POLYNOMIAL EXTENSIONS OF THE LUCAS AND GINSBURG IDENTITIES REVISITED: ADDITIONAL DIVIDENDS I

THOMAS KOSHY

ABSTRACT. In [11], we extended the fascinating identity

$$g_{n+k}^3 - (-1)^k l_k g_n^3 + (-1)^k g_{n-k}^3 = \begin{cases} f_k f_{2k} g_{3n} & \text{if } g_n = f_n \\ (x^2 + 4) f_k f_{2k} g_{3n} & \text{if } g_n = l_n, \end{cases}$$

to Jacobsthal, Vieta, and Chebyshev polynomial families [10]. We now extract from this identity additional Fibonacci, Lucas, Jacobsthal, Vieta, and Chebyshev dividends.

1. INTRODUCTION

In [11], we introduced the extended gibonacci polynomials $g_n(x)$ using the recurrence $g_{n+2}(x) = a(x)g_{n+1}(x) + b(x)g_n(x)$, where x is an arbitrary complex variable; $a(x), b(x), g_0(x)$, and $g_1(x)$ are arbitrary complex polynomials; and $n \ge 0$. We then presented Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev polynomials of both types as subfamilies of the extended gibonacci family; they are denoted by $f_n(x), l_n(x), p_n(x), q_n(x), J_n(x), j_n(x), v_n(x), T_n(x), and U_n(x)$, respectively [1, 4, 5, 6, 7, 8, 9, 12, 11, 15]. These subfamilies are closely linked by the relationships in Table 1, where $i = \sqrt{-1}$ [6, 12,

15, 16].

$$\begin{array}{c|cccc} J_n(x) &=& x^{(n-1)/2} f_n(1/\sqrt{x}) \\ V_n(x) &=& i^{n-1} f_n(-ix) \\ V_n(x) &=& U_{n-1}(x/2) \\ xV_n(x^2+2) &=& f_{2n}(x) \\ J_{2n}(x) &=& x^{n-1} V_n\left(\frac{2x+1}{x}\right) \end{array} \begin{array}{c|ccccc} j_n(x) &=& x^n/2 l_n(1/\sqrt{x}) \\ v_n(x) &=& x^n/2 l_n(1/\sqrt{x}) \\ v_n(x) &=& x^n l_n(-ix) \\ v_n$$

Table 1: Relationships Among the Gibonacci Subfamilies

The *n*th Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal-Lucas numbers are given by $F_n = f_n(1)$, $L_n = l_n(1)$, $P_n = p_n(1)$, $2Q_n = q_n(1)$, $J_n = J_n(2)$, and $j_n = j_n(2)$, respectively.

In the interest of brevity and convenience, we omit the argument in the functional notation, when there is no ambiguity; so g_n will mean $g_n(x)$. Again, for brevity, we let $g_n = f_n$ or l_n ; $b_n = p_n$ or q_n ; $c_n = J_n(x)$ or $j_n(x)$; $d_n = V_n(x)$ or $v_n(x)$; and $e_n = T_n(x)$ or $U_n(x)$; and correspondingly, we let $G_n = F_n$ or L_n ; $B_n = P_n$ or Q_n ; $C_n = J_n$ or j_n ; and $d_n = V_n$ or v_n . We also omit a lot of basic algebra.

2. ADDITIONAL DIVIDENDS

In [10], we established the identity

$$g_{n+k}^{3} - (-1)^{k} l_{k} g_{n}^{3} + (-1)^{k} g_{n-k}^{3} = \begin{cases} f_{k} f_{2k} g_{3n} & \text{if } g_{n} = f_{n} \\ \Delta^{2} f_{k} f_{2k} g_{3n} & \text{if } g_{n} = l_{n}, \end{cases}$$
(2.1)

VOLUME 56, NUMBER 2

where $\Delta^2 = x^2 + 4$.

The next two theorems are direct consequences of this identity, and form the cornerstone of the discourse.

