POLYNOMIAL EXTENSIONS OF A DIMINNIE DELIGHT REVISITED: PART I

THOMAS KOSHY AND ZHENGUANG GAO

Abstract

Recently, we extended to Fibonacci polynomials a complex, but interesting, recurrence studied by C.R. Diminnie. We then studied the corresponding versions to Lucas, Pell, and Pell-Lucas polynomials, and extracted the respective number-theoretic counterparts. In this article, we explore extensions to Jacobsthal, Jacobsthal-Lucas, Vieta, and Chebyshev polynomials.

1. Introduction

The extended gibonacci polynomials $g_{n}(x)$ are defined by the second-order recurrence $g_{n+2}(x)=$ $a(x) g_{n+1}(x)+b(x) g_{n}(x)$, where x is an arbitrary complex variable; $a(x), b(x), g_{0}(x)$, and $g_{1}(x)$ are arbitrary complex polynomials; and $n \geq 0$.

Suppose $a(x)=x$ and $b(x)=1$. When $g_{0}(x)=0$ and $g_{1}(x)=1, g_{n}(x)=f_{n}(x)$, the nth Fibonacci polynomial; and when $g_{0}(x)=2$ and $g_{1}(x)=x, g_{n}(x)=l_{n}(x)$, the nth Lucas polynomial. Clearly, $f_{n}(1)=F_{n}$, the nth Fibonacci number; and $l_{n}(1)=L_{n}$, the nth Lucas number $[1,7,9,15]$.

The Pell polynomials $p_{n}(x)$ and Pell-Lucas polynomials $q_{n}(x)$ are defined by $p_{n}(x)=f_{n}(2 x)$ and $q_{n}(x)=l_{n}(2 x)$, respectively. The corresponding Pell numbers P_{n} and Pell-Lucas numbers Q_{n} are given by $P_{n}=p_{n}(1)=f_{n}(2)$ and $2 Q_{n}=q_{n}(1)=l_{n}(2)$, respectively $[6,8,9]$.

Suppose $a(x)=1$ and $b(x)=x$. When $g_{0}(x)=0$ and $g_{1}(x)=1, g_{n}(x)=J_{n}(x)$, the nth Jacobsthal polynomial; and when $g_{0}(x)=2$ and $g_{1}(x)=1, g_{n}(x)=j_{n}(x)$, the nth JacobsthalLucas polynomial $[3,4,9]$. Correspondingly, $J_{n}=J_{n}(2)$ and $j_{n}=j_{n}(2)$ are the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, $J_{n}(1)=F_{n}$ and $j_{n}(1)=L_{n}$.

Let $a(x)=x$ and $b(x)=-1$. When $g_{0}(x)=0$ and $g_{1}(x)=1, g_{n}(x)=V_{n}(x)$, the nth Vieta polynomial; and when $g_{0}(x)=2$ and $g_{1}(x)=x, g_{n}(x)=v_{n}(x)$, the nth Vieta-Lucas polynomial [5, 9, 12].

On the other hand, let $a(x)=2 x$ and $b(x)=-1$. When $g_{0}(x)=1$ and $g_{1}(x)=x$, $g_{n}(x)=T_{n}(x)$, the nth Chebyshev polynomial of the first kind; and when $g_{0}(x)=1$ and $g_{1}(x)=2 x, g_{n}(x)=U_{n}(x)$, the nth Chebyshev polynomial of the second kind [5, 8, 9, 11].
1.1. Fibonacci Extension of the Diminnie Delight. Recently, we investigated a Fibonacci polynomial extension of the recurrence $[2,14]$

$$
d_{n+1}=5 d_{n}\left(5 d_{n}^{4}-5 d_{n}^{2}+1\right),
$$

where $d_{0}=1$ and $n \geq 0$. We found that the solution of the generalized recurrence

