A-CASSINI SEQUENCES AND THEIR SPECTRUM

ROGER C. ALPERIN

ABSTRACT. We solve a generalization of the familiar non-linear Cassini relation for its linear
sequences.

1. A-CASSINI RELATION AND SEQUENCES

We consider the non-linear recurrence
In+19n-1 = gp + (=1)"A
with non-zero initial values g1 = a, go = b, and given A. This is a generalization of the familiar
Cassini relation for the standard Fibonacci sequence when A = 1. We are interested in A,
a, and b so that the sequences (called A-Cassini sequences) satisfying this non-linear relation
are integer valued. The methods are similar to those in [1] but are more closely aligned to
Fibonacci sequences and polynomials.

Theorem 1.1. Let p = lﬁ_;‘#. Then for n >3, % = L.
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Proof. The proof is by induction on n. Forn = 3, g3 = &4 g0 8391 — b “b+A. Now, assume
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the result is true for n > 3. We will show that g”“g_g”‘l = bz*gz*“. Using the induction
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using the non-linear recurrence twice, we get
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The next result follows immediately from Theorem 1.1 and well-known results on linear
recurrences.

Corollary 1.2. For initial values g1 = a and go = b, gn = pgn—1 + gn—2 s a second order
linear sequence solution to the non-linear A-Cassini relation gni1gn—1 = g2 + (=1)"A. The
growth of this sequence is lim,, s gi—’il = o where o is a root of x> — px — 1

L L is called a Laurent polynomial.

A polynomial in z, y, ... and their inverses -, 7

Corollary 1.3. For indeterminates a and b the sequence gn, = pgn—1 + gn—2 s a Laurent
polynomial in a and b.
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Proof. As shown above, g3 has denominator a. Since p has denominator ab, the result follows
by an easy induction that g,,1 has denominator a"~2b"3 for n > 3. (]

If a =0 =1, then u = A; this yields an integer sequence called the standard A-Cassini
sequence. If A =1 then this is the Fibonacci sequence 1, 1, 2, 3, .. ..

We now prove the converse to our Corollary 1.2.
Proposition 1.4. Suppose that gn+1 = M gn+gn—1 with non-zero initial values g1 = a, g2 = b,
and given M. Let A = a®> + Mab — b*>. Then, this sequence satisfies the A-Cassini relation
In+19n—1 = gy + (=1)"A.
Proof. By the Corollary above, the solution to the A-Cassini relation with A = a® + Mab — b?

with initial values hy = a and hy = b is hpy1 = Mhy + hy—1 since p = M. Thus, h, = g, for
all n. O

Recall that the Fibonacci polynomials are given by fi =1, fo = x, and f, = xfh_1 + fn_2
when n > 3; they are of degree n — 1, see [2]. The first few Fibonacci polynomials are 1, x,
22+ 1, z(z? + 2), 2t + 322 + 1.

Theorem 1.5. Let A = a®> + Mab — b? for given a, b, and M. Then, the sequence satisfying
the A-Cassini relation gny19n—1 = g2 + (—1)"A is determined from the Fibonacci polynomial
sequence {fn| n > 1} as

Int2 = bfns1(M) + afp(M), n > 1.

Proof. The base cases are:

bfa(M)+afi =bM +a=gs

and  bfs(M) +afo(M) =b(M? +1) +aM = bM?* +aM +b
= M(bOM +a)+b=Mgs+ g2 = ga.
By the induction hypothesis and g,4+1 = Mg, + gn—1, We obtain
gnt2 = M(fn(M) + afpn—1(M)) + bfpn—1(M) + afn—2(M)
= b(M fo(M) + fo1(M)) + a(M frn1(M) + fn—2(M))
= bfus1 (M) + afu(M).

Therefore, by induction, the result is true for all n > 1. O

2. SPECTRUM

We want to determine for a given integer M the possible integer values of A so that M = p
for some integers a and b. We call this the A-Cassini spectrum of M denoted ASpec(M).

Let M be an integer and A = 1. Then for « = 1 and b = M we have u = M. Therefore,
1 € ASpec(M) for any integer M.

Let M = 1. In this case, Cassini sequences are generalized Fibonacci sequences. If A =1,
the equation y = M becomes a® 4+ ab — b> = 1. The values a = b = 1 satisfy this equation.
This gives the Fibonacci sequence. So, 1 € ASpec(1). If A =5, we obtain the Lucas sequence
as an example. Thus, 5 € ASpec(1). However, A = 2 is not possible. The solution of the
equation o> —ab— a2 +2 = 01is b = %(a + v5a2 — 8); 5a%2 — 8 = ¢? for some integer c
is impossible, considering the equation mod 5. Hence, 2 ¢ ASpec(1). Similarly, A = 3 is
impossible. However, for A = 4, we get the doubled Fibonacci sequence. By similar arguments,
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any A = +2 mod 5 is impossible. When A = 11, we obtain a = 1 and b = 4 which is the
Cassini-Fibonacci sequence 1, 4, 5, 9, 14, 23, .... So, 11 € ASpec(1).

In general, the equation 5a% — 44 = ¢? or %# = —A (that is —A is a norm from
the ring Z[l‘;—‘/g])

For a given integer A, the possible integers M for which b?> — a®> + A = Mab has integer
solutions @ and b is denoted MSpec(A).

Let A = 1 and M be any integer. The equation i = M becomes b> — a® + 1 = Mab.
An integer solution to this equation is @ = 1 and b = M. Therefore, MSpec(1) contains all
integers.

For A = 5, consider b> — a® + 5 = Mab. It is easy to see that —5, —4, —1, 0, 1, 4,
5 € MSpec(5).

For a given (M, A) with A € ASpec(M) the set of integers (a,b) which yield integer Cassini
sequences is denoted PSpec(M, A), called the parameter spectrum.

If M =1 and A = 1, what are all integer solutions to b?> — ab — a> = —1. This is a familiar
Pell’s equation. Complete the square to get (b — a/2)? — 5a%/4 = —1; so all solutions can be
1+2\/5 via (Qb_a;”/ga = uk.

determined using the odd powers k of the fundamental unit v =
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