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Abstract. We define here an infinite family of mathematical objects whereby each such
object is a sequence based on the structure of the Fibonacci word. Subsequently a formula
for the nth term of each of these sequences is obtained.

1. Introduction and Preliminary Definitions

The well-known Fibonacci word, which we denote by W∞, is an infinite string constructed
from an alphabet comprising two letters, {a, b} say, via the morphism

ϕ : b→ ba, a→ b.

Starting with the single-letter string b, we obtain

W∞ = babbababbabba · · · .

The lower Wythoff sequence and the upper Wythoff sequence [7] are given by (bjφc)j≥1
and

(
bjφ2c

)
j≥1, respectively, where bxc is the floor function, denoting the largest integer not

exceeding x, and φ is the golden ratio, given by

φ =
1 +
√

5

2
.

They are each examples of Beatty sequences [1, 6], and possess an association with W∞ in a
sense we now describe.

Let L and U denote the sets of numbers in the lower and upper Wythoff sequences, respec-
tively. Then L and U comprise a pair of complementary sets [1, 7], by which we mean that
L∩U = ∅ and L∪U = N. In other words, these sets have no elements in common, yet contain
all the positive integers between them. To illustrate this point, we may obtain the first few
terms of each of the sequences. Indeed, we have (bjφc)j≥1 = (1, 3, 4, 6, 8, 9, 11, 12, . . .) and(
bjφ2c

)
j≥1 = (2, 5, 7, 10, 13, . . .).

We are now in a position to define an infinite family of Fibonacci-word sequences. As will be
seen, these are infinite sequences of non-decreasing positive integers constructed via Definitions
1.1, 1.2, and 1.3 below.

Definition 1.1. For k ≥ 1 and n ≥ 0, let Fk(n) denote the finite sequence comprising Fk

copies of n given by

( n, n, . . . , n︸ ︷︷ ︸
Fk copies of n

),

where Fk is the kth Fibonacci number.
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Definition 1.2. Let S1 = (p1, . . . , pi) and S2 = (q1, . . . , qj) be finite sequences of integers of
length i ≥ 1 and j ≥ 1, respectively. We define the concatenation S1S2 of S1 and S2 as the
sequence of length i+ j given by

S1S2 = (p1, . . . , pi, q1, . . . , qj).

Definition 1.3. For any fixed k ≥ 0, we define the kth Fibonacci-word sequence (Ak(n))n≥1
by way of

(Ak(n))n≥1 = Fk+2(1)Fk+1(2)Fk+2(3)Fk+2(4)Fk+1(5) · · · , (1.1)

where the finite sequence Fj(n) has subscript j = k + 2 when n appears in the lower Wythoff
sequence and subscript j = k + 1 when n appears in the upper Wythoff sequence.

Let us use Definition 1.3 to construct the first four Fibonacci-word sequences. The initial
sequence, corresponding to k = 0, is given by

(A0(n))n≥1 = F2(1)F1(2)F2(3)F2(4)F1(5) · · ·
= (1, 2, 3, 4, 5, . . .), (1.2)

which is a linear sequence.
The second sequence,

(A1(n))n≥1 = F3(1)F2(2)F3(3)F3(4)F2(5) · · ·
= (1, 1, 2, 3, 3, 4, 4, 5, . . .), (1.3)

is known as the Hofstadter G-sequence. It is given by (b(j + 1)/φc)j≥1 [2, 3, 5], and appears

as sequence A005206 in [4], where the reader can find many relevant comments, links, and
formulas.

Next, we have

(A2(n))n≥1 = F4(1)F3(2)F4(3)F4(4)F3(5) · · ·
= (1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, . . .),

which can be found, shifted by two terms, as A060144 in [4].
The fourth Fibonacci-word sequence is given by

(A3(n))n≥1 = F5(1)F4(2)F5(3)F5(4)F4(5) · · ·
= (1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, . . .).

This appears as sequence A192002 in [4] shifted by three terms. Various formulas can be found
for this and the previous sequence in [4].

Definition 1.4. We define Bk(n) by way of

Bk(n) = (−1)k+1

 Fk∑
j=1

b(n+ Fk+1 + j − 1)φc − nFk+1 −
(
Fk+2

2

) ,

noting that when k = 0, the sum that appears on the right side above is defined to be empty,
and (

Fk+2

2

)
=

(
F2

2

)
=

(
1

2

)
= 0.

Our aim in this paper is to show that for any fixed k ≥ 0, it is the case that (Ak(n))n≥1 =

(Bk(n))n≥1.
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2. An Intermediate Result

In this section, we prove a lemma concerning Bk(n). This will go some way towards showing
that, for each k ≥ 0, (Ak(n))n≥1 = (Bk(n))n≥1.

