
ON CANDIDO LIKE IDENTITIES

ZVONKO CERIN

Abstract. We give some identities for Horadam and (general) Lucas numbers analogous to
the famous Candido identity for the Fibonacci numbers.

1. Introduction

Let Q = (a+ b+ c) (b+ c− a) (c+ a− b) (a+ b− c). We first recall the following two well-
known alternate representations of Q.(

a2 + b2 + c2
)2 − 2

(
a4 + b4 + c4

)
= Q, (1)

4
[
(b c)2 + (c a)2 + (a b)2

]
−
(
a2 + b2 + c2

)2
= Q. (2)

Of course, they are related to the Heron’s formula 16P 2 = Q for the area P of a triangle in
terms of its sides a, b and c (see [11]).

An immediate consequence of (1) is that when real numbers a, b and c are three consecutive
members of a binary recurrence sequence {sn} satisfying the recurrence sn+2 = sn + sn+1 then
Q = 0. Since every Fibonacci number Fn is the sum of two previous Fibonacci numbers Fn−1

and Fn−2, in particular, we conclude from (1) that(
F 2
n + F 2

n+1 + F 2
n+2

)2
= 2

(
F 4
n + F 4

n+1 + F 4
n+2

)
. (3)

This is one of the most beautiful among myriads of identities for Fibonacci numbers known
as the Candido identity (quoted in [1] and first appeared in [2]). Let S3 = F 2

n + F 2
n+1 + F 2

n+2.
In the same way, from (2), we also have the following (less known) identity.

S2
3 = 4

[
(Fn+1 Fn+2)2 + (Fn+2 Fn)2 + (Fn Fn+1)2

]
. (4)

Both (3) and (4) hold also for Lucas numbers since they also satisfy the above recurrence.
The identity (3) was again considered by Melham [8] in 2004 when he decided to increase

the numbers of terms. For example, he discovered the following identity.

3
(
F 4
n + 4F 4

n+1 + 4F 4
n+2 + F 4

n+3

)
= 2

(
F 2
n + F 2

n+1 + F 2
n+2 + F 2

n+3

)2
.

Let S4 = F 2
n + F 2

n+1 + F 2
n+2 + F 2

n+3 and for integers i and j, let Pi, j denote the product
Fn+i Fn+j . Here we only mention the following three analogues of the identity (4) for S4.

4
9 S

2
4 = P 2

0, 1 + 8P 2
1, 2 + P 2

2, 3 + 2P 2
3, 0 + P 2

0, 2 + P 2
1, 3.

S2
4 = 4P 2

0, 1 + 4P 2
1, 2 + 4P 2

2, 3 + P 2
3, 0 + 4P 2

0, 2 + 4P 2
1, 3.

16
9 S

2
4 = 7P 2

0, 1 + 8P 2
1, 2 + 7P 2

2, 3 + 2P 2
3, 0 + 7P 2

0, 2 + 7P 2
1, 3.

In the rest of this paper we shall stick to the cases of at most three terms except in the
section 10 when we return to four terms. Our main goal is to generalize the identities (3) and
(4) in two directions.

Firstly, we replace Fibonacci numbers with more general Horadam numbers wn. Moreover,
we show that for (general) Lucas numbers xn analogous identities are also true.
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Secondly, instead of the indices n, n+ 1 and n+ 2 in (3) and (4), we consider the indices
n, n+m and n+ 2m for any integers m and n. In this way, it follows that (3) and (4) are
just single identities from a whole series of identities.

2. Horadam and (general) Lucas numbers

The sequence F0, F1, F2, F3, . . . of Fibonacci numbers is defined recursively so that F0 = 0
and F1 = 1 and we require Fk+2 = Fk+1 + Fk for every k ≥ 0. Hence, F2 = 1, F3 = 2, F4 = 3,
F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 34, etc.

Quite similar is also the sequence L0, L1, L2, L3, . . . of Lucas numbers when we take L0 = 2
and L1 = 1 while the recursion Lk+2 = Lk+1 + Lk for every k ≥ 0 remains the same. Hence,
L2 = 3, L3 = 4, L4 = 7, L5 = 11, L6 = 18, L7 = 29, L8 = 47, L9 = 76, etc.

The Fibonacci and Lucas numbers are special cases of the following sequences of numbers.

Let s, t, p and q be complex numbers such that ∆ 6= 0, where ∆ =
√
p2 + 4 q. Let α = p+∆

2 ,

β = p−∆
2 , α0 = t− s β, β0 = t− s α,

wn = wn(s, t; p, q) =
α0 α

n − β0 β
n

∆
,

xn = xn(s, t; p, q) = α0 α
n + β0 β

n,

yn = wn(0, 1; p, q) and zn = xn(0, 1; p, q).
The numbers wn are known as Horadam numbers (see [4]) and the numbers xn as the asso-

ciated (general) Lucas numbers. It is obvious that wn(0, 1; 1, 1) = Fn and xn(0, 1; 1, 1) = Ln
for every integer n. Let δ = −α0 β0 = q s2 − t2 + p s t.

