ON THE D(4)-DIOPHANTINE TRIPLES OF FIBONACCI NUMBERS

SALAH EDDINE RIHANE, MOHAND OUAMAR HERNANE, AND ALAIN TOGBE

ABSTRACT. Let F,, be the mth Fibonacci number. We prove that if Fa,+6Fx + 4 and
4F5n14Fy + 4 are both perfect squares, then & = 2n for n > 1, except in the case n = 1, in
which we can additionally have k = 1.

1. INTRODUCTION
The sequence {F}, },>1 of Fibonacci numbers is given by
=1 FkK=1 Fiyo=F,x+F, n>1

A set of m positive integers {ai,...,a,} is called D(n) — m-tuple (or a Diophantine m-
tuple with the property D(n)) if a;a; + n is a perfect square, for all ¢ # j in {1,...,m}. In
1993, Dujella [2] proved that {Fon, Fant6,4Fonta,4Fon+2Fon13Fon45} is a D(4)-Diophantine
quadruple. In 2010, Filipin, He, and Togbé [4] proved that if d is a positive integer such that
{Fon, Font6,4F2,44,d} is a D(4)-Diophantine quadruple, then d = 4F5, 19 F,+3Fo,45. In this
paper, we fix the positive integer n and look at positive integers k such that { Fay, 16, 4Fon+4, Fi }
is a D(4)-Diophantine triple. Our result is the following:

Theorem 1.1. If {F5,16,4Font4, Fi} is a D(4)-Diophantine triple, then k = 2n, except in
the case n = 1, in which we have the additional solution k = 1.

The exception k£ = 1 in case n = 1 comes from F; = F5. A similar result was obtained by
He, Luca, and Togbé (see [5]). The technique will be similar and we will organize this paper
as follows. In Section 2, we recall some results useful for the remaining sections. Sections 3
through 6 help us prepare the proof of Theorem 1.1 using a combination of results on a linear
form in three logarithms and a linear form in two logarithms to reduce the bounds of the
parameters. The last section is devoted to the proof of Theorem 1.1.

2. USEFUL LEMMAS

In this section, we will recall some results that will be useful in the next sections.
For any non-zero algebraic number v of degree d over Q whose minimal polynomial over Z
isa H;l:l(X —~1), we denote by

d

1 .
h(y) = p loga + Z log max(1, |fy(J)|
j=1

its absolute logarithmic height. We will use the following result due to Matveev [8].

Lemma 2.1. Let A be a linear form in logarithms of multiplicatively independent totally
real algebraic numbers a1, ..., ayn with rational integer coefficients by, ..., by (by # 0). Let
h(cay) denote the absolute logarithmic height of o for 1 < j < N. Define the numbers
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D, Aj (1 < j < N)and E by D := [Q(ai,...,an) : Q], A; = max{Dh(c;),|loga;|},
E = max{1,max{|bj|A;/An;1 < j < N}}. Then

log|A| > —C(N)CoWoD?Q,

where
C(N) = (N8_1)|(N +2)(2N + 3)(de(N + 1))V,
Co := log(e**NTTN35D2log(eD)),
Wy = log(l.5eEDlog(eD)), Q= A;---An.

We recall also the following result of Laurent [7].

Lemma 2.2. Letvy; > 1 and y2 > 1 be two real multiplicatively independent algebraic numbers,
b1,bs € Z not both 0 and
A = bylog s — by log 1.
Let D := [Q(y1,72) : Q]. Let
A ]

1
“ U Rori=1,2, ¥ >4y 92
’D} =55 U2 Bhy T Dy

| log i
D

h; > max {h(%),
Then
4 , 30 1\’
log |A| > —17.9- D* [ max < log b’ + 0.38, o 1 h1hs.

The following lemma is a slight modification of the original version of Baker-Davenport
reduction method. (See [3], Lemma 5a).

