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Abstract. The finite sum
n∑

i=1

2−i
Fi−1 = 1−

Fn+2

2n
,

occurs in Section 9.1 of Knott [1], and is the inspiration for the present paper. We refer to the
term 2−i in the summand as the weight term. Here, we present seven families of such finite
sums that we believe to be new. In each of these seven families, the product that defines the
summand can be made arbitrarily long. The sequences that we employ are generalizations of
the Fibonacci/Lucas sequences.

1. Introduction

Let a and b be integers with (a, b) 6= (0, 0). For any non-zero integer p, we define, for all
integers n, the integer sequences {Wn} and

{

W n

}

by

Wn(a, b, p) = Wn = pWn−1 +Wn−2, W0 = a, W1 = b, (1.1)

and

Wn(a, b, p) = Wn = Wn−1 +Wn+1.

With ∆ = p2 + 4, it follows that

Wn = ∆Wn. (1.2)

Identity (1.2) is used, for instance, if we take {Hn} to be {Ln} in S6 or S7 (see Section 2).
For (a, b, p) = (0, 1, 1), we have {Wn} = {Fn}, and

{

W n

}

= {Ln}, which are the Fibonacci
and Lucas sequences, respectively. Taking (a, b) = (0, 1), and allowing p to remain arbitrary,
we write {Wn(p)} = {Un}, and

{

Wn(p)
}

= {Vn}, which are integer sequences that generalize
the Fibonacci and Lucas sequences, respectively.

When we specialize (1.1) by taking p = 1, and allow a and b to remain arbitrary, we
write {Wn}={Hn}. Thus, {Hn} and

{

Hn

}

satisfy the same recurrence as {Fn}, and are
generalizations of {Fn} and {Ln}, respectively.

Let α and β denote the two distinct real roots of x2 − px − 1 = 0. Set A = b − aβ and
B = b− aα. Then the Binet forms for {Wn} and

{

W n

}

are, respectively,

Wn =
Aαn −Bβn

α− β
, (1.3)

and

W n = Aαn +Bβn. (1.4)

Before proceeding, we introduce some familiar notation to make the statement of our for-
mulas more succinct. Throughout our presentation, we employ i as the dummy variable, and
take, for instance, [Fki]

n
m to mean Fkn − Fkm.
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The finite sum

n
∑

i=1

2−iFi−1 = 1−
Fn+2

2n
= −

[

Fi+2

2i

]n

0

(1.5)

occurs in Section 9.1 of Knott [1], where other references for this sum are given. Prompted by
(1.5), we undertook a search for analogous sums where, in each case, the summand consists of
a lengthier product. Our search resulted in seven multi-parameter analogues of (1.5), which
are the topic of this paper. In all cases, the summand involves a product of terms from
the sequences that we defined earlier. We present seven main results, each of which can be
specialized to the Fibonacci/Lucas numbers. Furthermore, in each of our main results, the
length of the product that defines the summand is governed by the parameter j, which can be
arbitrarily large.

When conducting our research, we began by searching for results that hold for the sequences
{Hn} and

{

Hn

}

. From these results, we determined those that hold for the more general

sequences {Wn} and
{

Wn

}

. The distinction between these two types of results is determined
by the validity of certain key identities that we list in Section 3, and that are required for the
proofs. For instance, the final four identities in the array (3.15) hold for sequences generated
by (1.1) with p = 1, but do not hold for arbitrary values of p.

In Section 2, we define the seven finite sums of weighted products of generalized Fibonacci
numbers that are the topic of this paper. In Section 3, we present our main results, which are
the closed forms of the seven sums defined in Section 2. We also provide a sample proof. In
Section 4, we give several special cases of our main results for the Fibonacci/Lucas numbers.
We conclude with Section 5, where we present a limited number of similar sums that involve
squared factors.

2. The Finite Sums

For all the finite sums that we define, the upper limit of summation is n, a positive integer.
Furthermore, for the remainder of this paper, j ≥ 1 and k 6= 0 are assumed to be integers.
We now define seven finite sums of weighted products whose closed forms we give in the next
section. The first three finite sums involve sequences generated by the recurrence given in
(1.1), in which p 6= 0 is an arbitrary integer. These finite sums are

S1(n, j, k) =
n
∑

i=1

U−i
jk−1Wki · · ·Wk(i+j−2)Wk(i−1)+1, jk 6= 1,

S2(n, j, k) =
n
∑

i=1

U−i
jk+1Wki · · ·Wk(i+j−2)Wk(i−1)−1, jk 6= −1, and

S3(n, j, k) =

n
∑

i=1

V −i
jk Wki · · ·Wk(i+j−2)Wk(i−j−1).