Theorem 2.1.

$$f_k f_{2k} g_{n+k+1}^3 = f_{k+1} f_{2k+2} g_{n+k}^3 - (-1)^k (f_k f_{2k} l_{k+1} + f_{k+1} f_{2k+2} l_k) g_n^3 + (-1)^k f_{k+1} f_{2k+2} g_{n-k}^3 + (-1)^k f_k f_{2k} g_{n-k-1}^3.$$
(2.2)

Proof. Suppose $g_n = l_n$. It then follows from identity (2.1) that

$$l_{n+k}^{3} - (-1)^{k} l_{k} l_{n}^{3} + (-1)^{k} l_{n-k}^{3} = \Delta^{2} f_{k} f_{2k} l_{3n}$$
(2.3)

$$l_{n+k+1}^{3} + (-1)^{k} l_{k+1} l_{n}^{3} - (-1)^{k} l_{n-k-1}^{3} = \Delta^{2} f_{k+1} f_{2k+2} l_{3n}.$$
 (2.4)

Multiplying equation (2.3) with $f_{k+1}f_{2k+2}$ and equation (2.4) with f_kf_{2k} , we get

$$f_{k+1}f_{2k+2}\left[l_{n+k}^3 - (-1)^k l_k l_n^3 + (-1)^k l_{n-k}^3\right] = \Delta^2 f_k f_{k+1} f_{2k} f_{2k+2} l_{3n};$$
(2.5)

$$f_k f_{2k} \left[l_{n+k+1}^3 + (-1)^k l_{k+1} l_n^3 - (-1)^k l_{n-k-1}^3 \right] = \Delta^2 f_k f_{k+1} f_{2k} f_{2k+2} l_{3n}, \tag{2.6}$$

respectively.

Equating the two left sides yields

$$f_{k+1}f_{2k+2}\left[l_{n+k}^3 - (-1)^k l_k l_n^3 + (-1)^k l_{n-k}^3\right] = f_k f_{2k} \left[l_{n+k+1}^3 + (-1)^k l_{k+1} l_n^3 - (-1)^k l_{n-k-1}^3\right].$$

Regrouping the terms, we get the desired identity when $g_n = l_n$.

Identity (2.2) with $g_n = f_n$ follows by a similar derivation.

Since $f_1 = 1$, $f_2 = x = l_1$, and $f_4 = x^3 + 2x = xl_2$, the next result follows from equation (2.2) by letting k = 1.

Corollary 2.2.

$$g_{n+2}^3 = x(x^2+2)g_{n+1}^3 + (x^2+1)(x^2+2)g_n^3 - x(x^2+2)g_{n-1}^3 - g_{n-2}^3.$$
 (2.7)

Identity (2.7) implies that the cubes of Fibonacci and Lucas polynomials satisfy the fourthorder recurrence

$$a_{n+2} = x(x^2+2)a_{n+1} + (x^2+1)(x^2+2)a_n - x(x^2+2)a_{n-1} - a_{n-2},$$

where $a_n = a_n(x)$ and $n \ge 2$. When $a_n = f_n^3$, $a_0 = 0$, $a_1 = 1$, $a_2 = x^3$, and $a_3 = (x^2 + 1)^3$; and when $a_n = l_n^3$, $a_0 = 8$, $a_1 = x^3$, $a_2 = (x^2 + 2)^3$, and $a_3 = (x^3 + 3x)^3$.

Consequently, the cubes of Pell and Pell-Lucas polynomials satisfy the recurrence

$$b_{n+2} = 4x(2x^2+1)b_{n+1} + 2(2x^2+1)(4x^2+1)b_n - 4x(2x^2+1)b_{n-1} - b_{n-2},$$

where $b_n = b_n(x)$ and $n \ge 2$. When $b_n = p_n^3$, $b_0 = 0$, $b_1 = 1$, $b_2 = 8x^3$, and $b_3 = (4x^2 + 1)^3$; and when $b_n = q_n^3$, $b_0 = 8$, $b_1 = 8x^3$, $b_2 = (4x^2 + 2)^3$, and $b_3 = (8x^3 + 6x)^3$. It also follows from Corollary 2.2 that

It also follows from Corollary 2.2 that

$$\begin{aligned} G_{n+2}^3 &= 3G_{n+1}^3 + 6G_n^3 - 3G_{n-1}^3 - G_{n-2}^3 \\ b_{n+2}^3 &= 4x(2x^2+1)b_{n+1}^3 + 2(2x^2+1)(4x^2+1)b_n^3 - 4x(2x^2+1)b_{n-1}^3 - b_{n-2}^3 \\ B_{n+2}^3 &= 12B_{n+1}^3 + 30B_n^3 - 12B_{n-1}^3 - B_{n-2}^3 \\ g_{n+2}^3 + g_{n-2}^3 &\equiv 0 \pmod{x^2+2} \\ B_{n+2}^3 + B_{n-2}^3 &\equiv 6B_n^2 \pmod{12}. \end{aligned}$$
(2.8)

MAY 2018

THE FIBONACCI QUARTERLY

Identity (2.8) with $G_n = F_n$ appears in [17].

