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Abstract. A conditional recurrence sequence {qn} is one in which the recurrence satisfied
by qn depends on the residue of n modulo some integer r ≥ 2. If a conditional sequence {qn} is
a (strong) divisibility sequence then we define it as a conditional (strong) divisibility sequence.
In this paper, we find some families of the conditional (strong) divisibility sequences for r = 2.
These sequences are a generalization of the best known (strong) divisibility sequences in the
literature, such as the Fibonacci sequence, the Lucas sequence, the Lehmer sequence, etc.
Also, they contain some new fourth-order linear divisibility sequences which are different
from the ones in the literature. An open problem is to determine the conditional (strong)
divisibility sequences for r > 2.

1. Introduction

A sequence of rational integers {an} is said to be a divisibility sequence (DS) if m | n
whenever am | an and it is said to be a strong divisibility sequence (SDS) if gcd (am, an) =
agcd(m,n). These sequences are of particular interest because of their remarkable factorization
properties and usage in applications, such as factorization problem, primality testing, etc. The
best known examples are the Fibonacci sequence, the Lucas sequence, the Lehmer sequence,
Vandermonde sequences, resultant sequences and their divisors, elliptic divisibility sequences,
etc.

Kimberling [5] asked which recurrent sequences {an} are divisibility or strong divisibility
sequences. Lucas studied second order divisibility sequences of integers in [7]. Lehmer extended
it to some fourth-order linear divisibility sequences in [6]. Williams and Guy found some other
fourth-order linear divisibility sequences in [12].

Let {ai,j} be rational numbers for 0 6 i 6 r − 1 and 1 6 j 6 s, and define a sequence {qn}
with given initial terms qi, 0 ≤ i ≤ s− 1, and for n > s

qn =



















a0,1qn−1 + a0,2qn−2 + · · ·+ a0,sqn−s, if n ≡ 0 (mod r) ;
a1,1qn−1 + a1,2qn−2 + · · ·+ a1,sqn−s, if n ≡ 1 (mod r) ;
...

...
ar−1,1qn−1 + ar−1,2qn−2 + · · ·+ ar−1,sqn−s, if n ≡ r − 1 (mod r) .

(1.1)

Daniel et al. called such a sequence a “general conditional recurrence sequence” in [10]. In
this paper, we ask Kimberling’s question for conditional recurrence sequences, that is, we ask
which conditional sequence {qn} are (strong) divisibility sequences. We consider the case of
(r, s) = (2, 2) and find some families of conditional (strong) divisibility sequences. If we take
(r, s) = (2, 2) in (1.1) then we obtain the sequence {fn} with initial conditions f0 = 0, f1 = 1
and for n ≥ 2,

fn =

{

a1fn−1 + b1fn−2, if n is even;
a2fn−1 + b2fn−2, if n is odd.

(1.2)

From now on, we assume that a1, a2, b1, and b2 are nonzero integers. We will obtain some
families of the conditional (strong) divisibility from the sequence {fn}.
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For (r, s) = (2, 2), the (strong) conditional divisibility sequences obtained from {fn} can
be considered as a generalization of the second order (strong) divisibility sequences. Also,
they contain some new families of fourth order linear (strong) divisibility sequences which
are different from ones in [6] and [12]. The following are some special conditional (strong)
divisibility examples obtained from the sequence {fn}.

(1) If a1 = b1 = a2 = b2 = 1, we obtain the Fibonacci sequence [A117567] which is SDS.
(2) If a1 = a2 = k and b1 = b2 = 1 , we obtain the k-generalized Fibonacci sequence which

is SDS.
(3) If a1 = a2 = 1 and b1 = b2 = 2, we obtain the Jacobsthal sequence which is SDS.
(4) If a1 = a2 = 2 and b1 = b2 = 1, we obtain the Pell sequence which is SDS.
(5) If b1 = b2 = 1 and a1, a2 are non-zero numbers, we obtain a SDS sequence which is

studied in [4].

In addition, Lehmer numbers are the fourth order strong divisibility sequence and they
are also a special case of conditional strong divisibility sequences obtained from {fn}. In
the following table we give some more SDS examples, which appear in Sloane’s On-Line
Encyclopedia of Integer Sequences, for (r, s) = (2, 2).

