A-CASSINI SEQUENCES AND THEIR SPECTRUM

ROGER C. ALPERIN

Abstract

We solve a generalization of the familiar non-linear Cassini relation for its linear sequences.

1. A-Cassini Relation and Sequences

We consider the non-linear recurrence

$$
g_{n+1} g_{n-1}=g_{n}^{2}+(-1)^{n} A
$$

with non-zero initial values $g_{1}=a, g_{2}=b$, and given A. This is a generalization of the familiar Cassini relation for the standard Fibonacci sequence when $A=1$. We are interested in A, a, and b so that the sequences (called A-Cassini sequences) satisfying this non-linear relation are integer valued. The methods are similar to those in [1] but are more closely aligned to Fibonacci sequences and polynomials.
Theorem 1.1. Let $\mu=\frac{b^{2}-a^{2}+A}{a b}$. Then for $n \geq 3, \frac{g_{n}-g_{n-2}}{g_{n-1}}=\mu$.
Proof. The proof is by induction on n. For $n=3, g_{3}=\frac{b^{2}+A}{a}$ so $\frac{g_{3}-g_{1}}{g_{2}}=\frac{b^{2}-a^{2}+A}{a b}$. Now, assume the result is true for $n \geq 3$. We will show that $\frac{g_{n+1}-g_{n-1}}{g_{n}}=\frac{b^{2}-a^{2}+A}{a b}$. Using the induction hypothesis, let $\delta=\frac{g_{n+1}-g_{n-1}}{g_{n}}-\mu=\frac{g_{n+1}-g_{n-1}}{g_{n}}-\frac{g_{n}-g_{n-2}}{g_{n-1}}$. Finding a common denominator and using the non-linear recurrence twice, we get

$$
\begin{aligned}
\delta & =\frac{g_{n+1} g_{n-1}-g_{n-1}^{2}-g_{n}^{2}+g_{n} g_{n-2}}{g_{n} g_{n-1}} \\
& =\frac{g_{n} g_{n-2}-g_{n-1}^{2}+g_{n+1} g_{n-1}-g_{n}^{2}}{g_{n} g_{n-1}} \\
& =\frac{(-1)^{n-1} A+(-1)^{n} A}{g_{n} g_{n-1}}=0
\end{aligned}
$$

The next result follows immediately from Theorem 1.1 and well-known results on linear recurrences.

Corollary 1.2. For initial values $g_{1}=a$ and $g_{2}=b, g_{n}=\mu g_{n-1}+g_{n-2}$ is a second order linear sequence solution to the non-linear A-Cassini relation $g_{n+1} g_{n-1}=g_{n}^{2}+(-1)^{n} A$. The growth of this sequence is $\lim _{n \rightarrow \infty} \frac{g_{n}}{g_{n-1}}=\sigma$ where σ is a root of $x^{2}-\mu x-1$

A polynomial in x, y, \ldots and their inverses $\frac{1}{x}, \frac{1}{y}, \ldots$ is called a Laurent polynomial.
Corollary 1.3. For indeterminates a and b the sequence $g_{n}=\mu g_{n-1}+g_{n-2}$ is a Laurent polynomial in a and b.

THE FIBONACCI QUARTERLY

Proof. As shown above, g_{3} has denominator a. Since μ has denominator $a b$, the result follows by an easy induction that g_{n+1} has denominator $a^{n-2} b^{n-3}$ for $n \geq 3$.

If $a=b=1$, then $\mu=A$; this yields an integer sequence called the standard A-Cassini sequence. If $A=1$ then this is the Fibonacci sequence $1,1,2,3, \ldots$.

We now prove the converse to our Corollary 1.2.
Proposition 1.4. Suppose that $g_{n+1}=M g_{n}+g_{n-1}$ with non-zero initial values $g_{1}=a, g_{2}=b$, and given M. Let $A=a^{2}+M a b-b^{2}$. Then, this sequence satisfies the A-Cassini relation $g_{n+1} g_{n-1}=g_{n}^{2}+(-1)^{n} A$.

Proof. By the Corollary above, the solution to the A-Cassini relation with $A=a^{2}+M a b-b^{2}$ with initial values $h_{1}=a$ and $h_{2}=b$ is $h_{n+1}=M h_{n}+h_{n-1}$ since $\mu=M$. Thus, $h_{n}=g_{n}$ for all n.

Recall that the Fibonacci polynomials are given by $f_{1}=1, f_{2}=x$, and $f_{n}=x f_{n-1}+f_{n-2}$ when $n \geq 3$; they are of degree $n-1$, see [2]. The first few Fibonacci polynomials are $1, x$, $x^{2}+1, x\left(x^{2}+2\right), x^{4}+3 x^{2}+1$.

