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ABSTRACT. The only published proof of the Gould identity which generalizes the Tagiuri,
Catalan, and Cassini identities is based on exploration of general properties of a functional
operator. In this paper we present a simply described method, the Tagiuri Generation Method
(TGM), which can both generate and prove an infinite number of identities in an arbitrary
number of parameters. In particular TGM generates and proves the Gould identity. This
paper explores TGM and looks at one infinite family of identities generated by TGM. The
identities that result from TGM are different from traditional Fibonacci identities in that
indices of Fibonacci numbers occurring in these identities seem uniformly distributed. The
paper makes this heuristic precise. Two open problems connected with TGM are also pre-
sented.

1. HISTORY AND OVERVIEW

The identities

Fup1Fat = F2 4+ (—1)", (11)
FriaFp—q = F2 + (—1)"totip2) (1.2)
Fn+aFn+b = FnFn+a+b+ (_1)nFan7 (13)

and

Fn+aFn+bFn+c = FnFn+aFn+b+c - FnFn+bFn+c+a + FnFn+an+a+b
+ew<anm%+ﬂnmﬁ—nﬂ&%)(u)

are due to Cassini [3, p. 74|, Catalan [3, p. 83|, Tagiuri [3, p. 114], and Gould [2] respectively.

The proof of (1.4) presented in [2] is complicated, based on the general properties of the
functional operator T'f(z) = f(z + a)f(x +b) — f(x)f(x + a + b). In seeking a simpler proof
of (1.4), the author discovered a general method, the Tagiuri Generation Method (TGM), for
generating identities. The generated identities can have an arbitrary number of parameters.
One does not need to separately prove each generated identity since one can prove a general
result that TGM only produces true identities. The identities generated by TGM have some
unusual properties. TGM allows the generation of infinite families of identities in several
parameters. The goal of this paper is to present TGM, study the properties of one infinite
family of identities generated by TGM, and to pose some open problems.

An outline of this paper is as follows. Section 2 illustrates a special case of TGM used
to prove (1.4). Section 3 defines TGM in full generality. Section 4 shows that TGM only
produces true identities, one main result of this paper. Section 5 presents examples of identities
derived from TGM. Section 6 defines and studies index histograms of TGM identities. Index
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histograms are very useful in studying properties of infinite families of identities generated by
TGM. Section 7 notes some properties of TGM identities and how they differ from traditional
identities. Section 8 studies one infinite family of identities generated by TGM. Section 9
concludes the paper and presents two open problems.

Before proceeding we clarify our use of the term parameters. Every identity must have at
least one variable occurring in it, say n, since the identity asserts that a given equation is true
for all n. By convention we say that such an identity has zero parameters. For example, (1.1)
has zero parameters. Any additional variables are classified as parameters. Thus, (1.2)-(1.4)
are identities with one, two, and three parameters respectively.

2. PROOF OF (1.4)

In this section we prove (1.4). The proof shows several main attributes of the definition of
TGM which is presented in the following section.

TGM always starts with specification of p, the number of parameters in the desired identity
and s, the coefficient of the negative summand. To prove (1.4), we let

p =3, s=1.

Using these values of p and s, we form the start identity

FoyoFnipFnge = (1 + S)Fn+aFn+bFn+c —skyralnpFnie =
Fn+aFn+bFn+c +1x Fn+aFn+bFn+c —1x Fn+aFn+bFn+c- (21)

In (2.1) p = 3 is the number of parameters and s = 1 is the numerical coefficient of the negative
summand.

Throughout this paper when dealing with a list of parameters, we may use two notations.
We may refer to the parameters as ay,as,as,... or as a,b,c,... . Using this convention the
second parameter can either be described as b or as.

The basic idea of TGM is to repeatedly use (1.3) to replace factors of the form Fj,;Fy 4y,
with {x,y} C {a,b,c}, in the three summands on the right-hand side of (2.1).