Lemma 2.3. Assume that k and p are real numbers and M is a positive integer. Let P/Q be
the convergent of the continued fraction expansion of k such that QQ > 6M and let

n =@l = M - [|xQ,

where || - || denotes the distance from the nearest integer. If n > 0, then there is no solution of
the inequality
0<jri—k+pu<AB™/
in integers j and k with
log(AQ/n) _ . _ ar

logB — )=
3. THE RELATED SEQUENCES

For any fixed positive integer n, we assume that there exist positive integers k,z,y such
that

FonpoFrp+4 =12 4Fy, 4F, +4 =y (3.1)
We eliminate F}, to obtain the norm form equation
Fonse - y° — 4Fopia - 2° = 4 Fopys — 4Fon4a). (3.2)

To generate all solutions of this equation, we need the following lemma, which follows from
Lemma 1 of [1].
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Lemma 3.1. Let a and b be positive integers satisfying ab+4 = 2 and a < b < 5a. All
positive solutions of the equation

ay? — bz = 4(a —b)

are given by

yva+ zvVb = (£2/a + 2vb) (H‘ﬁ) ,j > 0.

Since 4Fsp 1 4Foni6+4 = (2F2,15)% and o, < 4F5, 14 < 5Fby 46, Lemma 3.1 implies that
all solutions of equation (3.2) are given by

Y\ Fonto + 207/ Fonia = (£2v/Fonte + 4/ Fansa) Fonts + V/Fons6Fonta)?, 5> 0.

Now, we define the sequence (Uj);>0 and (V});>0 by

Vi + Ui/ Fant6Fanta := (Fanys + v/ Fons6Fanta)’

Thus, we get
Tr = l‘j = 2‘/3 + F2n+6Uj- (33)
Substituting (3.3) into the first equation of (3.1), we obtain
Fy = £4V;U; + (Font6 + 4Fon44) U (3.4)

This is the main equation that we will solve. Put
O = VU + (Fanso + AF2nsa) U2, forj=12,.... (3.5)
Therefore, we have to solve the equation

) = B, (3.6)

for some positive integers j and k. One can notice that the above equation has the solution
) = Py, (3.7)

That is exactly the solution stated in Theorem (1.1). Our aim will be to show that there are
no other solutions. Since

()

Fopig <O =5F246 < Font10

then, to get a contradiction, we will assume that j > 2 for the + and — cases.

Put
1++5 _1-+5
= o = .
2 2

and

Using Binet formula, we see that

F, = ak;gak, for all k > 1. (3.8)
Put
B = Fonss + [ Fop 5 — 1,
and ‘ ‘ . '
Vi = M U :— P — Bn’ (3.9)

2 [} j . - —_—.
2\/ F22n+5 1
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It is obvious that V; and U; depend on n, but we will assume that n is fixed throughout the
argument. Define

V) = 1 F2n+62+ 4F5 44 (3.10)
F22n+5 -1 A(F345 — 1)
We use formula (3.5) to deduce that
2 o—2j 2% _ oy g2
) = 2D (B AR %
Fipis—1 (Fanes = 1) (3.11)
a2 () Fonge +4Lon4 + B (F)
- n n n n .
2(F22n+5 - 1)
Therefore, the next equation comes from equation (3.6) when we use (3.8) and (3.11)
. Fonie+4Fon14g Yy aoF —ak
BrAE) - 21 T+ B0 = (3.12)

2(F5,15—1) V5
4. THE USE OF A LINEAR FORM IN THREE LOGARITHMS

In this section, we will introduce a linear form in three logarithms and determine some lower

and upper bounds. But, we will start by giving some bounds for 'y?(f) and ’y,(l_) .

Lemma 4.1. We have
(i) 2.79a72n4 < ) < 2,850 204,
(i) 0.02a7274 < AL < 0.0407274,

Proof. The definition of yﬁli) gives

’Y(i) _ 1 " 1
! VFoate 2V Fonia
1 1 (4.1)
= 5l/4q 2 £ .
/I 1/ 3T 1jamis
As the Taylor series of (1 —z)~1/2
1 1 3 9 5 4
— 14 = e _ S
I R R TR
implies
1+ -2 < L <147 fi €(0,1)
—x — forz
2 11—z 2(1—x) T
we see that
L 05< = + L <105 (4.2a)
—+0. — +0.51, 2a
o Oz\/l _ 1/a4n+12 2\/1 _ 1/a4n+8 a
1 1 1 1
— —05l< - <= -05. (4.2b)
« a\/l _ 1/a4n+12 2\/1 _ 1/a4n+8 a
We use (4.1) and (4.2) to obtain
(+)
1 Tn 1
o +0.5< Sy ry— <= +0.51,
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and

(-)
1 Tn 1
a - 0-5]— < W < a - 0-5.