$$
a_{n+1}=a_{n}\left(\Delta^{4} a_{n}^{4}-5 \Delta^{2} a_{n}^{2}+5\right),
$$

where $a_{n}=a_{n}(x), a_{0}=1$, and $\Delta=\sqrt{x^{2}+4}$ is $a_{n}(x)=f_{5^{n}}$ [10].
Polynomials $c_{m}(x)$, defined by the recurrence $c_{m+2}(x)=x c_{m+1}(x)-c_{m}(x)$, played a major part in the polynomial investigation. They are related to the polynomials $T_{m}(x)$ and $l_{m}(x)$:
$c_{m}(x)=2 T_{m}(x / 2)=i^{m} l_{m}(-i x)$, where $i=\sqrt{-1}$. In addition, they satisfy a delightful property:

$$
c_{m}\left(y+\frac{1}{y}\right)=y^{m}+\frac{1}{y^{m}},
$$

where $y \neq 0$ and $m \geq 0[10,14]$.
In the interest of brevity and convenience, we omit the argument in the functional notation, when there is no ambiguity; so g_{n} will mean $g_{n}(x)$.

Using the polynomials c_{m}, we studied an infinite class of recurrences, as in the following theorem [10].

Theorem 1.1. The solution of the recurrence

$$
\begin{equation*}
\Delta a_{n+1}=c_{m}\left(\Delta a_{n}\right), \tag{1.1}
\end{equation*}
$$

is $a_{n}=f_{k \cdot m^{n}}$, where $a_{n}=a_{n}(x), a_{0}=f_{k}, k m$ is an odd positive integer, $k \neq m, m \geq 3$, and $n \geq 0$.

This theorem plays a pivotal role in our exploration of the extensions to Jacobsthal polynomials $J_{n}(x)$, Vieta polynomials $V_{n}(x)$, and Chebyshev polynomials $U_{n}(x)$. In the interest of brevity, we omit a lot of basic, but messy algebra.

2. Relationships Among the Gibonacci Subfamilies

Interestingly, Fibonacci, Pell, and Jacobsthal polynomials, and Chebyshev polynomials of the second kind are closely linked; and so are the Lucas, Pell-Lucas, and Jacobsthal-Lucas polynomials, and Chebyshev polynomials of the first kind [5, 9, 12]:

$$
\begin{array}{rlrl}
J_{n}(x) & =x^{(n-1) / 2} f_{n}(1 / \sqrt{x}) & j_{n}(x) & =x^{n / 2} l_{n}(1 / \sqrt{x}) \\
V_{n}(x) & =i^{n-1} f_{n}(-i x) & v_{n}(x) & =i^{n} l_{n}(-i x) \\
V_{n}(x) & =U_{n-1}(x / 2) & v_{n}(x) & =2 T_{n}(x / 2) \\
x V_{n}\left(x^{2}+2\right) & =f_{2 n} & x v_{n}\left(x^{2}+2\right) & =l_{2 n} \\
J_{2 n}(x) & =x^{n-1} V_{n}\left(\frac{2 x+1}{x}\right) & j_{2 n}(x) & =x^{n} v_{n}\left(\frac{2 x+1}{x}\right) .
\end{array}
$$

With these tools at our finger tips, we are now ready for the explorations.

3. Jacobsthal Extensions

Let $b_{n}=b_{n}(x)=x^{\left(k \cdot m^{n}-1\right) / 2} a_{n}(1 / \sqrt{x})=x^{\left(k \cdot m^{n}-1\right) / 2} f_{k \cdot m^{n}}(1 / \sqrt{x})$. It follows from recurrence (1.1) that

$$
\sqrt{x^{2}+4} f_{k \cdot m^{n+1}}=c_{m}\left[\sqrt{x^{2}+4} f_{k \cdot m^{n}}\right] .
$$