(a1, b1, a2, b2) Sequence Name
(1, 1, 2, 1) [A002530] Lehmer numbers with parameters R = 2 and Q = −1

Even indices of (1, 2, 3, 4) [A023001]
8n − 1

7
(see Example 2.8)

(2, 1, 0, 1) [A124625] Even numbers sandwiched between 1’s
(2,−1, 0,−1) [A009531] Expansion of the e.g.f. sin (x)(1 + x)
(2, 3, 1, 3) [A174988]
(1, 3, 2, 3) [A002536] (see Example 2.15)

In Section 2, we study the sequence {fn} and determine when {fn} is a divisibility or
strong divisibility sequence so that we get some families of divisibility sequences and strong
divisibility sequences from the sequence {fn}. In Section 3, we define the sequence {ln} by
changing the initial terms in {fn} and we similarly obtain some other families of divisibility
and strong divisibility sequences from the conditional sequence {ln}.

2. The Fibonacci-Like Conditional Sequence {fn}

We can get the following results for the sequence {fn} by taking r = 2 in Theorems 5, 6,
and 9 in [9].

For n ≥ 4,
fn = Afn−2 −Bfn−4 (2.1)

where A := a1a2 + b1 + b2 and B := b1b2.
The generating function of the sequence {fn} is

F (x) =
x+ a1x

2 − b1x
3

1−Ax2 +Bx4
. (2.2)

By using (2.2), the Binet’s formulas for the sequence {fn} are given:

f2m = a1
αm − βm

α− β
, (2.3)

f2m+1 = (a1a2 + b2)
αm − βm

α− β
− (b1b2)

αm−1 − βm−1

α− β
, (2.4)
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where α = A+
√
A2−4B
2 and β = A−

√
A2−4B
2 that is, α and β are the roots of the polynomial

p (z) = z2 −Az +B.
We will get some divisibility properties of the conditional sequences {fn} and we find some

conditional (strong) divisiblity sequences by using these properties. We will study two cases
for the sequences {fn}. In the first case, we only consider the even indices of the sequences
{fn} and in the second case, we take b1 = b2 in {fn}.

2.1. The case of even indices of {fn}. Along this subsection, we consider even number
indices of {fn} unless otherwise stated.

Corollary 2.1. If m is a positive even integer, then a1 6= 0 always divides fm.

Proof. Since fm and a1 6= 0 are integers, we can clearly get the result by using (2.3). �

Lemma 2.2. The terms of the sequence {fn} satisfy

a1fm+n = fmfn+2 − b1b2fnfm−2

for any positive even integers m and n.

Proof. Since m and n are even integers, we have m = 2k and n = 2s for some integer k and
s. By using the Binet-like formula for even indices of the sequence {fn} and the identity
αβ = b1b2, we get

fmfn+1 − b1b2fnfm−1 = a21

(

αk − βk
) (

αs+1 − βs+1
)

(α− β)2
− b1b2a

2
1

(αs − βs)
(

αk−1 − βk−1
)

(α− β)2

= a21
αk+s+1 − αs+1βk − αsβs+1 + βk+s+1

(α− β)2

− a21
αβ
(

αk+s−1 − αk−1βs − αsβk−1 + βk+s−1
)

(α− β)2

= a21
αk+s+1 − αβk+s − αk+sβ + βk+s+1

(α− β)2

= a21
αk+s − βk+s

α− β
= a1fm+n.

�

Theorem 2.3. If m and n are even positive integers, then we have

m | n ⇒ fm | fn.

Proof. If m and n is even then m = 2a and n = 2b for an integer a, b. If m divides n then
we can write 2b = 2ak for some positive integer k. We shall use induction on k to prove the
theorem. First we need to show that the statement of the theorem holds for k = 1. If k = 1
then, 2b = 2a so that fm | fn. Assume that it holds for positive integer k, that is we have fm
| fmk. By Lemma 2.2, we get

f2a(k+1) = f2ak+2a = f2ak
f2(a+1)

a1
− b1b2f2a

f2(ak−1)

a1
.

Here
f2(ak−1)

a1
and

f2(a+1)

a1
are integers due to Corollary 2.1. So, we get the desired result

fm | fm(k+1)

by using fm | fn and fm | fmk in the above equation. �
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By Theorem 2.3, the even indices of a conditional sequence {fn} is a divisibility sequence
(DS ).

Theorem 2.4. If m is even, then

gcd (fm+2, fm) | a1λ
ω

for some non-negative integer ω, where λ = gcd (A,B).