First, we use (1.3) to replace the factor containing the first and second parameters, Fy,y,Fy b,
in the first summand on the right-hand side of (2.1). This yields

Fn+aFn+bFn+c = FnFn+a+bFn+c + (_1)nFanFn+c + FnJraFn—i-bFnJrc - Fn+aFn+bFn+c- (22)

Next, we apply (1.3) to the factor containing the second and third parameters, Fy ,F e,
in the second summand on the right-hand side of (2.1) (which is the third summand on the
right-hand side of (2.2)). This yields

Fn+aFn+bFn+c = FnFn+a+bFn+c + (_1)nFanFn+c+
Fn+aFnFn+b+c + (_1)nFn+anFc - Fn+aFn+bFn+c- (23)
Finally, we apply (1.3) to the factor containing the first and third parameters, Fj,1qFy+c,
in the third summand on the right-hand side of (2.1) (which is the fifth summand on the
right-hand side of (2.3)). This yields
Fn+aFn+bFn+c = FnFn+a+bFn+c + (_1)nFanFn+c + Fn+aFnFn+b+c+
(—1)"FpyoFyFe — FoF v Frgera — (1) " Fo FppFe. (2.4)
After an appropriate rearrangement, (2.4) is identical with (1.4). It follows that the above

method has generated (1.4). It also follows that (1.4) is true since (2.1) is trivially true and
all substitutions made are justified by (1.3).
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The above derivation of (2.4) can be summarized with the notation
(p=3,s=1,(1,2),(2,3),(1,3)),

or more compactly,

(3,1,(1,2),(2,3),(1,3)). (2.5)
We refer to (2.5) and (2.4) as the Tagiuri Generation Method, TGM, and the Tagiuri Generated
Identity, TGI, respectively.

3. DEFINITION OF TGM

We need one more piece of notation and one more convention to completely define TGM.
To motivate the ideas, consider the case p = 4, s = 0, yielding the start identity

Fn+aFn+bFn+an+d = Fn+aFn+bFn+an+d' (3-1)

We would like to make two simultaneous substitutions of (1.3) to the right-hand side of
(3.1), with one substitution applied to the factor F),,F,1p and the other substitution applied
to the factor Fr4cFhiq.

We use the notation (1,2;3,4) to indicate two simultaneous substitutions using (1.3). The
parentheses indicate that the substitutions are made to one summand, and the semicolon
separates pairs of indices i, j corresponding to the factor Fy, 14, Fi1q; to which (1.3) is applied
to replace Fota; Frta, with FoFntaita; + (—1)" Fo, Fa,.

For the rest of the paper, if p = 2q is even, we make the following substitutions into any
TGI studied:

a1 =—q,a2=—(g—1),...,a0=—1,a941 = 1,a912 =2,...,a20 = q. (3.2)
We refer to the resulting identity as a Tagiuri Generated Identity With Substitution, TGIWS.

To clarify the concepts just introduced, we complete our analysis of (3.1).

Example 3.1. We use the TGM
<4’ 07 (17 2; 37 4)>'
The resulting TGI is
Fn+aFn+bFn+0Fn+d = Fy%Fn—i-a—i-bFn—i-c—i-d‘i'FanFch‘*'(_1)nFnFn+a+chFd+(_1)nFnFanFn+c+da
and the resulting TGIWS is
Fn72Fn71Fn+1Fn+2 = Fn73F3Fn+3 -1+ (*1)nFn(Fn73 - Fn+3)- (33)
We summarize with the following definition.

Definition 3.2. The Tagiuri Generation Method, TGM, indicated by
<p’ S, Qla Q?a R} Q25+1>’

where for each k,1 <k < 2s+1, Qy is of the form (ix1, jk15%k,2, Jk,25 - - - 5 %k ymps Jhymy)
for some my, with 1 < my, < p/2,

and where for each k,1 < k < 2s+ 1, the sets (iyq, jrq), 1 < g < my, are pairwise disjoint,
refers to the process of using the start identity

P P P

HFn—&-ai = (1+3)HFn+ai _SHFn—&-ai (3.4)
i=1 i=1 i=1

and then in the k-th summand of (3.4), 1 <k < 2s + 1, substituting (1.3) with a = a;,, ,,b =

ajy . for 1 < q < my, with the convention that the k-th summand of (3.4) is [12_ Fata; for

1<k<s+1, and — [0 Foiq, for s+2 <k <2s+1.
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The resulting identity is called the Tagiuri Generated Identity, TGI.
If a substitution (such as (3.2)) is made into the TGI, we call the resulting identity the
Tagiuri Generated Identity With Substitution, TGIWS.