Replacing x with $1 / \sqrt{x}$, and then multiplying both sides of the resulting equation by $x^{\left(k \cdot m^{n+1}-1\right) / 2}$ yields

$$
\begin{align*}
& \sqrt{\frac{4 x+1}{x}} b_{n+1}=x^{\left(k \cdot m^{n+1}-1\right) / 2} c_{m}\left[\sqrt{\frac{4 x+1}{x}} \cdot \frac{1}{x^{\left(k \cdot m^{n}-1\right) / 2}} b_{n}\right] \\
& \sqrt{4 x+1} b_{n+1}=x^{\left(k \cdot m^{n+1}\right) / 2} c_{m}\left[\sqrt{\frac{4 x+1}{x^{\left(k \cdot m^{n}\right) / 2}}} b_{n}\right], \tag{3.1}
\end{align*}
$$

where $b_{0}=x^{(k-1) / 2} f_{k}(1 / \sqrt{x})=J_{k}(x)$.

THE FIBONACCI QUARTERLY

The solution of recurrence (3.1) is $b_{n}=x^{\left(k \cdot m^{n}-1\right) / 2} f_{k \cdot m^{n}}(1 / \sqrt{x})=J_{k \cdot m^{n}}(x)$.
In particular, let $x=2$ and $B_{n}=b_{n}(2)$. It then follows from (3.1) that

$$
\begin{equation*}
3 B_{n+1}=2^{\left(k \cdot m^{n+1}\right) / 2} c_{m}\left[\frac{3}{2^{\left(k \cdot m^{n}\right) / 2}} B_{n}\right], \tag{3.2}
\end{equation*}
$$

where $B_{0}=b_{0}(2)=J_{k}$. The solution of the recurrence is $B_{n}=J_{k \cdot m^{n}}$.
Suppose we let $m=3$. It then follows from recurrence (3.2) that

$$
\begin{align*}
3 B_{n+1} & =2^{\left(k \cdot 3^{n+1}\right) / 2} c_{3}(u) \\
& =2^{\left(k \cdot 3^{n+1}\right) / 2}\left(u^{3}-3 u\right) \\
B_{n+1} & =9 B_{n}^{3}-3 \cdot 2^{k \cdot 3^{n}} B_{n}, \tag{3.3}
\end{align*}
$$

where $u=\frac{3 B_{n}}{2^{\left(k \cdot 3^{n}\right) / 2}} ; B_{0}=J_{k}$; and hence $B_{n}=J_{k \cdot 3^{n}}$, where $n \geq 0$.
Letting $m=5$ in (3.2), we similarly get

$$
\begin{equation*}
B_{n+1}=81 B_{n}^{5}-45 \cdot 2^{k \cdot 5^{n}} B_{n}^{3}+5 \cdot 4^{k \cdot 5^{n}} B_{n}, \tag{3.4}
\end{equation*}
$$

where $B_{0}=J_{k}$; and the solution of the recurrence is $B_{n}=J_{k \cdot 5^{n}}$, where $n \geq 0$.
Similarly, by letting $m=7$, we get the recurrence

$$
\begin{equation*}
B_{n+1}=729 B_{n}^{7}-567 \cdot 2^{k \cdot 7^{n}} B_{n}^{5}+126 \cdot 4^{k \cdot 7^{n}} B_{n}^{3}-7 \cdot 8^{k \cdot 7^{n}} B_{n}, \tag{3.5}
\end{equation*}
$$

where $B_{0}=J_{k}$. The solution is $B_{n}=J_{k \cdot 7^{n}}$, where $n \geq 0$.
In particular, let $k=1$. Since $B_{1}=J_{7}=43, B_{2}=729 \cdot 43^{7}-567 \cdot 2^{7} \cdot 43^{5}+126 \cdot 4^{7} \cdot 43^{3}-$ $7 \cdot 8^{7} \cdot 43=187,649,984,473,771=J_{7^{2}}$.

Next we explore Vieta extensions.