Proof. Let m be an even integer such that m = 2n. We have f0 = 0, f2 = a1 and

f2(n+1) = Af2n −Bf2(n−1) (2.5)

for positive integer n by (2.1). Assume that p is a prime and a common divisor of f2(n+1) and
f2n such that gcd (p, λ) = 1. We prove the result by breaking the proof into two cases.

Case 1. gcd (p,B) = 1. We have p|f2(n+1) and p|f2n, so we get p|Bf2(n−1) by (2.5). Also, since
p and B are relatively prime, we get p|f2(n−1). We have

f2n = Af2(n−1) −Bf2(n−2) (2.6)

by (2.1). Since p|f2n and p|f2(n−1) we get p|Bf2(n−2) by (2.6). Similarly, we get p|f2(n−2) by
gcd (p,B) = 1. If we continue in this way then we ultimately get p|f2 = a1. Also we have
a1|f2n for a non-negative integer n by Corollary 2.1. As a result gcd (fm+2, fm) = a1λ

ω for
some non-negative integer ω.
Case 2. gcd (p,B) 6= 1. In this case, we have p|B, so p|Bf2(n−2). Since p|f2n and p|Bf2(n−2)

we get p|Af2(n−1) by (2.6). Since gcd (p, λ) = 1 and gcd (p,B) 6= 1 we obtain gcd (p,A) = 1.
Now we have p|Af2(n−1) and gcd (p,A) = 1, so we get p|f2(n−1). Similarly, we have

f2(n−1) = Af2(n−1) −Bf2(n−3)

by (2.1). We have p|f2(n−1) and p|Bf2(n−3) (since p|B) so p|Af2(n−2). Since gcd (p,A) = 1 we
get p|f2(n−2). If we continue in this way, we get p|f2 = a1. As a result, we get the desired
result. �

Corollary 2.5. If a1 = 1 and gcd (A,B) = 1, then

gcd (fm, fm+2) = 1

for positive even integer m.

Proof. The desired result is obtained by taking a1 = 1 and gcd (A,B) = 1 in Theorem 2.4 �

The following theorem is trivial by (2.3), it follows from the paper of Carmichael in [3]. But
we will provide a proof of it.

Theorem 2.6. If a1 = 1 and gcd (A,B) = 1 then

gcd (fm, fn) = fgcd(m,n)

for positive even integers m and n.

Proof. Let d1 = gcd (m,n) and d2 = gcd (fm, fn) for positive even integers m and n. Since
d1|m and d1|n, we get fd1 |fm and fd1 |fn by the fact that {fn} is a divisibility sequence for
even indices. So, we get

fd1 |d2 (2.7)

by the definition of greatest common divisor. Since d1 = gcd (m,n), there exists integers a

and b such that d1 = am+ bn. Since d1, m, and n are positive integers, we must have either
a ≤ 0 or b ≤ 0. Assume without loss of generality a ≤ 0. There exists a k ≥ 0 such that
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a = −k. So we can rearrange the above equality as bn = d1 + km. Now if we use Lemma 2.2
by taking bn = d1 + km and a1 = 1, we get

fd1+km = fd1fkm+2 − b1b2fkmfd1−2. (2.8)

Since d2 = gcd (fm, fn), we have d2|fm and d2|fn. Also, since even indices of {fn} are a
divisibility sequence, we have fm|fmk and fn|fbn. Thus, we obtain

d2|fm : and : fm|fkm ⇒ d2|fkm
and

d2|fn : and : fn|fbn ⇒ d2|fbn.

Now, we have d2|fkm, d2|fbn and gcd (A,B) = 1, so we get

d2|fd1 (2.9)

by using Corollary 2.5 and equation 2.8. By using (2.7) and (2.9), we get the desired result

d2 = fd1 ⇒ gcd (fm, fn) = fgcd(m,n).

�

Recall that the generalized Fibonacci sequence {Un} = {Un (P,Q)} is defined by parameters
P,Q ∈ Z with initial conditions U0 = 0, U1 = 1, and for n ≥ 2

Un = Un (P,Q) = PUn−1 −QUn−2.

Note that as is well-known, if gcd (P,Q) = 1, then the sequence {Un} is strong divisibility
sequences [7]. Indeed,

f2n = a1Un (A,B) ,

so {Un} is a special case of the sequence fn.

Corollary 2.7. If gcd (A,B) = 1, then the even indices of conditional sequence {fn} is a
strong divisibility sequence.