The next theorem paves the way for extracting additional dividends from (2.1).

Theorem 2.3.

$$f_k f_{2k} g_{n+k+1}^3 + f_{k+1} f_{2k+2} g_{n+k}^3 + (-1)^k (f_k f_{2k} l_{k+1} - f_{k+1} f_{2k+2} l_k) g_n^3$$

$$+ (-1)^k f_{k+1} f_{2k+2} g_{n-k}^3 - (-1)^k f_k f_{2k} g_{n-k-1}^3 = \begin{cases} 2f_k f_{k+1} f_{2k} f_{2k+2} g_{3n} & \text{if } g_n = f_n \\ 2\Delta^2 f_k f_{k+1} f_{2k} f_{2k+2} g_{3n} & \text{if } g_n = l_n. \end{cases}$$

$$(2.9)$$

Proof. Adding equations (2.5) and (2.6), we get identity (2.9) when $g_n = l_n$. A similar technique yields the identity with $g_n = f_n$.

The following result is a direct consequence of this theorem.

Corollary 2.4.

$$g_{n+2}^{3} + x(x^{2}+2)g_{n+1}^{3} + (x^{2}-1)(x^{2}+2)g_{n}^{3} - x(x^{2}+2)g_{n-1}^{3} + g_{n-2}^{3} = \begin{cases} 2x^{2}(x^{2}+2)g_{3n} & \text{if } g_{n} = f_{n} \\ 2x^{2}\Delta^{2}(x^{2}+2)g_{3n} & \text{if } g_{n} = l_{n}. \end{cases}$$
(2.10)

It follows from equation (2.10) that

$$G_{n+2}^3 + 3G_{n+1}^3 - 3G_{n-1}^3 + G_{n-2}^3 = \begin{cases} 6G_{3n} & \text{if } G_n = F_n \\ 30G_{3n} & \text{if } G_n = L_n; \end{cases}$$
(2.11)

$$\begin{split} b_{n+2}^3 + 4x(2x^2+1)b_{n+1}^3 + 2(2x^2+1)(4x^2-1)b_n^3 \\ &- 4x(2x^2+1)b_{n-1}^3 + b_{n-2}^3 = \begin{cases} 16x^2(2x^2+1)b_{3n} & \text{if } b_n = p_n \\ 64x^2(x^2+1)(2x^2+1)b_{3n} & \text{if } b_n = q_n; \end{cases} \\ B_{n+2}^3 + 12B_{n+1}^3 + 18B_n^3 - 12B_{n-1}^3 + B_{n-2}^3 = \begin{cases} 48B_{3n} & \text{if } B_n = P_n \\ 96B_{3n} & \text{if } B_n = Q_n. \end{cases} \end{split}$$

Identities (2.8) and (2.11) together imply that

$$G_{n+1}^3 + G_n^3 - G_{n-1}^3 = \begin{cases} G_{3n} & \text{if } G_n = F_n \\ 5G_{3n} & \text{if } G_n = L_n. \end{cases}$$
(2.12)

The Fibonacci version of this identity appears in Dickson's classic work, *History of the Theory of Numbers*, Vol. 1 [2, 8, 10, 11, 13, 14]; and Long discovered its Lucas counterpart [10, 13].

Identity (2.11), coupled with (2.12), gives yet another interesting cubic identity:

$$G_{n+2}^3 + 2G_{n+1}^3 - G_n^3 - 2G_{n-1}^3 + G_{n-2}^3 = \begin{cases} 5G_{3n} & \text{if } G_n = F_n \\ 25G_{3n} & \text{if } G_n = L_n. \end{cases}$$
(2.13)

It follows by identities (2.11), (2.12), and (2.13) that

$$G_{n+2}^3 - 3G_n^3 + G_{n-2}^3 = \begin{cases} 3G_{3n} & \text{if } G_n = F_n \\ 15G_{3n} & \text{if } G_n = L_n. \end{cases}$$
(2.14)

This result, with $G_n = F_n$, is Ginsburg's identity [3, 10, 11].