4. Vieta Extensions

This time, we let $b_{n}=b_{n}(x)=i^{k \cdot m^{n}-1} a_{n}(-i x)=i^{k \cdot m^{n}-1} f_{k \cdot m^{n}}(-i x)$. Replacing x with $-i x$ in recurrence (1.1), and then multiplying both sides of the resulting equation by $x^{k \cdot m^{n+1}-1}$, we get

$$
\begin{equation*}
\sqrt{4-x^{2}} b_{n+1}=i^{k \cdot m^{n+1}-1} c_{m}\left[\frac{\sqrt{4-x^{2}}}{i^{k \cdot m^{n}-1}} b_{n}\right], \tag{4.1}
\end{equation*}
$$

where $b_{0}=i^{k-1} f_{k}(-i x)=V_{k}(x)$. Since $b_{n}=i^{k \cdot m^{n}-1} f_{k \cdot m^{n}}(-i x)$, it follows that $b_{n}=V_{k \cdot m^{n}}(x)$, where $n \geq 0$.

Suppose $m=3$. Then recurrence (4.1) yields

$$
\begin{align*}
\sqrt{4-x^{2}} b_{n+1} & =i^{k \cdot 3^{n+1}-1} c_{3}(u) \\
& =i^{k \cdot 3^{n+1}-1}\left(u^{3}-3 u\right) \\
b_{n+1} & =\left(x^{2}-4\right) b_{n}^{3}+3 b_{n}, \tag{4.2}
\end{align*}
$$

where $u=\frac{\sqrt{4-x^{2}}}{i^{k \cdot m^{n}-1}} b_{n}$ and $b_{0}=V_{k}(x)$. The solution of this recurrence is $b_{n}=V_{k \cdot 3^{n}}(x)$.
For example, when $k=1, b_{1}=x^{2}-1=V_{3}(x)$ and $b_{2}=\left(x^{2}-4\right)\left(x^{2}-1\right)^{3}+3\left(x^{2}-1\right)=$ $x^{8}-7 x^{6}+15 x^{4}-10 x^{2}+1=V_{3^{2}}(x)$.

The cases $m=5$ and $m=7$ can be studied similarly.
Next we present three charming byproducts of recurrence (4.1).
4.1. A Fibonacci Byproduct. Let $d_{n}=d_{n}(x)=x b_{n}\left(x^{2}+2\right)$. Replacing x with $x^{2}+2$ in (4.1), we get

$$
\begin{align*}
\Delta i d_{n+1} & =i^{k \cdot m^{n+1}-1} c_{m}\left(\frac{\Delta i}{i^{k \cdot m^{n}-1}} d_{n}\right) \\
\Delta d_{n+1} & =i^{k \cdot m^{n+1}-2} c_{m}\left(\frac{\Delta}{i^{k \cdot m^{n}-2}} d_{n}\right), \tag{4.3}
\end{align*}
$$

where $d_{0}=x b_{0}\left(x^{2}+2\right)=x V_{k}\left(x^{2}+2\right)=f_{2 k}$. The solution of this recurrence is $d_{n}=$ $x b_{n}\left(x^{2}+2\right)=x V_{k \cdot m^{n}}\left(x^{2}+2\right)=f_{2 k \cdot m^{n}}$, where $n \geq 0$.

In particular, let $d_{n}(1)=D_{n}$. Then equation (4.3) yields the recurrence

$$
\begin{equation*}
\sqrt{5} D_{n+1}=i^{k \cdot m^{n+1}-2} c_{m}\left(\frac{\sqrt{5}}{i^{k \cdot m^{n}-2}} D_{n}\right), \tag{4.4}
\end{equation*}
$$

where $D_{0}=F_{2 k}$. Clearly, $D_{n}=F_{2 k \cdot m^{n}}$, where $n \geq 0$.
Letting $k=5$ and $m=3$, it follows from equation (4.4) that

$$
\begin{equation*}
D_{n+1}=5 D_{n}^{3}+3 D_{n}, \tag{4.5}
\end{equation*}
$$

where $D_{0}=F_{10}=55$. Then $D_{n}=F_{10 \cdot 3^{n}}$, where $n \geq 0$.
For example, $D_{1}=5 D_{0}^{3}+3 D_{0}=832,040=F_{10 \cdot 3}$ and hence, $D_{2}=5 \cdot 832040^{3}+3 \cdot 832040=$ $2,880,067,194,370,816,120=F_{10 \cdot 3^{2}}$.
4.2. A Jacobsthal Byproduct. Let $e_{n}=e_{n}(x)=x^{k \cdot m^{n}-1} b_{n}(u)$, where $u=\frac{2 x+1}{x}$. Replacing x with u in equation (4.1), and then multiplying the resulting equation by $x^{k \cdot m^{n+1}-1}$, we get the recurrence