Proof.

gcd (f2m, f2n) = gcd (a1Um, a1Un) = a1 gcd (Um, Un)

= a1Ugcd(m,n) = f2 gcd(m,n) = fgcd(2m,2n).

�

Example 2.8. If we take a1 = 1, b1 = 2, a2 = 3, b2 = 4 in {fn}, we get

fn =

{

fn−1 + 2qn−2, if n is even;
3fn−1 + 4qn−2, if n is odd.

In the following table we give the terms of the sequence for 1 ≤ n ≤ 10.

n 0 1 2 3 4 5 6 7 8 9 10 . . .
fn 0 1 1 7 9 55 73 439 585 3511 4681 . . . .

Let the even indices of this sequence 0, 1, 9, 73, 585, 4681, . . . gives [A023001]. Since

A = a1a2 + b1 + b2 = 3 + 2 + 4 = 9

and
B = b1b2 = 8,

we have gcd (A,B) = gcd (9, 8) = 1. Also, since a1 = 1, this sequence is a strong divisibility
sequence by Theorem 2.6.
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Example 2.9. If we take a1 = 1, b1 = 3, a2 = 2, b2 = 4 in {fn}, we obtain

fn =

{

fn−1 + 3fn−2, if n is even;
2fn−1 + 4fn−2, if n is odd.

So the terms of the sequence are

n 0 1 2 3 4 5 6 7 8 9 10 . . .
fn 0 1 1 6 9 42 69 306 513 2250 3789 . . . .

Let the even indices of this sequence 0, 1, 6, 9, 69, 513, 3789, . . .. Since gcd(f4, f6) = 3 6=
1 = f2 = fgcd(6,4), it is not a strong divisibility sequence. Note that the hypothesis of Theorem
2.6 is not satisfied since A = 2+3+4 = 9 and B = 12 so that gcd (A,B) = gcd (9, 12) = 3 6= 1.

2.2. The Case b1 = b2 in {fn}. In this subsection, the indices of {fn} are non-negative
integers with b1 = b2.

Lemma 2.10. Assume that a1 6= 0. The terms of the sequences {fn} satisfy the following.

(i) If a and b are odd then

fa+b = fafb+1 + b1fa−1fb.

(ii) If a is odd and b is even then

fa+b = fafb+1 +
b1a2

a1
fa−1fb.

(iii) If a is even and b is odd then

fa+b =
a2

a1
fafb+1 + b1fa−1fb.

(iv) If a and b are even then

fa+b = fafb+1 + b1fa−1fb.

Proof. We only prove the identity (i). The other identities can be proven similarly.
(i) If a and b are odd then a = 2k+1 and b = 2s+1 for some integer k and s, respectively.

By using identities a1a2 + b1 = α+ β − b1, αβ = b1b2 and b1 = b2, we get

fa = (α+ β − b1)
αk − βk

α− β
− αβ

αk−1 − βk−1

α− β
,

fb+1 = a1
αs+1 − βs+1

α− β
,

fa−1 = a1
αk − βk

α− β
,

fb = (α+ β − b1)
αs − βs

α− β
− αβ

αs−1 − βs−1

α− β
.

We want to prove the identity

fa+b = fafb+1 + b1fa−1fb
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for odd a and b. We denote the right-hand side of this identity by RHS.

RHS =

(

(α+ β)
(

αk − βk
)

α− β
−

αβ
(

αk−1 − βk−1
)

α− β

)

a1
αs+1 − βs+1

α− β

−
a1b1

(

αk − βk
) (

αs+1 − βs+1
)

(α− β)2
−

a1b
2
1

(

αk − βk
)

(αs − βs)

(α− β)2

+
a1b1

(

αk − βk
)

α− β

(

(α+ β) (αs − βs)

α− β
−

αβ
(

αs−1 − βs−1
)

α− β

)

.

If we expand and arrange the RHS, we get

RHS = a1
αk+1αs+1 + βk+1βs+1 − βαk+1αs − αβk+1βs

(α− β)2

= a1
ααk+s+1 + ββk+s+1 − βαk+s+1 − αβk+s+1

(α− β)2

= a1
(α− β)

(

αk+s+1 − βk+s+1
)

(α− β)2

= a1

(

αk+s+1 − βk+s+1
)

α− β

= fa+b.

�

Theorem 2.11. If m,n ∈ Z
+, then we have

m | n ⇒ fm | fn.