Straightforward calculations give the results (i) and (ii) in the lemma completing its proof. [
Let us define the following linear form in three logarithms:
A = 2jlog B, — klog o + log(v/5 - 4. (4.3)
In the next result, we will determine an upper bound for A.
Lemma 4.2. If j > 2, then 0 < A < 10083, ~.
Proof. We use equation (3.12) to obtain

i) Dnso b s _goajoe _ O
k
First, we suppose that 5n 'yn § %. Thus, we see that
V5 _ B _ B
a— = N\
o %(Li) %(1 )
and
1 < 1 + L Fonie+4Fon4a
4Fopn 44 8F9nya  2F9,46 2(F3,.5—1)
ok
(¥) 2j, (+) 1
< B +\/»§/8n " MV I
imply
1 . 1
<BA AT+ =] (4.4)
4Fon 14 57

Inequality (4.4) and Lemma 4.1 give

1 Con
WF) F) 4 < BY < AP (772 )+ ()) < AFy,44(2.8507 2" 4 102",

9Yn
SO
YR FIL < 28507 4 1007, (4.5)
Inequality (4.5) easily implies that j < 2, which contradicts the assumption.
k
So, we have ﬁn fyn £ S 35. Therefore, A > 0. Moreover, as
) F: 4F: 1 1 1 ;
k512872 ()1 _ 1| < 246 + 42044 < < 5087%

2(F3,15—1) 527 (£) 7 Fonye 521 (=)
and the rightmost quantity above is < 1/2, we deduce that A < 1005, %/ Here, we have used
|A| < 2|e* — 1| whenever ¢! — 1] < 1/2. (4.6)
O

Now, we will prove the next proposition.

FEBRUARY 2018 67



THE FIBONACCI QUARTERLY

Proposition 4.3. If equation (3.4) has a positive integer solution, (j, k) with j > 1, then

j < 2.3-10"%(n + 3)log(1565(n + 3)). (4.7)
Proof. We will apply Lemma 2.1 to the linear form in three logarithms.

A :=2jlog B, — kloga +log(V/5 - ),
and take
N=3 D=4, b =25, by=—-k byg=1,

and

aq :/Bna ay = @, a3:\/5'77(1:t)'

We will prove that o, e, a3 are multiplicatively independent. We know that ap € Q(v/5) and

aq, a% e Q (\/F2n+4 F2n+6). Let us show that Fb,44Fo,16 is neither a square nor 5 times a
square. Indeed, otherwise, since ged (Fant4, Fant6) = Faed(2nt4,2n+6) = F2 = 1, one of Fop iy
or Fy,4¢ would be a square. It is well-known that the only squares in the Fibonacci sequence
are 1 and 144, which implies that n = 3,4, but none of FjgFio, F12F14 is either a square or 5
times square. Thus, if we write FopiqFopt6 = du? for an integer u and a square-free integer
d, then d > 1 and d # 5. So, if a1, as, a3 are multiplicatively dependent, then «; and o3
are multiplicatively dependent (because no power of ay of a non-zero integer exponent is in
Q(V/d)). Since a7 is a unit in Q(v/d), we deduce that a3 =5 <’y7(1i)>2 is a unit, which is false

2
since the norm of 5 ('yr(li)) is

1)\ 2 AFpyq — Fonte )"
2((+>(>):2. n 1,
o ° 4F5n 1 4Fon16 <

so the above fraction is not an integer, for any n > 1 as in the reduced form that rational
number has a denominator divisible by 2.
We consider

h(ar) = h(By) = %log 8, and h(az) = h(a) = %loga.