$$
\begin{equation*}
\sqrt{4 x+1} e_{n+1}=i^{k \cdot m^{n+1}-2} \cdot x^{k \cdot m^{n+1}} c_{m}\left[\frac{\sqrt{4 x+1}}{i^{k \cdot m^{n}-2} x^{k \cdot m^{n}}} e_{n}\right], \tag{4.6}
\end{equation*}
$$

where $e_{0}=J_{2 k}(x)$. Its solution is $e_{n}=x^{k \cdot m^{n}-1} b_{n}(u)=x^{k \cdot m^{n}-1} V_{k \cdot m^{n}}(x)=J_{2 k \cdot m^{n}}(x)$, where $n \geq 0$.

In particular, let $e_{n}(2)=E_{n}$. Then equation (4.6) yields the recurrence

$$
\begin{equation*}
3 E_{n+1}=-(2 i)^{k \cdot m^{n+1}} c_{m}\left[\frac{-3}{(2 i)^{k \cdot m^{n}}} E_{n}\right], \tag{4.7}
\end{equation*}
$$

where $E_{0}=J_{2 k}$. Its solution is $E_{n}=J_{2 k \cdot m^{n}}$, where $n \geq 0$.
When $k=5$ and $m=3$, equation (4.7) yields

$$
\begin{equation*}
E_{n+1}=9 E_{n}^{3}+3 \cdot 1024^{3^{n}} E_{n}, \tag{4.8}
\end{equation*}
$$

where $E_{0}=J_{10}=341$. The solution of this recurrence is $E_{n}=J_{10 \cdot 3^{n}}$, where $n \geq 0$.
For example, $E_{1}=9 E_{0}^{3}+3 \cdot 1024 E_{0}=357,913,941$; and hence, $E_{2}=9(357913941)^{3}+3$. $1024^{3} \cdot 357913941=412,646,679,761,793,424,966,374,741=J_{10 \cdot 3^{2}}$.

Next we present a byproduct to Chebyshev polynomials.
4.3. A Chebyshev Byproduct. Let $h_{n}=h_{n}(x)=b_{n}(2 x)$. Replacing x with $2 x$ in equation (4.1), we get the recurrence

$$
\begin{equation*}
2 \sqrt{1-x^{2}} h_{n+1}=i^{k \cdot m^{n+1}-1} c_{m}\left(\frac{2 \sqrt{1-x^{2}}}{i^{k \cdot m^{n}-1}} h_{n}\right), \tag{4.9}
\end{equation*}
$$

where $h_{0}=U_{k-1}(x)$. The solution of this recurrence is $h_{n}=b_{n}(2 x)=V_{k \cdot m^{n}}(2 x)=U_{k \cdot m^{n}-1}(x)$.

THE FIBONACCI QUARTERLY

In particular, when $m=3$, equation (4.10) yields the recurrence

$$
h_{n+1}=4\left(x^{2}-1\right) h_{n}^{3}+3 h_{n},
$$

where $h_{0}=U_{k-1}(x)$. Its solution is $h_{n}=U_{k \cdot 3^{n}-1}$, where $n \geq 0$.
For example, let $k=5$. Then $h_{0}=U_{4}(x)=16 x^{4}-12 x^{2}+1$. Consequently,

$$
\begin{aligned}
h_{1} & =4\left(x^{2}-1\right)\left(16 x^{4}-12 x^{2}+1\right)^{3}+3\left(16 x^{4}-12 x^{2}+1\right) \\
& =16384 x^{14}-53248 x^{12}+67584 x^{10}-42240 x^{8}+13440 x^{6}-2016 x^{4}+112 x^{2}-1 \\
& =U_{5 \cdot 3-1} .
\end{aligned}
$$

Next we focus on recurrence (1.1), where m is an even positive integer. Theorem 1.1 has a parallel result, as the following theorem shows.

