It then follows from recurrence (3.2) that

3Bn+1 = 2(k·3
n+1)/2c3(u)

= 2(k·3
n+1)/2(u3 − 3u)

Bn+1 = 9B3
n − 3 · 2k·3nBn, (3.3)

where u =
3Bn

2(k·3n)/2
;B0 = Jk; and hence Bn = Jk·3n , where n ≥ 0.

Letting m = 5 in (3.2), we similarly get

Bn+1 = 81B5
n − 45 · 2k·5nB3

n + 5 · 4k·5nBn, (3.4)

where B0 = Jk; and the solution of the recurrence is Bn = Jk·5n , where n ≥ 0.
Similarly, by letting m = 7, we get the recurrence

Bn+1 = 729B7
n − 567 · 2k·7nB5

n + 126 · 4k·7nB3
n − 7 · 8k·7nBn, (3.5)

where B0 = Jk. The solution is Bn = Jk·7n , where n ≥ 0.
In particular, let k = 1. Since B1 = J7 = 43, B2 = 729 · 437 − 567 · 27 · 435 + 126 · 47 · 433 −

7 · 87 · 43 = 187, 649, 984, 473, 771 = J72 .
Next we explore Vieta extensions.

4. Vieta Extensions

This time, we let bn = bn(x) = ik·m
n−1an(−ix) = ik·m

n−1fk·mn(−ix). Replacing x with −ix
in recurrence (1.1), and then multiplying both sides of the resulting equation by xk·m

n+1−1,
we get √

4− x2 bn+1 = ik·m
n+1−1cm

[√
4− x2

ik·mn−1
bn

]
, (4.1)

where b0 = ik−1fk(−ix) = Vk(x). Since bn = ik·m
n−1fk·mn(−ix), it follows that bn = Vk·mn(x),

where n ≥ 0.
Suppose m = 3. Then recurrence (4.1) yields√

4− x2 bn+1 = ik·3
n+1−1c3(u)

= ik·3
n+1−1(u3 − 3u)

bn+1 = (x2 − 4)b3n + 3bn, (4.2)

where u =

√
4− x2

ik·mn−1
bn and b0 = Vk(x). The solution of this recurrence is bn = Vk·3n(x).

For example, when k = 1, b1 = x2 − 1 = V3(x) and b2 = (x2 − 4)(x2 − 1)3 + 3(x2 − 1) =
x8 − 7x6 + 15x4 − 10x2 + 1 = V32(x).

The cases m = 5 and m = 7 can be studied similarly.
Next we present three charming byproducts of recurrence (4.1).
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4.1. A Fibonacci Byproduct. Let dn = dn(x) = xbn(x2 + 2). Replacing x with x2 + 2 in
(4.1), we get

∆ i dn+1 = ik·m
n+1−1cm

(
∆ i

ik·mn−1
dn

)
∆ dn+1 = ik·m

n+1−2cm

(
∆

ik·mn−2
dn

)
, (4.3)

where d0 = xb0(x
2 + 2) = xVk(x2 + 2) = f2k. The solution of this recurrence is dn =

xbn(x2 + 2) = xVk·mn(x2 + 2) = f2k·mn , where n ≥ 0.
In particular, let dn(1) = Dn. Then equation (4.3) yields the recurrence

√
5Dn+1 = ik·m

n+1−2cm

( √
5

ik·mn−2
Dn

)
, (4.4)

where D0 = F2k. Clearly, Dn = F2k·mn , where n ≥ 0.
Letting k = 5 and m = 3, it follows from equation (4.4) that

Dn+1 = 5D3
n + 3Dn, (4.5)

where D0 = F10 = 55. Then Dn = F10·3n , where n ≥ 0.
For example, D1 = 5D3

0 +3D0 = 832, 040 = F10·3 and hence, D2 = 5 ·8320403 +3 ·832040 =
2, 880, 067, 194, 370, 816, 120 = F10·32 .