Lemma 2.1. For any fixed k ≥ 0,

(Bk+2 (n− Fk+2))n≥Fk+2+1 = (Bk(n))n≥Fk+2+1 − (Bk+1(n))n≥Fk+2+1 .

Proof. Suppose that k ≥ 0 and n ≥ Fk+2 + 1. First, from Definition 1.4, we have

Bk+1(n) = (−1)k+2

Fk+1∑
j=1

b(n+ Fk+2 + j − 1)φc − nFk+2 −
(
Fk+3

2

) (2.1)

and

Bk+2 (n− Fk+2)

= (−1)k+3

Fk+2∑
j=1

b(n− Fk+2 + Fk+3 + j − 1)φc − (n− Fk+2)Fk+3 −
(
Fk+4

2

)
= (−1)k+3

Fk+2∑
j=1

b(n+ Fk+1 + j − 1)φc − (n− Fk+2)Fk+3 −
(
Fk+4

2

) . (2.2)

Next, from definition 1.4 and (2.1) we obtain

Bk(n)−Bk+1(n) = (−1)k+1

 Fk∑
j=1

b(n+ Fk+1 + j − 1)φc+

Fk+1∑
j=1

b(n+ Fk+2 + j − 1)φc


−G(k, n)

= (−1)k+1

Fk+2∑
j=1

b(n+ Fk+1 + j − 1)φc −G(k, n), (2.3)

where

G(k, n) = nFk+1 +

(
Fk+2

2

)
+ nFk+2 +

(
Fk+3

2

)
.

Finally, some straightforward manipulations show that

G(k, n) = (n− Fk+2)Fk+3 +

(
Fk+4

2

)
,

which in turn demonstrates via (2.2) and (2.3) that

Bk+2 (n− Fk+2) = Bk(n)−Bk+1(n)

for any k ≥ 0 and n ≥ Fk+2 + 1. That the lemma is true follows from this. �

3. A Result Concerning Fibonacci-Word Sequences

In this section, we show that there is a corresponding result for the Fibonacci-word se-
quences. First, to help clarify the proof of this result, we provide further terms of (1.1)
explicitly to give

(Ak(n))n≥1 = Fk+2(1)Fk+1(2)Fk+2(3)Fk+2(4)Fk+1(5)Fk+2(6)Fk+1(7)Fk+2(8)Fk+2(9)Fk+1(10)Fk+2(11) · · · ,
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From the method of construction of the Fibonacci-word sequence, the positions of the finite
sequences with subscripts k+ 2 and k+ 1 correspond to the positions of the bs and as in W∞,
respectively.

On applying the morphism ϕ twice in succession to W∞, we have

bab︸︷︷︸ ba︸︷︷︸ bab︸︷︷︸ bab︸︷︷︸ ba︸︷︷︸ · · · .
This partitions the Fibonacci word in such a way that bab and ba correspond to the positions of
the bs and as in W∞, respectively. A similar structure occurs for the Fibonacci-word sequence,
as follows:

Fk+2(1)Fk+1(2)Fk+2(3)︸ ︷︷ ︸Fk+2(4)Fk+1(5)︸ ︷︷ ︸Fk+2(6)Fk+1(7)Fk+2(8)︸ ︷︷ ︸Fk+2(9)Fk+1(10)Fk+2(11)︸ ︷︷ ︸ · · · .
A shift then gives

Fk+2(1)Fk+1(2)Fk+2(3)Fk+2(4)︸ ︷︷ ︸Fk+1(5)Fk+2(6)︸ ︷︷ ︸Fk+1(7)Fk+2(8)Fk+2(9)︸ ︷︷ ︸Fk+1(10)Fk+2(11)Fk+2(12)︸ ︷︷ ︸ · · · ,
where the underbraces containing finite sequences with subscripts k + 1, k + 2 and k + 2
correspond to the bs in W∞, whereas those containing finite sequences with subscripts k + 1
and k + 2 correspond to the as.

The following definition is used in the proof of Lemma 3.2. It concerns the difference between
two sequences.

Definition 3.1. Let (xn)n≥1 = (x1, x2, x3, . . .) and (yn)n≥1 = (y1, y2, y3, . . .) each be an infinite

sequence. We define the difference of (xn)n≥1 and (yn)n≥1 to be the infinite sequence given by

(xn)n≥1 − (yn)n≥1 = (x1 − y1, x2 − y2, x3 − y3, . . .) .

In other words, the subtraction is carried out term-wise.
The difference between two finite sequences, (x1, x2, . . . , xi) and (y1, y2, . . . , yi), each of

length i ≥ 1, is given by (x1 − y1, x2 − y2, . . . , xi − yi).

Lemma 3.2. For k ≥ 0,

(Ak+2 (n− Fk+2))n≥Fk+2+1 = (Ak(n))n≥Fk+2+1 − (Ak+1(n))n≥Fk+2+1 .