Theorem 4.1. Let m be an even positive integer and k a positive integer such that $m \nmid k$. Then the solution of the recurrence

$$
\begin{equation*}
a_{n+1}=c_{m}\left(a_{n}\right) \tag{4.10}
\end{equation*}
$$

is $a_{n}=l_{k \cdot m^{n}}$, where $a_{n}=a_{n}(x), a_{1}=l_{k m}$, and $n \geq 1$.
The proof follows by the Binet-like formula for l_{n} [10], the property that

$$
c_{m}\left(y+\frac{1}{y}\right)=y^{m}+\frac{1}{y^{m}},
$$

and induction on n, where $y \neq 0$ and m is an even positive integer. In the interest of brevity, we omit the proof.

Theorem 4.1 also has interesting implications to Jacobsthal, Vieta, and Chebyshev families.

5. Jacobsthal-Lucas Extensions

Let $b_{n}=x^{\left(k \cdot m^{n}\right) / 2} a_{n}(1 / \sqrt{x})$. Now replace x with $1 / \sqrt{x}$ in (4.10) and then multiply the resulting equation by $x^{\left(k \cdot m^{n+1}\right) / 2}$. We then get the recurrence

$$
\begin{equation*}
b_{n+1}=x^{\left(k \cdot m^{n+1}\right) / 2} c_{m}\left[\frac{1}{x^{\left(k \cdot m^{n}\right) / 2}} b_{n}\right], \tag{5.1}
\end{equation*}
$$

where $b_{1}=x^{(k m) / 2} l_{k m}(1 / \sqrt{x})=j_{k m}(x)$. The solution of this recurrence is

$$
b_{n}=x^{\left(k \cdot m^{n}\right) / 2} l_{k \cdot m^{n}}(1 / \sqrt{x})=j_{k \cdot m^{n}}(x) .
$$

Suppose we let $x=2$ and $B_{n}=b_{n}(2)$. Then equation (5.1) yields the recurrence

$$
\begin{equation*}
B_{n+1}=2^{\left(k \cdot m^{n+1}\right) / 2} c_{m}\left[\frac{B_{n}}{2^{\left(k \cdot m^{n}\right) / 2}}\right], \tag{5.2}
\end{equation*}
$$

where $B_{1}=j_{k m}$. The corresponding solution is $B_{n}=j_{k \cdot m^{n}}$, where $n \geq 1$.
When $m=2$, we get

$$
\begin{equation*}
B_{n+1}=B_{n}^{2}-2^{k \cdot 2^{n}+1}, \tag{5.3}
\end{equation*}
$$

where $B_{1}=j_{2 k}$.
Similarly, the cases $m=4$ and $m=6$ yield the recurrences

$$
\begin{align*}
& B_{n+1}=B_{n}^{4}-4 \cdot 2^{k \cdot 4^{n}} B_{n}^{2}+4^{k \cdot 4^{n}} \tag{5.4}\\
& B_{n+1}=B_{n}^{6}-6 \cdot 2^{k \cdot 6^{n}} B_{n}^{4}+9 \cdot 4^{k \cdot 6^{n}} B_{n}^{2}-2 \cdot 8^{k \cdot 6^{n}} \tag{5.5}
\end{align*}
$$

where $B_{1}=j_{4 k}$ and $B_{1}=j_{6 k}$, respectively.

For example, let $k=1$ in recurrence (5.5). Then $B_{1}=j_{6}=65$, and hence, $B_{2}=65^{6}-6$. $2^{6} \cdot 65^{4}+9 \cdot 4^{6} \cdot 65^{2}-2 \cdot 8^{6}=68,719,476,737=j_{6^{2}}$.

Next we pursue Vieta-Lucas polynomial extensions.