3. Candido identities for Horadam and Lucas numbers

Let m and n be integers. Let q = −q, µ = qm, ν = q n, n′ = n+m and n′′ = n+ 2m. Let

a = µwn, b = zmwn′ , c = wn′′ . (5)

a = µxn, b = zm xn′ , c = xn′′ . (6)

a = µwn, b = ym xn′ , c = wn′′ . (7)

a = µxn, b = ∆2 ymwn′ , c = xn′′ . (8)

Lemma 1. (i) If either (5) or (6) is true, then a+ c = b.
(ii) If either (7) or (8) is true, then a+ b = c.

Proof. Let (5) holds. Then

a+ c = (−q)m α0 αn−β0 βn

∆ + α0 αn+2m−β0 βn+2m

∆ = α0 αn

∆

(
(−q)m + α2m

)
−

β0 βn

∆

(
(−q)m + β2m

)
= α0 αn

∆

(
(αβ)m + α2m

)
− β0 βn

∆

(
(αβ)m + β2m

)
=

α0 αn+m

∆ (βm + αm)− β0 βn+m

∆ (αm + βm) = zm
α0 αn+m−β0 βn+m

∆ = b.

The other parts of this lemma have similar proofs. �

For an integer k, let Nk = ak + bk + ck, Mk = (b c)k + (c a)k + (a b)k, σ = N1 = a+ b+ c,
τ = M1 = b c+ c a+ a b and π = a b c. Using this notation, the identities (1) and (2) are much
shorter

(1) N2
2 − 2N4 = Q, (2) 4M2 −N2

2 = Q.

Hence, Lemma 1 implies the following versions of Candido identity for Horadam and (ge-
neral) Lucas numbers.
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Theorem 3.1. If either (5), (6), (7) or (8) hold, then N2
2 = 2N4 = 4M2.

Let the middle terms of the above four identities be denoted by Q1,. . . , Q4. The fol-
lowing four identities show that Q1

4 ,. . . , Q4

4 are also complete squares. Let A = z2
m − µ and

B = z2
m − 3µ. (

Aw2
n′ + δ y2

m µ ν
)2

=
(
Awnwn′′ + δ y2

2m ν
)2

= Q1

4 . (9)(
Ax2

n′ − δ∆2 y2
m µ ν

)2
=
(
Axn xn′′ − δ∆2 y2

2m ν
)2

= Q2

4 . (10)(
Bw2

n′ + 3 δ y2
m µ ν

)2
=
(
Bwnwn′′ + δ y2

2m ν
)2

= Q3

4 . (11)(
B x2

n′ − 3 δ∆2 y2
m µ ν

)2
=
(
B xn xn′′ − δ∆2 y2

2m ν
)2

= Q4

4 . (12)

For an integer j, let κj be z2m + j µ. For the numbers yn and zn the above four identities
have the following simpler form.

2 (κ1 y2n′ + κ4 µ ν)2 = µ4 y4
n + z4

m y
4
n′ + y4

n′′ . (13)

2 (κ1 z2n′ + κ4 µ ν)2 = µ4 z4
n + z4

m z
4
n′ + z4

n′′ . (14)

2 (κ−1 z2n′ + κ−4 µ ν)2 = ∆4
(
µ4 y4

n + y4
m z

4
n′ + y4

n′′
)
. (15)

2 (κ−1 z2n′ − κ−4 µ ν)2 = µ4 z4
n + ∆8 y4

m y
4
n′ + z4

n′′ . (16)

The following are also corollaries of Lemma 1.

Corollary 1. (i) If either (5) or (6) holds, then

σ2 − 4 a b = 2
(
N2 − 2 a2

)
.

(ii) If either (7) or (8) holds, then

σ2 − 4 a b = 2N2.

Proof. This follows from Lemma 1 and the algebraic identities

σ2 − 4 a b− 2
(
N2 − 2 a2

)
= (3 a+ b− c)(a− b+ c)

and

4 a b+ 2N2 − σ2 = (a+ b− c)2.

�

Corollary 2. If either (5), (6), (7) or (8) holds, then

N3
1 = 4N3 + 12π.

Proof. This follows from Lemma 1 and the algebraic identity

N3
1 − 4N3 − 12π =

3Q

σ
.

�

Since N6
1 − 16N6 + 240π2 − 32M3

1 contains Q
σ as a factor, we can add the identity

N6
1 + 240π2 = 16

(
N6 + 2M3

1

)
to Corollary 2.
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4. Candido like identity for products wn xn

The following is the version of Candido identity for the products rn = wn xn of Horadam
and (general) Lucas numbers. Let A = 2 δ y2m q

n′
.