As ’y}ﬁ, ) are conjugate and roots of the quadratic polynomial

16F5, 4 F56X% — 8(Fy6Fonta + 4Fon16F5, 1 4) X + (4Fon4a — Fonte)?,

and

) 1 1 2
n <\/F2n+6 2v/Fonta

%(f)‘ <

we see that
1
h(y$H) = 3 log(16F3, 4 F5,, 1) = 10g(4F2n1aFante) < (4n + 10)log a + log(4/5),
where we have used F; < ol/+/5 for | € {2n + 4,2n + 6}. We deduce that

hos) = h(V5 %) < h(v5) + hir)
21og(5) 4 (4n + 10) log o + log(4/5)
log(4/v/5) + (4n + 10)log a < 4(n + 3) log v,

A

where we used 4/v/5 < a?. In conclusion, we take

Ay =2log B, Az =2loga, Asz=16(n+ 3)loga.
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As of72 < F; < ol for all I > 1, we deduce that
Bn < 2Fop45 < 202014 < 2(n+3)
Moreover, using a? > 2, we have
ol < 20872 < 2F, < 8UVj 4 2(Fants + 4F2nya) U
< (Vj + UjVFons6Fon+4)? = (Fants + VFanr6F2nta)?

< (2F2n+5)2j < (2a2n+4)2j < qLi(n+3).

Therefore, we consider

By Lemmas 2.1 and 4.2, we get

;(3 +2)(6 + 3)(4%e)* < 6.45 - 108,
Co = log(e**+3+73554210g(4e)) < 30,
Wy = log(l.5eE4log(4e)) < log(156j(n + 3)),

Q = (2logpn)(2loga)(16(n + 3)log a),

c@) =

SO
2j1og B, — log 100 < —log |A| < 198144 - 10 - log(1565(n + 3))(log B, ) (log )?(n + 3),
which leads to
j < 2.3-10"%(n + 3)log(1565(n + 3)).
This completes the proof of the proposition. O

5. THE USE OF A LINEAR FORM IN TwO LOGARITHMS

In this section, we will introduce a linear form in two logarithms that will help us improve
the result obtain in Proposition 4.3. From (3.7), when j = 1, we see that equation (3.4) has
the solution

k= 2n, forC=C\7). (5.1)
We define the linear form in logarithms:
Ao = 2log B, — 2nlog a + log(v/5 - o). (5.2)
First, we will determine an upper bound for Ag.
Lemma 5.1. We have |Ag| < 30508, 2.

Proof. For n = 1, this can be checked directly. Assume that n > 2. We substitute (5.2) into
(3.12) to obtain

2 (&) " Fonpo t 4B gy ) o
VB 2R -1 T B
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Oé

If ﬁn'yn 7 then a=2"//5 < 1/(5Bn'yn ) and
—2,(F) —2n
a2n5—1/2ﬁ;2/,w(;t) -1 < Bn In +(Oié) /\/5
Bam
AW £ 1/(59®) _ 142.5 + 5000
Ay Bn '

This inequality together with 3, > 13 4+ 2v/42 and 3, > o®"** gives

‘a2”5—1/25,;2/%gi> - 1( < 50182,

On the other hand, if 62%(?) > a?"/(1/5), then

‘a2n5—1/2ﬁ—2/7(i) _ 1‘ < 1/(2F2n46) + 1/(2F2n+16)
ner B2
< 5 <508,
F2n+66 ’Yn
In both cases,
(a2”5—1/25,;2/%gi> - 1( < 501872, (5.3)
Since n > 2, we have 3, > 34 + /1155, so 5013;,2 < 1/2, and inequalities (4.6) and (5.3)
imply |Ao| < 2-5018;,2 < 30508;,2. O
Let K :=(2j —1)(2n+5) —k — 5 and
A = Kloga — (j —1)log(5/4). (5.4)

Now, we determine an upper bound for Aj.
Lemma 5.2. We have |A1] < (85 + 4192)a~4"~10,
Proof. We know that

1
Bn = Fonss+\/Fais—1=2Fnm5—
Fopis + \/F22n+5 -1

(5.5)
1
= 2F5 51—
2F y5(Fongs + W)

and

o - — 2 (245 o5y _ 2 anis (4 !
We define

1 1
6= |1- (1 + a4n+10>

2F2n+5(F2n+5 + \/ F22n+5 - 1)

From the above, we deduce that

log B, = log(2/V/5) + (2n + 5) log o + log 6,,.
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We use (4.3) and (5.2) to obtain
A—ANy = (2§ —2)logB, — (k—2n)loga
= (2§ —2)log(2/V5) + (2 — 2)(2n + 5) log
+(2j —2)logd, — (k —2n)log o
= (25 —2)logé, + Kloga — (j —1)log(5/4).