6. Vieta-Lucas Extensions

Since $v_{n}(x)=i^{n} l_{n}(-i x)$, we let $b_{n}=b_{n}(x)=i^{k \cdot m^{n}} a_{n}(-i x)$. Replacing x with $-i x$ in (4.10) and multiplying the resulting equation by $i^{k \cdot m^{n+1}}$ yields the recurrence

$$
\begin{equation*}
b_{n+1}=c_{m}\left(\frac{1}{i^{k \cdot m^{n}}} b_{n}\right) \tag{6.1}
\end{equation*}
$$

where $b_{1}=i^{k \cdot m} l_{k m}(-i x)=v_{k m}(x)$. Its solution is $b_{n}=i^{k \cdot m^{n}} l_{k \cdot m^{n}}(-i x)=v_{k \cdot m^{n}}(x)$.
Next we study three interesting implications of recurrence (6.1).
6.1. A Lucas Byproduct. Let $d_{n}=d_{n}(x)=x b_{n}\left(x^{2}+2\right)$. Replacing x with $x^{2}+2$ in equation (6.1) and then multiplying the resulting equation by x, we get

$$
\begin{equation*}
d_{n+1}=x c_{m}\left(\frac{1}{x i^{k \cdot m^{n}}} d_{n}\right) \tag{6.2}
\end{equation*}
$$

where $d_{1}=x v_{k m}\left(x^{2}+2\right)=l_{2 k m}$. Its solution is $d_{n}=x v_{k \cdot m^{n}}\left(x^{2}+2\right)=l_{2 k \cdot m^{n}}$.
In particular, let $d_{n}(1)=D_{n}$. Then equation (6.2) yields

$$
\begin{equation*}
D_{n+1}=c_{m}\left(\frac{D_{n}}{i^{k \cdot m^{n}}}\right) \tag{6.3}
\end{equation*}
$$

where $D_{1}=L_{2 k m}$. Clearly, $D_{n}=L_{2 k \cdot m^{n}}$.
For example, let $k=5$ and $m=4$. Then $D_{n+1}=C_{4}\left(D_{n}\right)$, where $D_{1}=L_{40}=228,826,127$. Then $D_{2}=228826127^{4}-4 \cdot 228826127^{2}+2=2,741,715,832,729,650,778,856,894,742,296,127=$ L_{160}.

Next we present an implication to Jacobsthal-Lucas polynomials.
6.2. A Jacobsthal-Lucas Byproduct. Let $e_{n}=e_{n}(x)=x^{k \cdot m^{n}} b_{n}(u)$, where $u=\frac{2 x+1}{x}$. It then follows from recurrence (6.1) that

$$
\begin{equation*}
e_{n+1}=x^{k \cdot m^{n+1}} c_{m}\left[\frac{1}{(i x)^{k \cdot m^{n}}} e_{n}\right] \tag{6.4}
\end{equation*}
$$

where $e_{1}=x^{k m} v_{k m}(u)=j_{2 k m}(x)$. The solution of this recurrence is $e_{n}=x^{k \cdot m^{n}} b_{n}(u)=$ $x^{k \cdot m^{n}} v_{k \cdot m^{n}}(u)=j_{2 k \cdot m^{n}}(x)$, where $n \geq 1$.

Letting $E_{n}=e_{n}(2)$, it follows that

$$
\begin{equation*}
E_{n+1}=2^{k \cdot m^{n+1}} c_{m}\left[\frac{1}{(2 i)^{k \cdot m^{n}}} E_{n}\right] \tag{6.5}
\end{equation*}
$$

where $E_{1}=j_{2 k m}$. The solution of this recurrence is $E_{n}=j_{2 k \cdot m^{n}}$, where $n \geq 1$.
Suppose we let $k=3$ and $m=4$. Then recurrence (6.5) yields

$$
E_{n+1}=E_{n}^{4}-4 \cdot 64^{4^{n}} E_{n}^{2}+2 \cdot 4096^{4^{n}}
$$

where $E_{1}=j_{24}=16,777,217$. Consequently, $E_{2}=E_{1}^{4}-4 \cdot 64^{4} E_{1}^{2}+2 \cdot 4096^{4}=$ $79,228,162,514,264,337,593,543,950,337=j_{6 \cdot 4^{2}}$.