VOLUME 56, NUMBER 2

POLYNOMIAL EXTENSIONS OF THE LUCAS AND GINSBURG IDENTITIES

3. ADDITIONAL IMPLICATIONS

Next, we investigate the implications of identities (2.7) and (2.10) to the Jacobsthal, Vieta, and Chebyshev subfamilies. To this end, the relationships in Table 1 will come in handy.

3.1. Jacobsthal Byproducts. Since $J_n(x) = x^{(n-1)/2} f_n(u)$, it follows from identity (2.7) that

$$f_{n+2}^3 = \frac{2x+1}{x\sqrt{x}}f_{n+1}^3 + \frac{(x+1)(2x+1)}{x^2}f_n^3 - \frac{2x+1}{x\sqrt{x}}f_{n-1}^3 - f_{n-2}^3,$$

where $u = 1/\sqrt{x}$ and $f_n = f_n(u)$. Multiplying this equation with $x^{3(n+1)/2}$ yields

$$J_{n+2}^{3}(x) = (2x+1)J_{n+1}^{3}(x) + x(x+1)(2x+1)J_{n}^{3}(x) - x^{3}(2x+1)J_{n-1}^{3}(x) - x^{6}J_{n-2}^{3}(x).$$

Likewise, since $j_n(x) = x^{n/2} l_n(u)$, it follows from identity (2.7) that

$$j_{n+2}^3(x) = (2x+1)j_{n+1}^3(x) + x(x+1)(2x+1)j_n^3(x) - x^3(2x+1)j_{n-1}^3(x) - x^6j_{n-2}^3(x).$$

Combining these two equations, we get the cubic identity

$$c_{n+2}^3 = (2x+1)c_{n+1}^3 + x(x+1)(2x+1)c_n^3 - x^3(2x+1)c_{n-1}^3 - x^6c_{n-2}^3.$$
 (3.1)

Consequently, the cubes of Jacobsthal and Jacobsthal-Lucas polynomials satisfy the recurrence

$$z_{n+2} = (2x+1)z_{n+1} + x(x+1)(2x+1)z_n - x^3(2x+1)z_{n-1} - x^6z_{n-2}$$

where $z_n = z_n(x) = c_n^3$; when $z_n = J_n^3(x)$, $z_0 = 0$, $z_1 = 1 = z_2$, and $z_3 = (x+1)^3$; and when $z_n = j_n^3(x)$, $z_0 = 8$, $z_1 = 1$, $z_2 = (2x+1)^3$, and $z_3 = (3x+1)^3$.

Identity (3.1) implies that

$$C_{n+2}^{3} = 5C_{n+1}^{3} + 30C_{n}^{3} - 40C_{n-1}^{3} - 64C_{n-2}^{3}$$

$$c_{n+2}^{3} + x^{6}c_{n-2}^{3} \equiv 0 \pmod{2x+1}$$

$$C_{n+2}^{3} \equiv C_{n-2}^{3} \pmod{5}.$$
(3.2)

Identity (2.10) also has Jacobsthal consequences. Replacing x with $1/\sqrt{x}$ and multiplying both sides of the resulting equation with $x^{3(n+1)/2}$ yields

$$c_{n+2}^{3} + (2x+1)c_{n+1}^{3} - x(x-1)(2x+1)c_{n}^{3}$$

$$- x^{3}(2x+1)c_{n-1}^{3} + x^{6}c_{n-2}^{3} = \begin{cases} 2(2x+1)c_{3n} & \text{if } c_{n} = J_{n}(x) \\ 2(2x+1)(4x+1)c_{3n} & \text{if } c_{n} = j_{n}(x). \end{cases}$$

$$(3.3)$$

Consequently,

$$C_{n+2}^3 + 5C_{n+1}^3 - 10C_n^3 - 40C_{n-1}^3 + 64C_{n-2}^3 = \begin{cases} 10C_{3n} & \text{if } C_n = J_n \\ 90C_{3n} & \text{if } C_n = j_n. \end{cases}$$
(3.4)

Identity (3.4), coupled with (3.2), implies

$$C_{n+1}^{3} + 2C_{n}^{3} - 8C_{n-1}^{3} = \begin{cases} C_{3n} & \text{if } C_{n} = J_{n} \\ 9C_{3n} & \text{if } C_{n} = j_{n}, \end{cases}$$
(3.5)

as in [11].

