A-CASSINI SEQUENCES AND THEIR SPECTRUM

ROGER C. ALPERIN

ABSTRACT. We solve a generalization of the familiar non-linear Cassini relation for its linear sequences.

1. A-Cassini Relation and Sequences

We consider the non-linear recurrence

$$g_{n+1}g_{n-1} = g_n^2 + (-1)^n A$$

with non-zero initial values $g_1 = a$, $g_2 = b$, and given A. This is a generalization of the familiar Cassini relation for the standard Fibonacci sequence when A = 1. We are interested in A, a, and b so that the sequences (called A-Cassini sequences) satisfying this non-linear relation are integer valued. The methods are similar to those in [1] but are more closely aligned to Fibonacci sequences and polynomials.

Theorem 1.1. Let $\mu = \frac{b^2 - a^2 + A}{ab}$. Then for $n \ge 3$, $\frac{g_n - g_{n-2}}{g_{n-1}} = \mu$.

Proof. The proof is by induction on n. For n = 3, $g_3 = \frac{b^2 + A}{a}$ so $\frac{g_3 - g_1}{g_2} = \frac{b^2 - a^2 + A}{ab}$. Now, assume the result is true for $n \ge 3$. We will show that $\frac{g_{n+1} - g_{n-1}}{g_n} = \frac{b^2 - a^2 + A}{ab}$. Using the induction hypothesis, let $\delta = \frac{g_{n+1} - g_{n-1}}{g_n} - \mu = \frac{g_{n+1} - g_{n-1}}{g_n} - \frac{g_n - g_{n-2}}{g_{n-1}}$. Finding a common denominator and using the non-linear recurrence twice, we get

$$\delta = \frac{g_{n+1}g_{n-1} - g_{n-1}^2 - g_n^2 + g_n g_{n-2}}{g_n g_{n-1}}$$

= $\frac{g_n g_{n-2} - g_{n-1}^2 + g_{n+1}g_{n-1} - g_n^2}{g_n g_{n-1}}$
= $\frac{(-1)^{n-1}A + (-1)^n A}{g_n g_{n-1}} = 0.$

The next result follows immediately from Theorem 1.1 and well-known results on linear recurrences.

Corollary 1.2. For initial values $g_1 = a$ and $g_2 = b$, $g_n = \mu g_{n-1} + g_{n-2}$ is a second order linear sequence solution to the non-linear A-Cassini relation $g_{n+1}g_{n-1} = g_n^2 + (-1)^n A$. The growth of this sequence is $\lim_{n\to\infty} \frac{g_n}{g_{n-1}} = \sigma$ where σ is a root of $x^2 - \mu x - 1$

A polynomial in x, y, \ldots and their inverses $\frac{1}{x}, \frac{1}{y}, \ldots$ is called a Laurent polynomial.

Corollary 1.3. For indeterminates a and b the sequence $g_n = \mu g_{n-1} + g_{n-2}$ is a Laurent polynomial in a and b.

MAY 2018

THE FIBONACCI QUARTERLY

Proof. As shown above, g_3 has denominator a. Since μ has denominator ab, the result follows by an easy induction that g_{n+1} has denominator $a^{n-2}b^{n-3}$ for $n \ge 3$.

If a = b = 1, then $\mu = A$; this yields an integer sequence called the standard A-Cassini sequence. If A = 1 then this is the Fibonacci sequence 1, 1, 2, 3,

We now prove the converse to our Corollary 1.2.

Proposition 1.4. Suppose that $g_{n+1} = Mg_n + g_{n-1}$ with non-zero initial values $g_1 = a$, $g_2 = b$, and given M. Let $A = a^2 + Mab - b^2$. Then, this sequence satisfies the A-Cassini relation $g_{n+1}g_{n-1} = g_n^2 + (-1)^n A$.

Proof. By the Corollary above, the solution to the A-Cassini relation with $A = a^2 + Mab - b^2$ with initial values $h_1 = a$ and $h_2 = b$ is $h_{n+1} = Mh_n + h_{n-1}$ since $\mu = M$. Thus, $h_n = g_n$ for all n.

Recall that the Fibonacci polynomials are given by $f_1 = 1$, $f_2 = x$, and $f_n = xf_{n-1} + f_{n-2}$ when $n \ge 3$; they are of degree n - 1, see [2]. The first few Fibonacci polynomials are 1, x, $x^2 + 1$, $x(x^2 + 2)$, $x^4 + 3x^2 + 1$.