Finally, we present an interesting consequence to Chebyshev polynomials $T_{n}(x)$.

THE FIBONACCI QUARTERLY

6.3. A Chebyshev Byproduct. Letting $h_{n}=h_{n}(x)=\frac{1}{2} b_{n}(2 x)$, equation (6.1) yields the
recurrence

$$
2 h_{n+1}=c_{m}\left(\frac{2}{i^{k \cdot m^{n}}} h_{n}\right)
$$

where $h_{1}=\frac{1}{2} b_{1}(2 x)=\frac{1}{2} v_{k m}(2 x)=T_{k m}(x)$. Its solution is $h_{n}=\frac{1}{2} b_{n}(2 x)=\frac{1}{2} v_{k \cdot m^{n}}(2 x)=$ $T_{k \cdot m^{n}}(x)$, where $n \geq 1$.

When $m=2$, it follows that $2 h_{n+1}=c_{2}\left(\frac{2}{i^{k \cdot 2^{n}}} h_{n}\right)$; so $h_{n+1}=2 h_{n}^{2}-1$, where $h_{1}=T_{2 k}(x)$. Likewise, when $m=4$ and $m=6$, we get the recurrences

$$
\begin{aligned}
h_{n+1} & =8 h_{n}^{4}-8 h_{n}^{2}+2 \\
h_{n+1} & =32 h_{n}^{6}-48 h_{n}^{4}+36 h_{n}^{2}-2
\end{aligned}
$$

where $h_{1}=T_{4 k}(x)$ and $h_{1}=T_{6 k}(x)$, respectively.

7. Acknowledgment

The authors would like to thank the reviewer for his encouraging words and comments.

References

[1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.5 (1970), 407-420.
[2] C. R. Diminnie, Problem 1909, Crux Mathematicorum, 20 (1994), 17.
[3] A. F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly, 34.1 (1996), 40-54.
[4] A. F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quarterly, 35.2 (1997), 137-148.
[5] A. F. Horadam, Vieta polynomials, The Fibonacci Quarterly, 40.3 (2002), 223-232.
[6] A. F. Horadam and Bro. J. M. Mahon, Pell and Pell-Lucas polynomials, The Fibonacci Quarterly, 23.1 (1985), 7-20.
[7] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[8] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
[9] T. Koshy, Vieta polynomials and their close relatives, The Fibonacci Quarterly, 54.2 (2016), 141-148.
[10] T. Koshy and Z. Gao, Polynomial extensions of a Diminnie delight, The Fibonacci Quarterly, 55.1 (2017), 13-20.
[11] T. Rivlin, The Chebyshev Polynomials, Wiley, New York, 1974.
[12] N. Robbins, Vieta's triangular array and a related family of polynomials, International Journal of Mathematics and Mathematical Sciences, 14 (1991), 239-244.
[13] A. G. Shannon and A. F. Horadam, Some relationships among Vieta, Morgan-Voyce and Jacobsthal polynomials, Applications of Fibonacci Numbers (ed. F. T. Howard), Kluwer, Dordrecht, 1999, 307-323.
[14] A. Sinefakopoulos, Solution to Problem 1909, Crux Mathematicorum, 20 (1994), 295-296.
[15] M. N. S. Swamy, Generalized Fibonacci and Lucas polynomials and their associated diagonal polynomials, The Fibonacci Quarterly, 37.3 (1999), 213-222.

MSC2010: 11B37, 11B39, 11B50
Department of Mathematics, Framingham State University, Framingham, Massachusetts 01701
E-mail address: tkoshy@emeriti.framingham.edu
Department of Mathematics, Framingham State University, Framingham, Massachusetts 01701
E-mail address: zgao@framingham.edu