Example 3.3. Equations (2.5) and (2.4) illustrate a TGM and TGI respectively. Example
3.1 illustrates a TGM, TGI, and TGIWS.

In this paper we use the acronym TGM in two senses. TGM can refer to the general Tagiuri
Generation Method. When preceded by an article (e.g. a TGM), it refers to an application
of Definition 3.2 with specific parameters. Similar comments apply to the acronyms TGI
and TGIWS. Also, throughout the paper these acronyms will be used to refer both to single
identities and families of identities.

4. MAIN THEOREMS
Theorem 4.1. FEvery TGI and every TGIWS is true.

Proof. Equation (3.4) is trivially true. Each substitution made is an application of (1.3) which
is true. Further substitutions, such as (3.2), result in further true identities. ]

It might seem natural to generalize TGM with use of other substitutional identities. For
example, can there be a Gould Generating Method in which (1.4) is applied to triples of indices
occurring in summands of the start identity (3.4)?

However, this would not increase the number of identities generated. Indeed, (1.4) itself is
derived from a TGM as shown in Section 2. So, using (1.4) for substitution would not increase
the number of derived identities. We summarize with the following result.

Theorem 4.2. The set of identities generated by (1.3) from a start identity is not increased
if substitutions from other TGI are used.

5. EXAMPLES
This section presents further examples of the concepts introduced in Definition 3.2.
Example 5.1. We consider the TGM
(4,1,(1,2),(2,3),(3,4)).
The resulting TGIWS s

Fn—2Fn—1Fn+1Fn+2 = Fn—SFnFn+1Fn+2 + Fn—QFan—l—Q - Fn—2Fn—1FnFn+3_
(_1)n <Fn+1Fn+2 + Fn—2Fn—1 — Fn_QFn+2> . (5.1)

Example 5.2. We consider the TGM
(6,0,(1,2;3,4;5,6)).
The resulting TGIWS s

Fo3Fn oFn 1Foi1FogoFnys = Fy_sFy Frys + 2F, _5F, — AF; — 2F, Fp 5+

(-1)" (Fn_5F3Fn+5 +2F, sF3 —2F3F, 5 — 4) . (5.2)
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FIGURE 1. Index histogram for (3.3).

6. INDEX HISTOGRAMS

Identities (3.3) and (5.1) - (5.2) seem different from many traditional Fibonacci identities.
To formalize this difference and to more generally study the properties of these identities,
we introduce in this section the concept of an index histogram (or more loosely, an index
distribution).

Definition 6.1. The index histogram of a TGIWS is a histogram of the indices occurring in
the right-hand side of the identity. In counting indices, we ignore numerical coefficients of
summands and factors of (—1)" but we count powers with multiplicity, assume parenthetical
expressions expanded, and assume all F, numerically evaluated if x is independent of n.

Using this definition Figures 1-3 present the index histograms of (3.3) and (5.1) - (5.2)
respectively. Figure 4 presents the index histogram of (12,0, (1,2;3,4;5,6;7,8;9,10;11,12));
however, for reasons of space, we omit the actual TGIWS.

7. CHARACTERISTICS OF TGIWS

If we contrast (3.3) and (5.1) - (5.2) with traditional Fibonacci identities, noticeable differ-
ences emerge.

A traditional Fibonacci identity, for example, Fb, = F, Ly, is short, compact, punchy, and
unexpected. The elegance lies in the identity content.

Contrastively, (3.3) and (5.1) - (5.2) have a cumbersome appearance. Figures 1-4 show
that the distribution of indices in these and similar identities seems almost uniform. This is
precisely formulated in Section 8. The elegance of these identities lies in their generation and
proof. Each of (3.3) and (5.1) - (5.2) follows from a one-line TGM followed by substitution of
(3.2).