Proof. In order to show this, we break it into 4 cases.

(1) m and n are even.
By using Theorem 2.3, we obtain the desired result.

(2) m is odd and n is even.
If m | n, m odd and n even then we can write n = m(2k) for some integer k. We

want to show that fm | fm(2k) = fn. Since

fn = fm(2k) = fmk+mk = fmkfmk+1 + b1fmk−1fmk

by part (i) of Lemma 2.10 (if k is odd) or part (iv) of Lemma 2.10 (if k is even). So,
we have fmk | fm(2k) for all positive inetegers k. That is, we have

fm | f2m, f2m | f4m, f3m | f6m, . . . .

Thus, we obtain the desired result from fm | fn = fm(2k).
(3) m and n are odd.

If m divides n then we can write n = m(2k + 1) for some integer k. Since m(2k) is
even and m is odd, we get

fn = fm(2k+1) = fm(2k)+m =
a2

a1
fm(2k)fm+1 + b1fm(2k)−1fm.

Now, using a1 divides fm+1 since m + 1 is even by Corollary 2.1, fm | fm and fm |
fm(2k) (we proved this in part 2) in the above equation, we get the desired result fm |
fn = fm(2k+1).
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(4) m is even and n is odd.
This case is not possible since m divides n.

�

According to Theorem 2.11, if b1 = b2 then the sequence {fn} is a conditional divisibility
sequence. So we find a family of divisibility sequences.

Theorem 2.12. If n is a positive integer, then we have

gcd (fn, fn−1) | λω

for some non-negative integer ω, where λ = gcd (a1a2, b1).

Proof. By the definition of the sequence {fn} and b1 = b2, we have

fn =

{

a1fn−1 + b1fn−2, if n is even;
a2fn−1 + b1fn−2, if n is odd.

(2.10)

Assume that p is a prime such that p | fn and p | fn−1 with gcd (p, λ) = 1. We prove the
theorem breaking it into two cases.

(i) gcd (p, b1) = 1. Since p | fn and p | fn−1, we get p | b1fn−2 by (2.10). Then, we get p
| fn−2, since p and b1 are relatively prime. By the definition of the sequence {fn}, we
also have

fn−1 =

{

a1fn−2 + b1fn−3, if n− 1 is even;
a2fn−2 + b1fn−3, if n− 1 is odd.

(2.11)

Now, we have p | fn−1 and p | fn−2, so we can get p | b1fn−3 by (2.11). Similarly we
get p | fn−3, since gcd (p, b1) = 1. If we continue the process in this way, we get p |
f1 = 1. Thus, we obtain the desired result.

(ii) gcd (p, b1) 6= 1.
Since gcd (p, λ) = 1 and gcd (p, b1) 6= 1, we must have gcd (p, a1a2) = 1. This means

that gcd (p, a1) = 1 and gcd (p, a2) = 1. We have p | fn−1 and p | b1fn−3 (since p | b1),
so we get p | a1fn−2 or p|a2fn−2 according to the sign of n − 1 by (2.11). Now, we
have gcd (p, a1) = gcd (p, a2) = 1, so p | fn−2 for both cases. Then, since

fn−2 =

{

a1fn−3 + b1fn−4, if n− 2 is even;
a2fn−3 + b2fn−4, if n− 2 is odd;

we can similarly get p | fn−3. If we continue in this way, we finally get p | f1 = 1. As
a result, we get the desired result.

�

Corollary 2.13. If gcd (a1a2, b1) = 1, then

gcd (fm, fm+1) = 1

for any non-negative integer m.

Proof. The desired result is obtained by taking gcd (a1a2, b1) = 1 in Theorem 2.12. �

Theorem 2.14. If gcd (a1a2, b1) = 1 and a1 = 1, then

gcd (fm, fn) = fgcd(m,n)

for non-negative integers m and n.
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Proof. Let d1 = gcd (m,n) and d2 = gcd (fm, fn) for positive even integers m and n. Since
d1|m and d1|n, we get fd1 |fm and fd1 |fn by Theorem 2.11. So, we obtain

fd1 |d2 (2.12)

by the definition of the greatest common divisor. Since d1 = gcd (m,n), there exists integers
a and b such that d1 = am+ bn. Since d1, m, and n are positive integers, we must have either
a ≤ 0 or b ≤ 0. Assume without loss of generality a ≤ 0. There exists a k ≥ 0 such that
a = −k. So, we can rearrange the above equality as bn = d1 + km. Now, we break it into four
cases according to whether d1 and km are either even or odd.