Next, we define four finite sums that involve sequences generated by the recurrence given
in (1.1), in which p = 1. These finite sums are
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S4(n, j, k) =

n
∑

i=1

(−1)iF−i
jk−2Hki · · ·Hk(i+j−2)Hk(i−1)+2, jk 6= 2,

S5(n, j, k) =
n
∑

i=1

F−i
jk+2Hki · · ·Hk(i+j−2)Hk(i−1)−2, jk 6= −2,

S6(n, j, k) =
n
∑

i=1

(−1)iL−i
jk−1Hki · · ·Hk(i+j−2)Hk(i−1)+1, and

S7(n, j, k) =

n
∑

i=1

L−i
jk+1Hki · · ·Hk(i+j−2)Hk(i−1)−1.

Each of the finite sums that we define above has a so-called weight term. For instance,
for S1(n, j, k) the weight term is U−i

jk−1. Excluding the weight term, the length of the prod-

uct in each of the finite sums Si(n, j, k), 1 ≤ i ≤ 7, is j. When j ≥ 2, it is straightfor-
ward to write down each summand. For example, when j = 2 the summand of S1(n, j, k) is
U−i
2k−1WkiWk(i−1)+1.
When j = 1, the summand of each of the Si(n, j, k) is to be interpreted as the product of

the weight term, and the last factor in the product that defines the summand. For instance,
for j = 1 the summand in S2(n, j, k) is to be interpreted as U−i

k+1Wk(i−1)−1.

3. The Closed Forms and a Sample Proof

In this section, in Theorems 3.1 and 3.2, we give the closed forms for each of the finite sums
defined in Section 2. At the end of this section, we also provide a sample proof. Our first
theorem gives the closed forms for S1, S2, and S3.

Theorem 3.1. Suppose j ≥ 1 and k 6= 0 are integers. Then, with the constraints on j and k

given in the definitions of S1, S2, and S3, we have

S1(n, j, k) =
1

Ujk

[

Wki · · ·Wk(i+j−1)

U i
jk−1

]n

0

, (3.1)

S2(n, j, k) =
1

Ujk

[

Wki · · ·Wk(i+j−1)

U i
jk+1

]n

0

, and (3.2)

S3(n, j, k) = (−1)jk+1

[

Wki · · ·Wk(i+j−1)

V i
jk

]n

0

. (3.3)

Our next theorem gives the closed forms for S4, S5, S6, and S7.
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Theorem 3.2. Suppose j ≥ 1 and k 6= 0 are integers. Then, with the constraints on j and k

given in the definitions of S4, S5, S6, and S7, we have

S4(n, j, k) =
1

Fjk

[

(−1)iHki · · ·Hk(i+j−1)

F i
jk−2

]n

0

, (3.4)

S5(n, j, k) = −
1

Fjk

[

Hki · · ·Hk(i+j−1)

F i
jk+2

]n

0

, (3.5)

S6(n, j, k) =
1

Fjk

[

(−1)iHki · · ·Hk(i+j−1)

Li
jk−1

]n

0

, and (3.6)

S7(n, j, k) = −
1

Fjk

[

Hki · · ·Hk(i+j−1)

Li
jk+1

]n

0

. (3.7)

We conclude this section with a proof of (3.1). The method of proof that we employ can
also be used to prove each of (3.2)-(3.7).

A key identity that we require for the proof of (3.1) is

Wk(n+j) − Ujk−1Wkn = UjkWkn+1, (3.8)

which is true for all integers j, k, and n. To prove (3.8), we transpose the product on the right
to the left side, substitute the Binet forms, then expand and factor the expression that results
to obtain

−(αβ + 1)Ujk−1 (bUkn + aUkn−1) . (3.9)

Since αβ = −1, (3.8) follows from (3.9).
Denoting the right side of (3.1) by r(n, j, k), we see, after some calculations, that the

difference r(n+ 1, j, k) − r(n, j, k) is given by

1

Uk

(

Wk(n+1) − Uk−1Wkn

Un+1
k−1

)

, j = 1

Wk(n+1) · · ·Wk(n+j−1)

Ujk

×
Wk(n+j) − Ujk−1Wkn

Un+1
jk−1

, j ≥ 2.

(3.10)

Then, with the use of (3.8), we see that the quantities in (3.10) become

Wkn+1

Un+1
k−1

= S1(n+ 1, j, k) − S1(n, j, k), j = 1

Wk(n+1) · · ·Wk(n+j−1)Wkn+1

Un+1
jk−1

= S1(n+ 1, j, k) − S1(n, j, k), j ≥ 2.