The above calculation and the definition of A; give
A1 =A- AO - (2] - 2) logén

One can see that Lemmas 4.2, 5.1, and the inequalities

1 1
\logénl < log 1-— 5 + log (1+()M)>‘
2Fn45(Fonts + 4/ Fapps — 1)
- 1 n 1 - 4
4n+10 in+2
Fongs(Fongs + 1/ F3 5 —1) @ " ar
imply that
. 3150  8(j —1)
[Ar] < [A]+ [Aof + [(25 — 2)[log 6n| < gzt a0 (5.6)
Clearly, we get
Bn = Fopts (1 + /1= > > Fopts(1 +2v42/13)
2n+5
a2n+5
> 14 2v/42/13),
7 (1+2v42/13)
and then ) P
1+2v42/13 3aftnt
ﬂg > Ck4n+10 . ( + - / ) > « I ) (57)
From (5.6) and (5.7), we obtain the desired result. O

We are ready now to reach the aim of this section by proving the next result.
Lemma 5.3. If equation (3.4) has a positive integer solution (j,k) with j > 1, then
j<3.7-10" and n < 207062.

Proof. To obtain a lower bound for A;, we will apply Lemma 2.2. So, we put

5
D:27 71:17

The condition of the lemma are fulfilled for our choices of parameters. Furthermore, we can

n=a b=G-1), b =K.

1
take hy = logh, ho = 3 By Lemma 5.2 | we have

(j — 1) log(5/4) + (85 + 4192)a 410
log
< 0.47(5 — 1) +0.025 + 10.34 < 0.55 + 9.9.

K

So, we can take
K ] ke
2 log 5 Dh2 Dh1 ’

V=116 +2.1> (j—1) +
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Therefore, Lemma 2.2 yields

log |A1] > —17.9 - 8log 5 - (max{log(1.165 + 2.1) + 0.38,15})2. (5.8)
From Lemma 5.2, we get
log |A1| < —(4n + 10) log o + log(85 + 4192). (5.9)
Combining the two bounds (5.8) and (5.9) on log |A1], we have
n < 120(max{log(1.165 + 2.1) + 0.38,15})2 + 0.6 log (8 + 4192). (5.10)
If
log(1.165 +2.1) 4+ 0.38 < 15,
then

§ < 1927201 and n < 120-15% + 0.6 log(8 - 1927201 + 4192) < 27010.

Otherwise,
n < 120(log(1.165 + 2.1) + 0.38) + 0.6 log(8; + 4192). (5.11)

Substituting inequality (5.11) into Proposition 4.3, we have

i < 2.3-10'%(120(log(1.165 + 2.1) + 0.38)2 + 0.6 log(85 + 4192) + 3)

x log(156;(120(log(1.167 + 2.1) + 0.38)% + 0.6 log(8j + 4192) + 3)). (5-12)

A straightforward calculation gives j < 3.7 - 101, which together with (5.11) implies n <
207062. O
6. BETTER BOUNDS ON j AND n
The goal of this section is to obtain better bounds on j and n. We use Lemma 5.9 to obtain

|Kloga — (j —1)log(5/4)| < (8§ 4 4192)a~4"~10,

Hence, we have

log(5/4) K 87 + 4192

logae  j— 1‘ (j — Datt10]og o’ (6.1)
First, we assume that Qi 1 4102 .
J +
(7 — Datn+10]og o < 2(5 —1)%° (6.2)
Then, we get
log(5/4) K 1
log o _j—l‘ 2(j — 1)