(i) d1 is odd and km is odd.
If we use Lemma 2.10 by taking bn = d1 + km, we get

fd1+km = fd1fkm+1 + b1fd1−1fkm. (2.13)

Since d2 = gcd (fm, fn), we have d2|fm and d2|fn. Also, we have fm|fmk and fn|fbn
Theorem 2.11. So, we get

d2|fm and fm|fkm ⇒ d2|fkm

and

d2|fn and fn|fbn ⇒ d2|fbn.

Now, we have d2|fkm and d2|fbn so that d2|fd1fkm+1 by equation 2.13. Also, since
gcd (a1a2, b1) = 1, so we must have

d2|fd1 (2.14)

by using Corollory 2.13. Note that gcd (fkm+1, fkm) = 1. By using (2.12) and (2.14),
we get the desired result as follows:

d2 = fd1 ⇒ gcd (fm, fn) = fgcd(m,n).

(ii) d1 is odd and km is even. If we take a1 = 1 then we can prove it similar to case (i).
(iii) d1 is even and km are odd. If km is odd then, k and m are both odd. If m is odd then

d1 = gcd(m,n) is odd, that is contradiction. So, this case is not possible.
(iv) d1 and km are even.

It is clear, since the even indices of the sequence {fn} is a conditional strong divisi-
bility sequence by previous subsection.

�

Now recall that the Lehmer sequence {un} = {un (R,Q)} satisfies the second order linear
recurrence equations with initial conditions u0 = 0, u1 = 1, and for n ≥ 2

un = un (R,Q) =

{

un−1 −Qun−2, if n is even;
Run−1 −Qun−2, if n is odd;

and the associated Lehmer sequence {vn} = {vn (R,Q)} satisfies the second order linear re-
currence equations with initial conditions v0 = 2, v1 = 1, and for n ≥ 2

vn = vn (R,Q) =

{

Rvn−1 −Qvn−2, if n is even;
vn−1 −Qvn−2, if n is odd

If we take R = a1a2 and Q = −b1 in Lehmer numbers, we get

fn =

{

a1un (a1a2,−b1) , if n is even;
un (a1a2,−b1) , if n is odd.
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It is well-known that both Lehmer and associated Lehmer sequences are linear recurrence
sequences of order at most four. If gcd (R,Q) = 1, Lehmer sequence {un (R,Q)} is a strong
divisibility sequence [6]. Using this fact, Bala showed that if gcd (a1a2, b1) = 1, then {fn} with
b1 = b2 is a strong divisibility sequence in [1]. The Lehmer sequence is a special case of {fn}.

Example 2.15. If we take a1 = 1, a2 = 2, b1 = b2 = 3 in {fn}, we get

fn =

{

fn−1 + 3qn−2, if n is even;
2fn−1 + 3qn−2, if n is odd.

In the following table we give the terms of the sequence for 1 ≤ n ≤ 10

n 0 1 2 3 4 5 6 7 8 9 10 . . .
fn 0 1 1 5 8 31 55 203 368 1345 2449 . . . .

The terms of the sequence 0, 1, 1, 5 ,8, 31, 55, 203, 368, 1345, . . . gives [A002536]. Since we
have gcd (a1a2, b1) = gcd (2, 3) = 1 and a1 = 1, this sequence is a strong divisibility sequence
by Theorem 2.14.

3. The Lucas-Like Conditional Sequence {ln}

We define the Lucas conditional sequence {ln} with the initial conditions l0 = 2, l1 = a2,
and for n ≥ 2,

ln =

{

a1ln−1 + b1ln−2, if n is even;
a2ln−1 + b2ln−2, if n is odd;

(3.1)

by changing initial values in (1.2). We can get the following results for the sequence {ln} by
taking r = 2 in Theorems 5, 6, and 9 in [9].

For n ≥ 4,
ln = Aln−2 −Bln−4 (3.2)

where A := a1a2 + b1 + b2 and B := b1b2.
The generating function of the sequence {ln} is

L (x) =
2 + a2x− (a1a2 + 2b2)x

2 + b1a2x
3

1−Ax2 +Bx4
. (3.3)

By using (3.3), the Binet’s formulas for the sequence {ln} are given:

l2m = (a1a2 + 2b1)
αm − βm

α− β
− 2 (b1b2)

αm−1 − βm−1

α− β
(3.4)

l2m+1 = a2

(

(a1a2 + 2b1 + b2)
αm − βm

α− β
− b1b2

αm−1 − βm−1

α− β

)

(3.5)

where α = A+
√
A2−4B
2 and β = A−

√
A2−4B
2 that is, α and β are the roots of the polynomial

p (z) = z2 −Az +B.