It follows by identities (3.4) and (3.5) that

$$C_{n+2}^3 + 4C_{n+1}^3 - 12C_n^3 - 32C_{n-1}^3 + 64C_{n-2}^3 = \begin{cases} 9C_{3n} & \text{if } C_n = J_n \\ 81C_{3n} & \text{if } C_n = j_n \end{cases}$$

MAY 2018

THE FIBONACCI QUARTERLY

Consequently, $C_{n+2}^3 \equiv C_{3n} \pmod{4}$. Next, we pursue the implications of Corollaries 2.2 and 2.4 to the Vieta family.

3.2. Vieta Byproducts. Since $V_n(x) = i^{n-1} f_n(-ix)$, replace x with -ix in identity (2.7) and then multiply the resulting equation with $i^{3(n+1)}$. This yields

$$V_{n+2}^3 = x(x^2 - 2)V_{n+1}^3 - (x^2 - 1)(x^2 - 2)V_n^3 + x(x^2 - 2)V_{n-1}^3 - V_{n-2}^3$$

Using the link $v_n(x) = i^n l_n(-ix)$, it follows likewise from (2.7) that

$$v_{n+2}^3 = x(x^2 - 2)v_{n+1}^3 - (x^2 - 1)(x^2 - 2)v_n^3 + x(x^2 - 2)v_{n-1}^3 - v_{n-2}^3.$$

Thus,

$$d_{n+2}^3 = x(x^2 - 2)d_{n+1}^3 - (x^2 - 1)(x^2 - 2)d_n^3 + x(x^2 - 2)d_{n-1}^3 - d_{n-2}^3.$$
 (3.6)

Identity (2.10) similarly yields

$$d_{n+2}^{3} + Axd_{n+1}^{3} - A(x^{2}+1)d_{n}^{3} + Axd_{n-1}^{3} + d_{n-2}^{3} = \begin{cases} 2Ax^{2}d_{3n} & \text{if } d_{n} = V_{n}(x) \\ 2Ax^{2}(x^{2}-4)d_{3n} & \text{if } d_{n} = v_{n}(x), \end{cases}$$
(3.7)

where $A = x^2 - 2$.

3.2.1. Fibonacci and Lucas Implications. Identities (3.6) and (3.7) have Fibonacci and Lucas implications. Using the relationships $xV_n(x^2+2) = f_{2n}$ and $xv_n(x^2+2) = l_{2n}$, we have $xd_n(x^2+2) = g_{2n}$. It then follows from identity (3.6) that

$$g_{2n+4}^3 = (x^2+2)(x^4+4x^2+2)g_{2n+2}^3 - (x^2+1)(x^2+3)(x^4+4x^2+2)g_{2n}^3 + (x^2+2)(x^4+4x^2+2)g_{2n-2}^3 - g_{2n-4}^3.$$
(3.8)

This implies

$$\begin{split} G^3_{2n+4} &= 21G^3_{2n+2} - 56G^3_{2n} + 21G^3_{2n-2} - G^3_{2n-4} \\ b^3_{2n+4} &= 4(2x^2+1)(8x^4+8x^2+1)b^3_{2n+2} - 2(4x^2+1)(4x^2+3)(8x^4+8x^2+1)b^3_{2n} \\ &\quad + 4(2x^2+1)(8x^4+8x^2+1)b^3_{2n-2} - b^3_{2n-4} \\ B^3_{2n+4} &= 204B^3_{2n+2} - 1190B^3_{2n} + 204B^3_{2n-2} - B^3_{2n-4} \\ g^3_{2n+4} + g^3_{2n-4} &\equiv 0 \pmod{x^4+4x^2+2}. \end{split}$$