Using a criterion of Legendre, we see that K/(j — 1) is a convergent in the simple continued
fraction expansion of log(5/4)/log . We know that

log 2

= [0,2,6,2,1,1,3,7,1,3,1,1,22,2,1,1,4,3,1,2,1,1,4,1,1,
1,12,6,1,1,4,1,8,2,1,49,1,10,6,1,1,3,1,1,1,5,22,1,1,.. .

log

The denominator of the 46th convergent
25158053660121411107
54253653513327093513

is greater than the upper bound 3.7 - 10! on j. The 45th convergent
4460457560349832575
9619031832089360168
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gives the lower bound

log(5/4 K
08(5/4) _ _ ‘ >1.9.1073, (6.3)
log j—1
The combination of (6.1) and (6.3) gives
8j + 4192

1.9-107% <

G 1a™0loga < 420804 V(log o)1,

which implies that n < 49. We know (see [6]) that if p,/g, is the rth such convergent of
log(5/4)/log «, then
log(5/4)  pr 1
log o dr (ar+1+2)q’
where a,41 is the (r + 1)st partial quotient of log(5/4)/log a. We thus have

- 1 85 + 4192
< , for2<r<45. 6.4
o { (ars1+2)(F — 1)2} (j — Datn+10]oga or2<r< (6.4)

Since max{a,4+1 : 2 <r <45} = azg = 49, from (6.4) we get
om0 < 51(5 — 1)(85 + 4192)(log ) L.
All this was when inequality (6.2) holds. On the other hand, if (6.2) does not hold, then
ot 0 < 2(5 — 1)(8;5 4 4192)(log o) .

Both possibilities give
a0 < 51(5 — 1)(85 4 4192)(log o) ™ < 8485 (5 + 524) < 44520052
Therefore, we deduce the following result.
Proposition 6.1. If equation (3.4) has a positive integer solution (j,k) with j > 1, then
n < 1.04logj + 4.3. (6.5)
This bound is better than that in (5.11). Combining Propositions 4.3 and 6.1, we get
j < 120-102(1.041ogj + 7.3)1og(156 - j - (1.04log j + 7.3)),
which implies that j < 4.7 - 10'°. Using Proposition 6.1, we get the following result.
Lemma 6.2. If equation (3.4) has a positive integer solution (j,k) with j > 1, then
j<4.7-10% and n <42

7. PROOF OoF THEOREM 1.1

In this section, we will use all the above results to complete the proof of Theorem 1.1. So, to
address the remaining cases, for 1 < n < 41, first we will use the Baker-Davenport reduction
method to reduce the bounds of n and j. Then, we will address the small values of n and j.

We know that

0 < 2jlog By, — kloga + log(v/5 - 4P < 1008, %.

To apply Lemma 2.3, we will consider

__2logB, _log(v5-u) 100
- loga ] N log o ’ "~ loga’

B=p% M=4.7-10".

The program was developed in PARI/GP running with 200 digits. For the computations,
if the first convergent such that ¢ > 6M does not satisfy the condition n > 0, then we use
the next convergent until we find the one that satisfies the conditions. In one minute, all the
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computations were done. In all cases, we obtained j < 8. From Proposition 6.1, we deduce
that 1 <n < 6. So we have the following result.

Lemma 7.1. If equation (3.5) has a positive integer solution (j, k) with j > 1, then
J<8 and n <6.

We are now ready to prove Theorem 1.1. For 1 <n <6, 2 <j <8, we compute all C’J(-i).

None of them is a Fibonacci number. This means that equation (3.5) has no positive integer
solution (j, k) with 7 > 2. When j = 1, we have

O = 4ViUL + (Fonts + 4Fonsa) U2 = 4Fsn5 + Fonso + 4Fopsa = 5Fogs,  forn>1
and
Cf_) = —dViUs + (Font6 + AFon1a) UL = —4Fon 15 + Fapig + 4Fopi4 = Foy,  forn > 1.

But Fopy9 < 5Fon16 < Fopy10. Since Fy = Fb, the additional solutions come from the triple
{F\, Fs,4Fs} = {F», Fg,4Fs} = {1,21, 32}.
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