Corollary 3.1. If n is a odd positive integer, then a2 6= 0 always divides ln.

Proof. Since ln and a2 6= 0 are integers, we can clearly get the result by using (3.5). �

Now, we will obtain some divisibility properties of the Lucas-like sequence {ln} and we will
show some relations between {fn} and {ln}. In this section we take b1 = b2 in the Lucas-like
sequence {ln}.

Lemma 3.2. Let m > n ≥ 0 and e := min {m− n, n}. The terms of the sequences {ln} satisfy
the following:
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(i) If m and n are even then

lm = lm−nln − be1l|m−2n|.

(ii) If m and n are odd then

lm = lm−nln ± be1l|m−2n|,

where + sign is used if and only if m− 2n ≥ 0.
(iii) If m is odd and n is even then

lm = lm−nln ± be1l|m−2n|,

where + sign is used if and only if m− 2n < 0.
(iv) If m is even and n is odd and a2 6= 0 then

lm =
a1

a2
lm−nln + be1l|m−2n|.

Proof. Here we only prove identity (i). Other identities can be proven similarly using α+β =
a1a2 + 2b1 and αβ = b21.

(i) Let m := 2k, n := 2s; for some k, s ∈ Z
+. If e := min {m− n, n} = n then m− 2n ≥ 0

and |m− 2n| = m− 2n.

lm = l2k = αk + βk

ln = l2s = αs + βs

lm−n = l2(k−s) = αk−s + βk−s

lm−2n = l2(k−2s) = αk−2s + βk−2s

bn1 lm−2n = b2s1 l2(k−2s) = (αβ)s
(

αk−2s + βk−2s
)

= αk−sβs + αsβk−s.

Therefore,

lm = lm−nln − bn1 lm−2n.

If e := min {m− n, n} = m− n then m− 2n < 0 and |m− 2n| = 2n−m.

bm−n
1 l2n−m = b

2(k−s)
1 l2(2s−k) = (αβ)k−s

(

α2s−k + β2s−k
)

= αk−sβs + αsβk−s

Therefore,

lm = lm−nln − bm−n
1 l2n−m.

�

Theorem 3.3. If m ≥ 2 and n are positive integers, then we have

m | n ⇒ lm | ln,

where n = (2k − 1)m.

Proof. We break the proof into two cases.
Case 1. m is even. Since n = (2k − 1)m, n is even. Now we shall use induction on k. If k = 1
then n = m so that lm | ln. Assume that the induction hypothesis holds for 2k− 1, that is lm
| l(2k−1)m. By part (i) of Lemma 3.2 (i), we have

l(2k+1)m = l2km+m = l2kmlm − bm1 l(2k−1)m.
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Since lm | lm and lm | l(2k−1)m, we get the desired result lm | l(2k+1)m by using the above
equation.
Case 2. m is odd. Since n = (2k − 1)m, n is odd. Similarly we use induction on k. If k = 1
then n = m so that lm | ln. Assume that it holds for odd integer 2k − 1, so we have lm |
l(2k−1)m. By part (ii) of Lemma 3.2 (iii), we have

l(2k+1)m = l2km+m = l2kmlm + bm1 l(2k−1)m.

Since lm | lm and lm | l(2k−1)m, we get the desired result lm | l(2k+1)m. �

Corollary 3.4. If m ≥ 2 and n are positive integers, then we have

gcd (lm, ln) = lgcd (m,n),

where n = (2k − 1)m.

Proof. Since n = (2k − 1)m, we get gcd(m,n) = m. We have lgcd(m,n) | ln by Theorem 3.3
and lgcd(m,n) | lm since gcd(m,n) = m. So, lgcd (m,n) | gcd(lm, ln). Also, since we have
gcd(ln, lm) | lm=gcd(m,n), we get the desired result. �

Theorem 3.5. Let m = 2am′, n = 2bn′, m′ and n′ odd, a and b ≥ 0, and let d = gcd (m,n).
If gcd (a1a2, b1) = 1 then

gcd (lm, ln) =

{

ld, if a = b;
1 or 2, if a 6= b.