Thus, the Fibonacci identities presented in this paper are in a certain sense new and have
different characteristics.
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FIGURE 2. Index histogram for (5.1).
18
16
14
12
10
8
6
a4 -
2 .
0 -
n-5 n n+5
FIGURE 3. Index histogram for (5.2).
8. AN INFINITE FamiLy oF TGIWS
Definition 3.2 can be used to generate an infinite family of TGIWS.
One such infinite family consists of the TGIWS arising from
(2¢,0,(1,2;3,4;... ;29 — 1,2q)), (8.1)

where ¢ ranges over the positive integers.
Characteristics of this family are presented in Table 1.
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FIGURE 4. Index histogram for (12,0, (1,2;3,4;5,6;7,8;9,10;11,12)).

p=2q q Indices # Indices  Weight n = Weight non-n  Total H

2 1 n 1 2 2

4 2 n,n+3 3 4 2 8

6 3 n,n=+5H 3 16 4 24
8 4 n,n+7,n+3 5 32 8 64
10 5 n,nt9nth 5 96 16 160
12 6 n,n+l1l,n+7,n+3 7 192 32 384
2q q even n,n+(2¢g—1),n+(2¢—5),...,n+3 qg+1 2971 201 q2?
2q g>1, odd | n,nt(2¢g—1),n+(2¢—5),...,nt5 q (g+1)2771 201 q2?

TABLE 1. Statistics on the index histograms of the TGIWS derived from (8.1)
for several values of ¢q. The column header, ‘# Indices’ refers to the number
of distinct indices appearing in the identity. The column header, "Weight n’
refers to the number of occurrences of F,, in the identity where the count
of occurrences follows Definition 6.1. Similarly, "Weight non-n’ refers to the
number of occurrences of F,, for any = # n. ‘Total’ refers to the total number
of F, (for all ) occurring in the identity.

To illustrate the table interpretation, we review the entries in the row p = 6. Substituting
(3.2) in the TGI arising from (8.1) yields the TGIWS (5.2) whose index histogram is presented
in Figure 3. The indices occurring in (5.2) are {n,n — 5,n + 5}. Equation (5.2) has 16 occur-
rences of Fj, and four occurrences each of F,,_5 and F), 5. Consequently, there is a total of 24
indices occurring in (5.2).

The empirically observed formulas in Table 1, for ¢ = 1 to 6, are the basis for the next
theorem.
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Theorem 8.1. Fix positive integer ¢ > 1. Consider the TGIWS arising from (8.1). If q is
even, then

(a) The following g+ 1 indices are present in the TGIWS: {n — (2¢—1),n—(2¢—5),...,n—
3n,m+3,n+7....,n+(2¢—1)};

(b) There are q29~1 occurrences of Fy;

(c) For each Fy,x # n, occurring in the identity, there are 29~ occurrences of Fy.

If q is odd, then

(a’) The following q indices are present in the TGIWS: {n — (2¢ — 1),n — (2¢ — 5),...,n —
5n,m+5mn+9,....,n+ (2¢—1)};

(b’) There are (q+ 1)2971 occurrences of F;

(¢’) For each F,,x # n, occurring in the identity, there are 29~ occurrences of F.

Proof. Substituting(3.2) into the TGI obtained from (8.1) results in

Fn—anf(qfl) B 1 g Fn+q = (FnFn(qu) + (—1)nF_qF(q1)> X

(FnFn<2q5> + (—1)"F<q2>F(q3>> x

(FnFn+(2q1) + (‘UnFq—qu)- (8.2)

There are two cases to consider according to the parity of g. We first assume ¢ is even.

Proof of (a). Using the counting conventions of Definition 6.1, we see that the set of
indices occurring on the right-hand side of (8.2) is {n — (2¢—1),n— (2¢—5),...,n—3,n,n+
3,n+7,...,n+ (2¢ — 1)}. This completes the proof of (a).

Proof of (b). The expansion of (8.2) requires adding products over all paths through the
binomials on the right-hand side of (8.2). By Definition 6.1, in determining the weights (i.e.
number) of indices in the resulting expansion of the right-hand side of (8.2), only the left-hand
summand of each binomial matters.

