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Abstract. We solve a generalization of the familiar non-linear Cassini relation for its linear
sequences.

1. A-Cassini Relation and Sequences

We consider the non-linear recurrence

gn+1gn−1 = g2n + (−1)nA

with non-zero initial values g1 = a, g2 = b, and given A. This is a generalization of the familiar
Cassini relation for the standard Fibonacci sequence when A = 1. We are interested in A,
a, and b so that the sequences (called A-Cassini sequences) satisfying this non-linear relation
are integer valued. The methods are similar to those in [1] but are more closely aligned to
Fibonacci sequences and polynomials.

Theorem 1.1. Let µ = b2−a2+A
ab . Then for n ≥ 3, gn−gn−2

gn−1
= µ.

Proof. The proof is by induction on n. For n = 3, g3 = b2+A
a so g3−g1

g2
= b2−a2+A

ab . Now, assume

the result is true for n ≥ 3. We will show that gn+1−gn−1

gn
= b2−a2+A

ab . Using the induction

hypothesis, let δ = gn+1−gn−1

gn
−µ = gn+1−gn−1

gn
− gn−gn−2

gn−1
. Finding a common denominator and

using the non-linear recurrence twice, we get

δ =
gn+1gn−1 − g2n−1 − g2n + gngn−2

gngn−1

=
gngn−2 − g2n−1 + gn+1gn−1 − g2n

gngn−1

=
(−1)n−1A+ (−1)nA

gngn−1
= 0.

�

The next result follows immediately from Theorem 1.1 and well-known results on linear
recurrences.

Corollary 1.2. For initial values g1 = a and g2 = b, gn = µgn−1 + gn−2 is a second order
linear sequence solution to the non-linear A-Cassini relation gn+1gn−1 = g2n + (−1)nA. The
growth of this sequence is limn→∞

gn
gn−1

= σ where σ is a root of x2 − µx− 1

A polynomial in x, y, . . . and their inverses 1
x , 1

y , . . . is called a Laurent polynomial.

Corollary 1.3. For indeterminates a and b the sequence gn = µgn−1 + gn−2 is a Laurent
polynomial in a and b.
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Proof. As shown above, g3 has denominator a. Since µ has denominator ab, the result follows
by an easy induction that gn+1 has denominator an−2bn−3 for n ≥ 3. �

If a = b = 1, then µ = A; this yields an integer sequence called the standard A-Cassini
sequence. If A = 1 then this is the Fibonacci sequence 1, 1, 2, 3, . . ..

We now prove the converse to our Corollary 1.2.

Proposition 1.4. Suppose that gn+1 = Mgn+gn−1 with non-zero initial values g1 = a, g2 = b,
and given M . Let A = a2 + Mab − b2. Then, this sequence satisfies the A-Cassini relation
gn+1gn−1 = g2n + (−1)nA.

Proof. By the Corollary above, the solution to the A-Cassini relation with A = a2 +Mab− b2
with initial values h1 = a and h2 = b is hn+1 = Mhn + hn−1 since µ = M . Thus, hn = gn for
all n. �

Recall that the Fibonacci polynomials are given by f1 = 1, f2 = x, and fn = xfn−1 + fn−2
when n ≥ 3; they are of degree n − 1, see [2]. The first few Fibonacci polynomials are 1, x,
x2 + 1, x(x2 + 2), x4 + 3x2 + 1.

Theorem 1.5. Let A = a2 +Mab− b2 for given a, b, and M . Then, the sequence satisfying
the A-Cassini relation gn+1gn−1 = g2n + (−1)nA is determined from the Fibonacci polynomial
sequence {fn| n ≥ 1} as

gn+2 = bfn+1(M) + afn(M), n ≥ 1.

Proof. The base cases are:

bf2(M) + af1 = bM + a = g3

and bf3(M) + af2(M) = b(M2 + 1) + aM = bM2 + aM + b

= M(bM + a) + b = Mg3 + g2 = g4.

By the induction hypothesis and gn+1 = Mgn + gn−1, we obtain

gn+2 = M(bfn(M) + afn−1(M)) + bfn−1(M) + afn−2(M)

= b(Mfn(M) + fn−1(M)) + a(Mfn−1(M) + fn−2(M))

= bfn+1(M) + afn(M).

Therefore, by induction, the result is true for all n ≥ 1. �

2. Spectrum

We want to determine for a given integer M the possible integer values of A so that M = µ
for some integers a and b. We call this the A-Cassini spectrum of M denoted ASpec(M).

Let M be an integer and A = 1. Then for a = 1 and b = M we have µ = M . Therefore,
1 ∈ ASpec(M) for any integer M .

Let M = 1. In this case, Cassini sequences are generalized Fibonacci sequences. If A = 1,
the equation µ = M becomes a2 + ab − b2 = 1. The values a = b = 1 satisfy this equation.
This gives the Fibonacci sequence. So, 1 ∈ ASpec(1). If A = 5, we obtain the Lucas sequence
as an example. Thus, 5 ∈ ASpec(1). However, A = 2 is not possible. The solution of the

equation b2 − ab − a2 + 2 = 0 is b = 1
2(a ±

√
5a2 − 8); 5a2 − 8 = c2 for some integer c

is impossible, considering the equation mod 5. Hence, 2 6∈ ASpec(1). Similarly, A = 3 is
impossible. However, for A = 4, we get the doubled Fibonacci sequence. By similar arguments,
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any A = ±2 mod 5 is impossible. When A = 11, we obtain a = 1 and b = 4 which is the
Cassini-Fibonacci sequence 1, 4, 5, 9, 14, 23, . . .. So, 11 ∈ ASpec(1).

In general, the equation 5a2 − 4A = c2 or c+
√
5a

2
c−
√
5a

2 = −A (that is −A is a norm from

the ring Z[1+
√
5

2 ]).

For a given integer A, the possible integers M for which b2 − a2 + A = Mab has integer
solutions a and b is denoted MSpec(A).

Let A = 1 and M be any integer. The equation µ = M becomes b2 − a2 + 1 = Mab.
An integer solution to this equation is a = 1 and b = M . Therefore, MSpec(1) contains all
integers.

For A = 5, consider b2 − a2 + 5 = Mab. It is easy to see that −5, −4, −1, 0, 1, 4,
5 ∈ MSpec(5).

For a given (M,A) with A ∈ ASpec(M) the set of integers (a, b) which yield integer Cassini
sequences is denoted PSpec(M,A), called the parameter spectrum.

If M = 1 and A = 1, what are all integer solutions to b2 − ab− a2 = −1. This is a familiar
Pell’s equation. Complete the square to get (b − a/2)2 − 5a2/4 = −1; so all solutions can be

determined using the odd powers k of the fundamental unit u = 1+
√
5

2 via (2b−a)+
√
5a

2 = uk.
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