(3.11)

Together, (3.10) and (3.11) show that

r(n+ 1, j, k) − r(n, j, k) = S1(n+ 1, j, k) − S1(n, j, k), j ≥ 1. (3.12)

In light of (3.12), to complete the proof of (3.1) it is enough to prove that

r(1, j, k) = S1(1, j, k), j ≥ 1. (3.13)

We consider the cases j = 1 and j ≥ 2 separately. In each of these cases, we write down the
left and right sides of (3.13) and simplify. Accordingly, we are required to prove that

Wk − Uk−1W0 = UkW1, j = 1,

Wjk − Ujk−1W0 = UjkW1, j ≥ 2.
(3.14)
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Both of the equalities in (3.14) follow from (3.8), and this completes the proof of (3.1).
For the proof of each of (3.2)-(3.7), we require an identity that is analogous to (3.8). To

assist the interested reader, we record these identities below. They are, respectively,

Wk(n+j) − Ujk+1Wkn = UjkWkn−1,

Wk(n+j) − VjkWkn = (−1)jk+1Wk(n−j),

Hk(n+j) + Fjk−2Hkn = FjkHkn+2,

Hk(n+j) − Fjk+2Hkn = −FjkHkn−2,

Hk(n+j) + Ljk−1Hkn = FjkHkn+1, and

Hk(n+j) − Ljk+1Hkn = −FjkHkn−1.

(3.15)

4. Special Cases of (3.1)–(3.7)

Keeping in mind the conventions we outlined in the final two paragraphs of Section 2, we
now consider some special cases of our main results.

In (3.2), take {Wn} to be {Fn}, and in (3.5) and (3.7) take {Hn} to be {Fn}. In each of
these cases, let (j, k) = (2, 1). Then (3.2), (3.5), and (3.7) become, respectively,

n
∑

i=1

2−iFiFi−2 =
FnFn+1

2n
,

n
∑

i=1

3−iFiFi−3 = −
FnFn+1

3n
, and

n
∑

i=1

4−iFiLi−2 = −
FnFn+1

4n
.

In (3.4), take {Hn} to be {Fn}, and let (j, k) = (3, 2). Then (3.4) becomes

n
∑

i=1

(−1)i3−iF 2
2iF2i+2 =

(−1)n

8
×

F2nF2n+2F2n+4

3n
.

In (3.5), setting j = k = 1 and taking {Hn} to be {Fn}, we obtain

n
∑

i=1

2−iFi−3 = −
Fn

2n
, n ≥ 1. (4.1)

In (4.1), we replace the running variable i by i + 2, then multiply both sides of the resulting
sum by 4 to obtain

n−2
∑

i=−1

2−iFi−1 = −
Fn

2n−2
, n ≥ 1. (4.2)

Now, transposing the first two terms of the sum on the left side of (4.2) to the right side, we
have

n−2
∑

i=1

2−iFi−1 = 1−
Fn

2n−2
, n ≥ 3.

FEBRUARY 2018 7



THE FIBONACCI QUARTERLY

Then, replacing n by n + 2, we obtain (1.5), valid for n ≥ 1. Similar manipulations yield the
Lucas counterpart of (1.5), which is

n
∑

i=1

2−iLi−1 = 3−
Ln+2

2n
, n ≥ 1.

Finally for this section, in (3.6), take {Hn} to be {Fn}, and let (j, k) = (2, 1). Then (3.6)
becomes

n
∑

i=1

(−1)iF2i = (−1)nFnFn+1.

5. Concluding Comments

Results analogous to those presented above, where the summand or the closed form involve
squared factors, seem to be rare. We have discovered only two such results. These results are

n
∑

i=1

2−2iHi−3H i = −

[

H2
i

22i

]n

0

and

n
∑

i=1

3−2iH2
i H

2
i+1Hi−2H i =

1

4

[

H2
i H

2
i+1H

2
i+2

32i

]n

0

.

(5.1)

The key identities required for the proofs of the sums in (5.1) are, respectively,

H2
n+2 − 9H2

n−1 = 4Hn−2Hn and

4H2
n−1 −H2

n = Hn−3Hn.

When we replace {Hn} by {Fn}, the two sums in (5.1) become, respectively,

n
∑

i=1

2−2iFi−3Li = −
F 2
n

22n
and

n
∑

i=1

3−2iF 2
i F

2
i+1Fi−2Li =

1

4
×

F 2
nF

2
n+1F

2
n+2

32n
.

(5.2)

Readers interested in the results presented here may wish to consult the recent paper [4].
In [4], we present closed forms for products similar to those in the present paper, but which

involve the weight terms U i−1
jk±1, V

i−1
jk , F i−1

jk±2, and Li−1
jk±1. The papers [2, 3, 5, 6], with the

references that they contain, are concerned with the broad topic of closed forms for finite
sums of products of Fibonacci/generalized Fibonacci numbers.

Finally, for all the results contained in this paper, our process of discovery involved some
guessing, and the examination of numerical data.
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