A straightforward counting argument then shows that the total number of occurrences of
F,, in the expansion of the right-hand side of (8.2) is

(Z) xq+(q31) x(q—1)+(q32> x(q—g)...:i@).:wl_

i=0
This can be justified with the following combinatorial argument: In expanding (8.2), for each
i,0 < i < g, we obtain a factor of F! if we choose exactly i of the left-hand summands in
the ¢ binomials and ¢ — i of the right-hand summands in the remaining ¢ — ¢ binomials. This
completes the proof of (b).

Proof of (c). If x # n and F, occurs in the expansion of the right-hand side of (8.2),
then there are 2971 occurrences of Fj, in the expansion of the right-hand side of (8.2). This
can be justified with the following combinatorial argument: For F} to occur as a factor in the
expansion of (8.2), we must select the left-hand summand of the (unique) binomial with F.
We are then free to choose the left or right-hand summands in the remaining ¢ — 1 binomials.
Clearly, there are 29! ways to choose arbitrarily from the left and right-hand summands in
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g — 1 binomials. This completes the proof of (c) and completes the proof for the case when ¢
is even.

If ¢ is odd, then the proofs for the cases (a’) and (c’) are similar to the proofs of (a) and (c)
and are omitted.

Proof of (b’). The arguments used in the ¢ is even case for contributions of occurrences
of F, also apply to the odd case. However, when ¢ is odd, there are additional contributions
to the occurrences of Fj,. To see this note that since ¢ is odd, the ﬁzl—th binomial in (8.2)
is [2 4+ (—1)", which makes a contribution of two F},, while the other binomials only make a
contribution of one F,.

Thus, we obtain one extra factor of Fj, that does not occur in the ¢ is even case. These
extra factors arise from selecting the left-hand summand of the (unique) binomial with F? and
freely choosing the left or right-hand side of the remaining binomials. Clearly, there are 297!
ways of doing this. If we add this 297! to the 29~ occurrences contributed by the arguments
for the ¢ is even case, we obtain (g + 1)29~! occurrences as required.

This completes the proof of (b’) and the theorem. O

As can be seen from Table 1 or Theorem 8.1, the numbers of occurrences of F,,x # n, is
either 0 or a constant independent of n.

Proposition 8.2. Fiz positive integer ¢ > 1. Let S be the support of the index histogram of the
TGIWS derived from (8.1). Then the distribution of indices restricted to S — {n} is discrete
uniform.

This proposition concretizes our heuristic observation that indices in a family of TGIWS
tend to be almost uniformly distributed. Figure 4 illustrates this nicely.

We mention briefly an alternative method of generating an infinite family of identities.
However, this method will not be further explored in this paper.

Fairgrieve and Gould [1] introduced the idea of creating symmetric forms of identities by
adding all possible ‘translates’ of them. More precisely, if we add the n > 3 TGI obtained
from (n,0,(1,2)), (n,0,(2,3)),(n,0,(3,4)),...,(n,0,(n—1,n)), and (n, 0, (n, 1)), we obtain the
following infinite family of identities, where indices are taken modulo n so that F, ; = Fy,
Lyyj = Ly, and az4j = ay, where  +j =y (mod n) and y € {1,2,...,n}.

n n—1n—2 n—1n—2
n H Fn—H“ - Z H Fn+a,-+]- FnFn+an—1+j+an+J' ™ (-1)" (Z H Fn+ai+j Fan—1+j Fan+j> .
i=1

§=0 i=1 §=0 i=1
Historically, this identity was presented at the biennial, international, Fibonacci conference
held in Caen, France in July 2016. The author initially attempted to prove this by a general
Binet formula method. However, upon examination, a simpler proof using Definition 3.2 was
found.

9. CONCLUSION

This paper has explored a specific method of generating identities, the Tagiuri Generation
Method. The paper introduced definitions, notations, and index histograms of these identities.
The paper also studied an infinite family of identities.

We close the paper with two open problems.

(i) Given an arbitrary identity, is there a way to recognize this identity as arising from a
TGM with some type of substitution such as (3.2)7

Such a method, if found, would allow quick one or two-line proofs of some cumbersome
identities.
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(ii) Proposition 8.2 concretizes the heuristic that the distribution of indices in the TGIWS

arising from (8.1) using (3.2) is almost uniform. Can this be generalized to other TGM and
other infinite families of TGIWS?
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