Theorem 4.1. If either a = µ2 rn, b = z2
m rn′, c = rn′′ or a = µ2 rn, b = ∆2 y2

m rn′, c = rn′′,
then N2

1 +A2 = 2N2 and N2
1 −A2 = 4M1.

Proof. Let us compute the difference 2N2 −N2
1 using

wn = 1
∆

(
α0 α

n − β0 ν
αn

)
and xn = α0 α

n + β0 ν
αn . (17)

After simplification of a long expression collecting terms that contain powers of q, we discover
that

2N2 −N2
1 = 4

∆2 α0
2β0

2(µ ν)2
(
αm − µ

αm

)2 (
αm + µ

αm

)2
= A2.

Similarly we get 2N2 − 4M1 = 2A2 that implies N2
1 −A2 = 4M1. �

5. Candido like identities for products wnwn+5m,. . . .

In this section we shall consider analogues of Candido identity for products wnwn+5m,
wn+mwn+4m,. . . .

Theorem 5.1. If either
(i) a = wnwn+5m, b = wn+mwn+4m, c = wn+2mwn+3m,
B = δ qn ym y2m and D = z2

2m + µ z2m + µ2,
(ii) a = xn xn+5m, b = xn+m xn+4m, c = xn+2m xn+3m,
B = ∆2 δ qn ym y2m and D = z2

2m + µ z2m + µ2,
(iii) a = wnwn+6m, b = wn+mwn+5m, c = wn+2mwn+4m,
B = δ qn ym and D = y2

m z
2
4m + 3µ y3m y5m,

or
(iv) a = xn xn+6m, b = xn+m xn+5m, c = xn+2m xn+4m,
B = ∆2 δ qn ym and D = y2

m z
2
4m + 3µ y3m y5m,

then N2
1 + 2B2D = 3N2.

Proof. In order to prove (i), we again use (17) and compute the difference 3N2 −N2
1 . This

time we get

3N2 −N2
1 = 2

∆4

[(
α2m + µ2

α2m

)2
+ µ

(
α2m + µ2

α2m

)
+ µ2

]
(
αm − µ

αm

)4 (
αm + µ

αm

)2
δ2 ν2 = 2B2D.

The other parts have similar proofs. These computations and all others in this paper have
been checked by a computer in Maple V (version 9.5). �

6. Candido like identity for products with two terms

For products of two and three Horadam and (general) Lucas numbers there are analogues
of Candido identity with only two terms.

Theorem 6.1. If either
(i) a = wnwn+3m, b = wn+mwn+2m and B = δ qn ym y2m,
(ii) a = xn xn+3m, b = xn+m xn+2m and B = ∆2 δ qn ym y2m,
(iii) a = wnwn+4mwn+5m, b = wn+mwn+2mwn+6m and B = δ qn ym y2m y3m xn+3m,
or
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(iv) a = xn xn+4m xn+5m, b = xn+m xn+2m xn+6m and B = ∆4 δ qn ym y2m y3mwn+3m,
then

(a+ b)2 +B2 = 2
(
a2 + b2

)
.

Proof. The proof of Theorem 4 is similar to the proof of Theorem 3. We verify that the
difference 2

(
a2 + b2

)
− (a+ b)2 is precisely the square of B. �

7. Candido like identity for N3
2 and

(
N2 − 4 b2

)3
The algebraic identities

N3
2 + 12π2 − 4N6 = 3QN2(

N2 − 4 b2
)3

+ 60π2 − 4
(
N6 − 4 b6

)
= 3Q

(
N2 + 4 b2

)
imply the following identities for the cubes of N2 and N2 − 4 b2.

Theorem 7.1. If either (5), (6), (7) or (8) hold, then

N3
2 + 12π2 = 4N6

and (
N2 − 4 b2

)3
+ 60π2 = 4

(
N6 − 4 b6

)
.

8. Candido like identity for Nk
2 (k = 4, 5, 6)

The algebraic identity N4
2 − 4N8 − 8M4 = Q(3N4 + 2M2) implies that N4

2 = 4N8 + 8M4

hold when either (5), (6), (7) or (8) is true. We also have the following analogous result.

Theorem 8.1. (i) If either (5) or (6) hold, then

N4
2 + 64

(
b2 − c a

)
π2 = 8N8.

(ii) If either (7) or (8) hold, then

N4
2 + 64

(
b2 + c a

)
π2 = 8N8.