4.2. A Jacobsthal Byproduct. Let en = en(x) = xk·m
n−1bn(u), where u =

2x + 1

x
. Re-

placing x with u in equation (4.1), and then multiplying the resulting equation by xk·m
n+1−1,

we get the recurrence

√
4x + 1 en+1 = ik·m

n+1−2 · xk·mn+1
cm

[ √
4x + 1

ik·mn−2 xk·mn en

]
, (4.6)

where e0 = J2k(x). Its solution is en = xk·m
n−1bn(u) = xk·m

n−1Vk·mn(x) = J2k·mn(x), where
n ≥ 0.

In particular, let en(2) = En. Then equation (4.6) yields the recurrence

3En+1 = −(2i)k·m
n+1

cm

[
−3

(2i)k·mn En

]
, (4.7)

where E0 = J2k. Its solution is En = J2k·mn , where n ≥ 0.
When k = 5 and m = 3, equation (4.7) yields

En+1 = 9E3
n + 3 · 10243

n
En, (4.8)

where E0 = J10 = 341. The solution of this recurrence is En = J10·3n , where n ≥ 0.
For example, E1 = 9E3

0 + 3 · 1024E0 = 357, 913, 941; and hence, E2 = 9(357913941)3 + 3 ·
10243 · 357913941 = 412, 646, 679, 761, 793, 424, 966, 374, 741 = J10·32 .

Next we present a byproduct to Chebyshev polynomials.

4.3. A Chebyshev Byproduct. Let hn = hn(x) = bn(2x). Replacing x with 2x in equation
(4.1), we get the recurrence

2
√

1− x2 hn+1 = ik·m
n+1−1cm

(
2
√

1− x2

ik·mn−1
hn

)
, (4.9)

where h0 = Uk−1(x). The solution of this recurrence is hn = bn(2x) = Vk·mn(2x) = Uk·mn−1(x).
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In particular, when m = 3, equation (4.10) yields the recurrence

hn+1 = 4(x2 − 1)h3n + 3hn,

where h0 = Uk−1(x). Its solution is hn = Uk·3n−1, where n ≥ 0.
For example, let k = 5. Then h0 = U4(x) = 16x4 − 12x2 + 1. Consequently,

h1 = 4(x2 − 1)(16x4 − 12x2 + 1)3 + 3(16x4 − 12x2 + 1)

= 16384x14 − 53248x12 + 67584x10 − 42240x8 + 13440x6 − 2016x4 + 112x2 − 1

= U5·3−1.

Next we focus on recurrence (1.1), where m is an even positive integer. Theorem 1.1 has a
parallel result, as the following theorem shows.

Theorem 4.1. Let m be an even positive integer and k a positive integer such that m 6 | k.
Then the solution of the recurrence

an+1 = cm(an) (4.10)

is an = lk·mn, where an = an(x), a1 = lkm, and n ≥ 1. �

The proof follows by the Binet-like formula for ln [10], the property that

cm

(
y +

1

y

)
= ym +

1

ym
,

and induction on n, where y 6= 0 and m is an even positive integer. In the interest of brevity,
we omit the proof.

Theorem 4.1 also has interesting implications to Jacobsthal, Vieta, and Chebyshev families.

5. Jacobsthal-Lucas Extensions

Let bn = x(k·m
n)/2an(1/

√
x). Now replace x with 1/

√
x in (4.10) and then multiply the

resulting equation by x(k·m
n+1)/2. We then get the recurrence

bn+1 = x(k·m
n+1)/2 cm

[
1

x(k·mn)/2
bn

]
, (5.1)

where b1 = x(km)/2lkm(1/
√
x) = jkm(x). The solution of this recurrence is

bn = x(k·m
n)/2lk·mn(1/

√
x) = jk·mn(x).

Suppose we let x = 2 and Bn = bn(2). Then equation (5.1) yields the recurrence

Bn+1 = 2(k·m
n+1)/2 cm

[
Bn

2(k·mn)/2

]
, (5.2)

where B1 = jkm. The corresponding solution is Bn = jk·mn , where n ≥ 1.
When m = 2, we get

Bn+1 = B2
n − 2k·2

n+1, (5.3)

where B1 = j2k.
Similarly, the cases m = 4 and m = 6 yield the recurrences

Bn+1 = B4
n − 4 · 2k·4nB2

n + 4k·4
n

(5.4)

Bn+1 = B6
n − 6 · 2k·6nB4

n + 9 · 4k·6nB2
n − 2 · 8k·6n , (5.5)

where B1 = j4k and B1 = j6k, respectively.
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For example, let k = 1 in recurrence (5.5). Then B1 = j6 = 65, and hence, B2 = 656 − 6 ·
26 · 654 + 9 · 46 · 652 − 2 · 86 = 68, 719, 476, 737 = j62 .