Theorem 1.5. Let $A=a^{2}+M a b-b^{2}$ for given a, b, and M. Then, the sequence satisfying the A-Cassini relation $g_{n+1} g_{n-1}=g_{n}^{2}+(-1)^{n} A$ is determined from the Fibonacci polynomial sequence $\left\{f_{n} \mid n \geq 1\right\}$ as

$$
g_{n+2}=b f_{n+1}(M)+a f_{n}(M), n \geq 1 .
$$

Proof. The base cases are:

$$
\begin{aligned}
& \quad b f_{2}(M)+a f_{1}=b M+a=g_{3} \\
& \text { and } \quad b f_{3}(M)+a f_{2}(M)=b\left(M^{2}+1\right)+a M=b M^{2}+a M+b \\
& \quad=M(b M+a)+b=M g_{3}+g_{2}=g_{4} .
\end{aligned}
$$

By the induction hypothesis and $g_{n+1}=M g_{n}+g_{n-1}$, we obtain

$$
\begin{aligned}
g_{n+2} & =M\left(b f_{n}(M)+a f_{n-1}(M)\right)+b f_{n-1}(M)+a f_{n-2}(M) \\
& =b\left(M f_{n}(M)+f_{n-1}(M)\right)+a\left(M f_{n-1}(M)+f_{n-2}(M)\right) \\
& =b f_{n+1}(M)+a f_{n}(M) .
\end{aligned}
$$

Therefore, by induction, the result is true for all $n \geq 1$.

2. Spectrum

We want to determine for a given integer M the possible integer values of A so that $M=\mu$ for some integers a and b. We call this the A-Cassini spectrum of M denoted $\operatorname{ASpec}(M)$.

Let M be an integer and $A=1$. Then for $a=1$ and $b=M$ we have $\mu=M$. Therefore, $1 \in \operatorname{ASpec}(M)$ for any integer M.

Let $M=1$. In this case, Cassini sequences are generalized Fibonacci sequences. If $A=1$, the equation $\mu=M$ becomes $a^{2}+a b-b^{2}=1$. The values $a=b=1$ satisfy this equation. This gives the Fibonacci sequence. So, $1 \in \operatorname{ASpec}(1)$. If $A=5$, we obtain the Lucas sequence as an example. Thus, $5 \in \operatorname{ASpec}(1)$. However, $A=2$ is not possible. The solution of the equation $b^{2}-a b-a^{2}+2=0$ is $b=\frac{1}{2}\left(a \pm \sqrt{5 a^{2}-8}\right) ; 5 a^{2}-8=c^{2}$ for some integer c is impossible, considering the equation mod 5 . Hence, $2 \notin \mathrm{ASpec}(1)$. Similarly, $A=3$ is impossible. However, for $A=4$, we get the doubled Fibonacci sequence. By similar arguments,
any $A= \pm 2 \bmod 5$ is impossible. When $A=11$, we obtain $a=1$ and $b=4$ which is the Cassini-Fibonacci sequence $1,4,5,9,14,23, \ldots$. So, $11 \in \operatorname{ASpec}(1)$.

In general, the equation $5 a^{2}-4 A=c^{2}$ or $\frac{c+\sqrt{5} a}{2} \frac{c-\sqrt{5} a}{2}=-A$ (that is $-A$ is a norm from the ring $\mathbf{Z}\left[\frac{1+\sqrt{5}}{2}\right]$).

For a given integer A, the possible integers M for which $b^{2}-a^{2}+A=M a b$ has integer solutions a and b is denoted $\operatorname{MSpec}(A)$.

Let $A=1$ and M be any integer. The equation $\mu=M$ becomes $b^{2}-a^{2}+1=M a b$. An integer solution to this equation is $a=1$ and $b=M$. Therefore, $\operatorname{MSpec}(1)$ contains all integers.

For $A=5$, consider $b^{2}-a^{2}+5=M a b$. It is easy to see that $-5,-4,-1,0,1,4$, $5 \in \operatorname{MSpec}(5)$.

For a given (M, A) with $A \in \operatorname{ASpec}(M)$ the set of integers (a, b) which yield integer Cassini sequences is denoted $\operatorname{PSpec}(M, A)$, called the parameter spectrum.

If $M=1$ and $A=1$, what are all integer solutions to $b^{2}-a b-a^{2}=-1$. This is a familiar Pell's equation. Complete the square to get $(b-a / 2)^{2}-5 a^{2} / 4=-1$; so all solutions can be determined using the odd powers k of the fundamental unit $u=\frac{1+\sqrt{5}}{2}$ via $\frac{(2 b-a)+\sqrt{5} a}{2}=u^{k}$.

References

[1] R. C. Alperin, Integer sequences generated by $x_{n+1}=\left(x_{n}^{2}+A\right) / x_{n-1}$, The Fibonacci Quarterly, 49.4 (2011), 362-365
[2] V. E. Hoggatt and M. Bicknell, Roots of Fibonacci polynomials, The Fibonacci Quarterly, 11.3 (1973), 271-274.

MSC2010: 11B39, 11D09
Department of Mathematics, San Jose State University, San Jose, CA 95192
E-mail address: rcalperin@gmail.com