Proof. This follows from Lemma 1 and the fact that

N4
2 + 64

(
b2 − c a

)
π2 − 8N8 (18)

and

N4
2 + 64

(
b2 + c a

)
π2 − 8N8 (19)

contain a− b+ c and a+ b− c as factors, respectively. �

Analogous results hold also for the fifth and the sixth powers of N2. In this cases instead
of (18) and (19) we have

N5
2 + 240

(
b2 − c a

)2
π2 − 16N10, (185)

N5
2 + 240

(
b2 + c a

)2
π2 − 16N10 (195)

and

N6
2 + 96

(
8 c6 + 24π c3 + 25π2 + 8 a3 b3

)
π2 − 32N12, (186)

N6
2 + 96

(
8 c6 − 24π c3 + 25π2 − 8 a3 b3

)
π2 − 32N12. (196)

Their proofs are similar to the above proof for the fourth power of N2.
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9. More Candido like identities for products

Theorem 9.1. If either
(i) A = µ, B = 2 z2m + µ and a = wnwn+5m, b = wn+mwn+4m, c = wn+2mwn+3m,
or
(ii) A = µ y3m, B = ym

[
2 z4

m− µ
(
5 z2

m − µ
)]

and a = wnwn+6m, b = wn+mwn+5m,
c = wn+2mwn+4m,
then

A
(
Aa2 −B b2 +B c2

)
= (Aa−B b+B c)2 .

The above theorem holds also when in a, b and c we replace Horadam with (general) Lucas
numbers.

Proof of (i) for the (general) Lucas numbers. We shall find expressions V = Aa−B b+B c
and U = A

(
Aa2 −B b2 +B c2

)
and check that U = V 2.

In order to make long expressions shorter, we shall use the following notation. Let u = α0

and v = β0. For an integer k, let 〈k〉 = αkm and [k] = αk n. Let R and P denote polynomials

µ4 − 2〈2〉µ3 + 〈4〉µ2 − 2〈6〉µ+ 〈8〉,

µ10 − 2〈2〉µ9 − 〈4〉µ8 + 8〈10〉µ5 + 〈12〉µ4 − 〈16〉µ2 − 2〈18〉µ+ 〈20〉.
Using the representations (17), one can show that U is

ku4 u
4 + ku3 v u

3 v + ku2 v2 u
2 v2 + ku v3 u v

3 + kv4 v
4,

where ku4 = 〈10〉 [4]µ2, ku3 v = −2[2]µ2 ν(µ+ 〈2〉)R, ku2 v2 = 〈−10〉µ2 ν2 P , ku v3 = −2〈−10〉
[−2]µ7 ν3(µ+ 〈2〉)R and kv4 = 〈−10〉 [−4]µ12 ν4. On the other hand, V is equal

〈5〉 [2]µu2 − [−5]µ ν(µ+ 〈2〉)Ruv + 〈−5〉 [−2]µ6 ν2 v2.

Comparing coefficients of corresponding powers of u and v, we see that U = V 2.
The other cases of Theorem 7 have similar proofs. �

10. Four terms Candido like identity for products

Let A = µ2 y3m y4m, B = µ ym
(
2 y8m + 4µ y6m + 5µ2 y4m

)
,

C = ym
(
y10m + 4µ y8m + 13µ2 y6m + 19µ3 y4m + 16µ4 y2m

)
and D = ym

(
y10m + 6µ y8m + 2µ2 y6m + 9µ3 y4m + µ4 y2m

)
.

Theorem 10.1. If a = wnwn+7m, b = wn+mwn+6m, c = wn+2mwn+5m and d = wn+3mwn+4m,
then

Aa2 +B b2 + C c2 −Dd2 = A (a+ b+ c+ d)2 .

The above theorem holds also when in a, b, c and d we replace Horadam with (general)
Lucas numbers.

Proof. As in the above proof of Theorem 7, we shall find

U = Aa2 +B b2 + C c2 −Dd2 and V = a+ b+ c+ d

and check that U = AV 2.
These tasks are straightforward and technically complicated so that we leave them to the

dedicated readers as a challenge. �
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11. Summary and Future Work

A brief summary of this paper is as follows. We first recalled definitions of Horadam (wn)
and (general) Lucas numbers (xn) together with their important special cases (yn) and (zn).
After the proof of a simple Lemma 1, we established Candido identities for Horadam and
(general) Lucas numbers (Theorem 1) and several of their variations (identities (9)–(16)) and
two corollaries. For products wn xn the analogue of Candido identity required adding or
subtracting a certain complete square (Theorem 2). In Theorem 3 we have given four cases
of Candido like identities for three products of either two Horadam or two (general) Lucas
numbers with equal sums of indices. The next Theorem 4 considered only two such products
but both for products of two and three terms. In Theorems 5 and 6 the third and the fourth,
fifth and sixth powers of the sum of squares have given us nice looking formulas. Finally, in
Theorems 7 and 8, we returned to three and four products of two terms from either Horadam
or (general) Lucas numbers.

In the future we would like to discover and prove Candido like identities with more terms
(similar to the Melham identity in the Introduction) and for more kinds of numbers (tribonacci,
polygonal,...).
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