Proof. Let k ≥ 0. Referring to Table 1, the first line is the Fibonacci-word sequence (Ak(n))n≥1.
Regarding the arrows initially as empty sequences, the second line gives the Fibonacci-word
sequence (Ak+1(n))n≥1. Note that Fk+3(1), the first sequence in this line and currently situ-

ated in block 0, can be split up so that Fk+2(1) remains in block 0 while Fk+1(1) now appears
at the beginning of block 1. Similarly, the final sequence in the second line of block 1, Fk+3(3),
can be split up so that Fk+2(3) remains in block 1 while Fk+1(3) now appears at the beginning
of block 2. This process continues indefinitely to produce the third line.

A key point here is that the length and position of each finite sequence appearing in the
first line of Table 1 matches precisely the length and position of the corresponding sequence
in the third line. It is thus straightforward to subtract the third line from the first to give the
fourth line. By way of block 0, we have

Fk+2(1)−Fk+2(1) = Fk+2(0).
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Then from block 1, we obtain

(Fk+1(2)−Fk+1(1)) (Fk+2(3)−Fk+2(2)) (Fk+2(4)−Fk+2(3)) = Fk+1(1)Fk+2(1)Fk+2(1)

= Fk+4(1),

from block 2, we have

(Fk+1(5)−Fk+1(3)) (Fk+2(6)−Fk+2(4)) = Fk+1(2)Fk+2(2)

= Fk+3(2),

and so on. Disregarding block 0, this results, for a fixed k ≥ 0, in the infinite sequence

(Ak(n))n≥Fk+2+1 − (Ak+1(n))n≥Fk+2+1 = Fk+4(1)Fk+3(2)Fk+4(3)Fk+4(4)Fk+3(5) · · ·
= (Ak+2 (n− Fk+2))n≥Fk+2+1 ,

as required. �

Block 0 Block 1 Block 2 Block 3 Block 4
Fk+2(1) Fk+1(2)Fk+2(3)Fk+2(4) Fk+1(5)Fk+2(6) Fk+1(7)Fk+2(8)Fk+2(9) Fk+1(10)Fk+2(11)Fk+2(12) · · ·

Fk+3(1) −→ Fk+2(2)Fk+3(3)︸ ︷︷ ︸ −→ Fk+3(4)︸ ︷︷ ︸ −→ Fk+2(5)Fk+3(6)︸ ︷︷ ︸ −→ Fk+2(7) Fk+3(8)︸ ︷︷ ︸ · · ·
Fk+2(1) Fk+1(1)Fk+2(2)Fk+2(3)︸ ︷︷ ︸ Fk+1(3)Fk+2(4)︸ ︷︷ ︸ Fk+1(4)Fk+2(5)Fk+2(6)︸ ︷︷ ︸ Fk+1(6) Fk+2(7) Fk+2(8)︸ ︷︷ ︸ · · ·
Fk+2(0) Fk+1(1)Fk+2(1)Fk+2(1)︸ ︷︷ ︸

Fk+4(1)

Fk+1(2)Fk+2(2)︸ ︷︷ ︸
Fk+3(2)

Fk+1(3)Fk+2(3)Fk+2(3)︸ ︷︷ ︸
Fk+4(3)

Fk+1(4) Fk+2(4) Fk+3(4)︸ ︷︷ ︸
Fk+4(4)

· · ·

Table 1. A depiction of the manipulations involving Fibonacci-word sequences
that are used in Lemma 3.2.

4. Putting the Pieces Together

Theorem 4.1. For any fixed k ≥ 0, the corresponding Fibonacci-word sequence is given by

(Ak(n))n≥1 =

(−1)k+1

 Fk∑
j=1

b(n+ Fk+1 + j − 1)φc − nFk+1 −
(
Fk+2

2

)
n≥1

.

Proof. Recalling from Definition 1.4 that when k = 0 we define the sum appearing on the right
side above to be empty, and (

Fk+2

2

)
=

(
F2

2

)
=

(
1

2

)
= 0,

we have

(B0(n))n≥1 = (− (−nF1))n≥1 = (n)n≥1 = (1, 2, 3, 4, 5, . . .).
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Also

(B1(n))n≥1 =

(
(−1)2

(
b(n+ F2 + 1− 1)φc − nF2 −

(
F3

2

)))
n≥1

= (b(n+ 1)φc − n− 1)n≥1

=

(⌊
n+ 1

φ

⌋)
n≥1

= (1, 1, 2, 3, 3, 4, 4, 5, . . .).

From the above, in addition to (1.2) and (1.3), we see that (B0(n))n≥1 = (A0(n))n≥1 and

(B1(n))n≥1 = (A1(n))n≥1.
Using these results in conjunction with Lemmas 2.1 and 3.2, a straightforward induction

argument completes the proof of the theorem. �
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