Proof. To prove the theorem, we need a result due to McDaniel [8]. As noted in [8, page 28],
the formula remains valid for associated Lehmer sequences. Indeed, the associated Lehmer se-
quences {vn (R,Q)} with parameters R = a1a2 and Q = −b1 is a special case of the conditional
sequence {ln}for the case of b1 = b2, that is

ln =

{

vn (a1a2,−b1) , if n is even;
a2vn (a1a2,−b1) , if n is odd.

There are two cases when a = b.
Case 1. m and n are odd. We have

gcd (ln, lm) = gcd (a2vn, a2vm)

= a2 gcd (vn, vm)

= a2vgcd(n,m)

= lgcd(n,m) since gcd (n,m) is odd.

Case 2. m and n are even. We have

gcd (ln, lm) = gcd (vn, vm)

= vgcd(n,m)

= lgcd(n,m) since gcd (n,m) is even.

When a 6= b, the proof depends on the parities of n and m. Let us show that

gcd (lm, ln) = 1 or 2

in the case when m is odd and n is even. The remaining cases are similar.
First we prove

gcd (v2n, a2) = 1 or 2, for all positive integers n

for the sequence {vn (a1a2, b1)}, where a2 is prime to vn when n is even.
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The proof is by induction. This is clearly true when n = 1 since v2 = a1a2 + 2b1. Assume
that

gcd (v2n, a2) = 1 or 2 for some n.

Using the recurrence relation of {vn}, we find

gcd (v2n+2, a2) = gcd (a1a2v2n+1 + b1v2n, a2)

= gcd (b1v2n, a2)

= gcd (v2n, a2) since by assumption a2is relatively prime to b1

= 1 or 2

and the induction goes through.
By the choices of a1a2 and b1, we get

gcd (ln, lm) = gcd (vn, a2vm)

= gcd (vn, vm) , since gcd (vn, a2) = 1 or 2 for n is even

= 1 or 2.

�

3.1. Some more divisibility properties. The following lemma is a generalization of a
famous identity.

Lemma 3.6. If n is even, then f2n = fnln, otherwise f2n = a1
a2
fnln.

Proof. If n is even then n = 2m for an integer m. We have

f2m

(

b2 − b1

a1
f2m + l2m

)

=
a1 (α

m − βm)
(

A (αm − βm)− 2B
(

αm−1 − βm
))

(α− β)2

by using (2.3) and (3.4) where A := a1a2 + b1 + b2 and B := b1b2. If we substitute α + β =
a1a2 + b1 + b2 and αβ = b1b2 in the above equation, we get

f2m

(

b2 − b1

a1
f2m + l2m

)

=
a1 (α

m − βm)
(

αm+1 + βαm − αβm − βm+1 − 2βαm + 2αβm
)

(α− β)2

=
a1 (α

m − βm) (α− β) (αm + βm)

(α− β)2

=
a1
(

α2m − β2m
)

(α− β)

= f4m.

Since b1 = b2 we obtain the desired result

f2n = fnln.

Now assume that n is odd, so n = 2m+1 for some integer m. If we use (2.3), (2.4), and (3.5)
and identities α + β = a1a2 + b1 + b2, αβ = b1b2, and b1 = b2 we obtain the desired result as
follows:

a1

a2
f2m+1l2m+1 = a1

α2m+2 − α2m+1β − αβ2m+1 + β2m+2

(α− β)2

= a1
α2m+1 − β2m+1

α− β

= f4m+2.
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�

Theorem 3.7. If m is even then
m |n ⇒ lm | fn

else

m |n ⇒ lm | fn

(

a1

a2
is integer

)

where n = 2km and k ≥ 1.

Proof. Since m is even, we have f2m = fmlm by Lemma 3.6. So, lm | f2m. Now, we have
n = 2mk for k ≥ 1. We shall use induction on k. If k = 1 then n = 2m and lm | f2m, that
is, it holds for k = 1. Assume that it holds for positive integer k, that is we have lm|f2mk. By
Lemma 2.2, we have

f2m(k+1) = f2mk+2m = f2mk

f2(m+1)

a1
− b1b2f2m

f2(mk−1)

a1
.

Here,
f2(m+1)

a1
and

f2(mk−1)

a1
are integers by Corollary 2.1. Also, we have lm | f2m and lm | f2mk,

so we get the desired result lm | f2m(k+1). �
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