Next we pursue Vieta-Lucas polynomial extensions.

6. Vieta-Lucas Extensions

Since vn(x) = inln(−ix), we let bn = bn(x) = ik·m
n
an(−ix). Replacing x with −ix in (4.10)

and multiplying the resulting equation by ik·m
n+1

yields the recurrence

bn+1 = cm

(
1

ik·mn bn

)
, (6.1)

where b1 = ik·mlkm(−ix) = vkm(x). Its solution is bn = ik·m
n
lk·mn(−ix) = vk·mn(x).

Next we study three interesting implications of recurrence (6.1).

6.1. A Lucas Byproduct. Let dn = dn(x) = xbn(x2+2). Replacing x with x2+2 in equation
(6.1) and then multiplying the resulting equation by x, we get

dn+1 = xcm

(
1

xik·mn dn

)
, (6.2)

where d1 = xvkm(x2 + 2) = l2km. Its solution is dn = xvk·mn(x2 + 2) = l2k·mn .
In particular, let dn(1) = Dn. Then equation (6.2) yields

Dn+1 = cm

(
Dn

ik·mn

)
, (6.3)

where D1 = L2km. Clearly, Dn = L2k·mn .
For example, let k = 5 and m = 4. Then Dn+1 = C4(Dn), where D1 = L40 = 228, 826, 127.

Then D2 = 2288261274−4·2288261272+2 = 2, 741, 715, 832, 729, 650, 778, 856, 894, 742, 296, 127 =
L160.

Next we present an implication to Jacobsthal-Lucas polynomials.

6.2. A Jacobsthal-Lucas Byproduct. Let en = en(x) = xk·m
n
bn(u), where u =

2x + 1

x
. It

then follows from recurrence (6.1) that

en+1 = xk·m
n+1

cm

[
1

(ix)k·mn en

]
, (6.4)

where e1 = xkmvkm(u) = j2km(x). The solution of this recurrence is en = xk·m
n
bn(u) =

xk·m
n
vk·mn(u) = j2k·mn(x), where n ≥ 1.

Letting En = en(2), it follows that

En+1 = 2k·m
n+1

cm

[
1

(2i)k·mn En

]
, (6.5)

where E1 = j2km. The solution of this recurrence is En = j2k·mn , where n ≥ 1.
Suppose we let k = 3 and m = 4. Then recurrence (6.5) yields

En+1 = E4
n − 4 · 644

n
E2

n + 2 · 40964
n
,

where E1 = j24 = 16, 777, 217. Consequently, E2 = E4
1 − 4 · 644E2

1 + 2 · 40964 =
79, 228, 162, 514, 264, 337, 593, 543, 950, 337 = j6·42 .

Finally, we present an interesting consequence to Chebyshev polynomials Tn(x).
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6.3. A Chebyshev Byproduct. Letting hn = hn(x) =
1

2
bn(2x), equation (6.1) yields the

recurrence

2hn+1 = cm

(
2

ik·mn hn

)
,

where h1 =
1

2
b1(2x) =

1

2
vkm(2x) = Tkm(x). Its solution is hn =

1

2
bn(2x) =

1

2
vk·mn(2x) =

Tk·mn(x), where n ≥ 1.

When m = 2, it follows that 2hn+1 = c2

(
2

ik·2n
hn

)
; so hn+1 = 2h2n− 1, where h1 = T2k(x).

Likewise, when m = 4 and m = 6, we get the recurrences

hn+1 = 8h4n − 8h2n + 2

hn+1 = 32h6n − 48h4n + 36h2n − 2,

where h1 = T4k(x) and h1 = T6k(x), respectively.
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