Theorem 1.5. Let $A = a^2 + Mab - b^2$ for given a, b, and M. Then, the sequence satisfying the A-Cassini relation $g_{n+1}g_{n-1} = g_n^2 + (-1)^n A$ is determined from the Fibonacci polynomial sequence $\{f_n | n \ge 1\}$ as

$$g_{n+2} = bf_{n+1}(M) + af_n(M), \ n \ge 1.$$

Proof. The base cases are:

$$bf_2(M) + af_1 = bM + a = g_3$$

and
$$bf_3(M) + af_2(M) = b(M^2 + 1) + aM = bM^2 + aM + b$$
$$= M(bM + a) + b = Mg_3 + g_2 = g_4.$$

By the induction hypothesis and $g_{n+1} = Mg_n + g_{n-1}$, we obtain

$$g_{n+2} = M(bf_n(M) + af_{n-1}(M)) + bf_{n-1}(M) + af_{n-2}(M)$$

= $b(Mf_n(M) + f_{n-1}(M)) + a(Mf_{n-1}(M) + f_{n-2}(M))$
= $bf_{n+1}(M) + af_n(M).$

Therefore, by induction, the result is true for all $n \ge 1$.

2. Spectrum

We want to determine for a given integer M the possible integer values of A so that $M = \mu$ for some integers a and b. We call this the A-Cassini spectrum of M denoted ASpec(M).

Let M be an integer and A = 1. Then for a = 1 and b = M we have $\mu = M$. Therefore, $1 \in ASpec(M)$ for any integer M.

Let M = 1. In this case, Cassini sequences are generalized Fibonacci sequences. If A = 1, the equation $\mu = M$ becomes $a^2 + ab - b^2 = 1$. The values a = b = 1 satisfy this equation. This gives the Fibonacci sequence. So, $1 \in ASpec(1)$. If A = 5, we obtain the Lucas sequence as an example. Thus, $5 \in ASpec(1)$. However, A = 2 is not possible. The solution of the equation $b^2 - ab - a^2 + 2 = 0$ is $b = \frac{1}{2}(a \pm \sqrt{5a^2 - 8})$; $5a^2 - 8 = c^2$ for some integer cis impossible, considering the equation mod 5. Hence, $2 \notin ASpec(1)$. Similarly, A = 3 is impossible. However, for A = 4, we get the doubled Fibonacci sequence. By similar arguments,

any $A = \pm 2 \mod 5$ is impossible. When A = 11, we obtain a = 1 and b = 4 which is the Cassini-Fibonacci sequence 1, 4, 5, 9, 14, 23, ... So, $11 \in ASpec(1)$.

In general, the equation $5a^2 - 4A = c^2$ or $\frac{c+\sqrt{5}a}{2}\frac{c-\sqrt{5}a}{2} = -A$ (that is -A is a norm from the ring $\mathbf{Z}[\frac{1+\sqrt{5}}{2}]$).

For a given integer A, the possible integers M for which $b^2 - a^2 + A = Mab$ has integer solutions a and b is denoted MSpec(A).

Let A = 1 and M be any integer. The equation $\mu = M$ becomes $b^2 - a^2 + 1 = Mab$. An integer solution to this equation is a = 1 and b = M. Therefore, MSpec(1) contains all integers.

For A = 5, consider $b^2 - a^2 + 5 = Mab$. It is easy to see that $-5, -4, -1, 0, 1, 4, 5 \in MSpec(5)$.

For a given (M, A) with $A \in ASpec(M)$ the set of integers (a, b) which yield integer Cassini sequences is denoted PSpec(M, A), called the parameter spectrum.

If M = 1 and A = 1, what are all integer solutions to $b^2 - ab - a^2 = -1$. This is a familiar Pell's equation. Complete the square to get $(b - a/2)^2 - 5a^2/4 = -1$; so all solutions can be determined using the odd powers k of the fundamental unit $u = \frac{1+\sqrt{5}}{2}$ via $\frac{(2b-a)+\sqrt{5}a}{2} = u^k$.

References

- [1] R. C. Alperin, Integer sequences generated by $x_{n+1} = (x_n^2 + A)/x_{n-1}$, The Fibonacci Quarterly, **49.4** (2011), 362–365
- [2] V. E. Hoggatt and M. Bicknell, Roots of Fibonacci polynomials, The Fibonacci Quarterly, 11.3 (1973), 271–274.

MSC2010: 11B39, 11D09

DEPARTMENT OF MATHEMATICS, SAN JOSE STATE UNIVERSITY, SAN JOSE, CA 95192 E-mail address: rcalperin@gmail.com