With $E = x^{4} + 4x^{2} + 2$, identity (3.7) yields

$$g_{2n+4}^3 + E(x^2 + 2)g_{2n+2}^3 - E(E+3)g_{2n}^3$$

$$+ E(x^2 + 2)g_{2n-2}^3 + g_{2n-4}^3 = \begin{cases} 2Ex^2(x^2 + 2)^2g_{6n} & \text{if } g_n = f_n \\ 2Ex^4(x^2 + 2)^2(x^2 + 4)g_{6n} & \text{if } g_n = l_n. \end{cases}$$

$$(3.9)$$

VOLUME 56, NUMBER 2

Consequently,

$$\begin{split} G^3_{2n+4} + 21G^3_{2n+2} - 70G^3_{2n} + 21G^3_{2n-2} + G^3_{2n-4} &= \begin{cases} 126G_{6n} & \text{if } G_n = F_n \\ 630G_{6n} & \text{if } G_n = L_n; \end{cases} \\ b^3_{2n+4} + 4F(2x^2+1)b^3_{2n+2} - 2F(16x^4+16x^2+5)b^3_{2n} \\ &+ 4F(2x^2+1)b^3_{2n-2} + b^3_{2n-4} = \begin{cases} 64Fx^2(2x^2+1)^2b_{6n} & \text{if } b_n = p_n \\ 256Fx^2(x^2+1)(2x^2+1)^2b_{6n} & \text{if } b_n = q_n; \end{cases} \\ B^3_{2n+4} + 204B^3_{2n+2} - 1258B^3_{2n} + 204B^3_{2n-2} + B^3_{2n-4} = \begin{cases} 9,792B_{6n} & \text{if } B_n = P_n \\ 19,584B_{6n} & \text{if } B_n = Q_n, \end{cases} \end{split}$$

where $F = 8x^4 + 8x^2 + 1$.

3.2.2. Jacobsthal Implications. As can be predicted, identities (3.6) and (3.7), together with the relationships $J_{2n}(x) = x^{n-1}V_n(u)$ and $j_{2n}(x) = x^n v_n(u)$, have Jacobsthal consequences, where $u = \frac{2x+1}{x}$. To begin with, it follows from identity (3.6) that $x^4d_{n+2}^3 = x(2x+1)(2x^2+4x+1)d_{n+1}^3 - (2x^2+4x+1)(3x^2+4x+1)d_n^3 + x(2x+1)(2x^2+4x+1)d_{n-1}^3 - x^4d_{n-2}^3$, (3.10)

where $d_n = d_n(u)$.

Using the above Vieta-Jacobsthal links, this yields the Jacobsthal identity

$$\begin{split} c^3_{2n+4} &= (2x+1)(2x^2+4x+1)c^3_{2n+2} - x^2(2x^2+4x+1)(3x^2+4x+1)c^3_{2n} \\ &+ x^6(2x+1)(2x^2+4x+1)c^3_{2n-2} - x^{12}c^3_{2n-4}. \end{split}$$

This implies

$$C_{2n+4}^3 = 85C_{2n+2}^3 - 1428C_{2n}^3 + 5440C_{2n-2}^3 - 4096C_{2n-4}^3.$$
(3.11)

A similar derivation from identity (3.7) yields

$$x^{4}d_{n+2}^{3} + Ax(2x+1)d_{n+1}^{3}$$
$$- A(5x^{2}+4x+1)d_{n}^{3} + Ax(2x+1)d_{n-1}^{3} + x^{4}d_{n-2}^{3} = \begin{cases} 2A(2x+1)^{2}d_{3n} & \text{if } d_{n} = V_{n} \\ 2A(4x+1)(2x+1)^{2}d_{3n} & \text{if } d_{n} = v_{n}, \end{cases}$$

where $d_n = d_n(u)$ and $A = 2x^2 + 4x + 1$. Consequently,

$$c_{2n+4}^3 + A(2x+1)c_{2n+2}^3 - Ax^2(5x^2+4x+1)c_{2n}^3 + Ax^6(2x+1)c_{2n-2}^3 + x^{12}c_{2n-4}^3 = \begin{cases} 2A(2x+1)^2c_{6n} & \text{if } c_n = J_n(x) \\ 2A(4x+1)(2x+1)^2c_{6n} & \text{if } c_n = j_n(x). \end{cases}$$

In particular, we have

$$C_{2n+4}^3 + 85C_{2n+2}^3 - 1972C_{2n}^3 + 5440C_{2n-2}^3 - 4096C_{2n-4}^3 = \begin{cases} 850C_{6n} & \text{if } C_n = J_n \\ 7,650C_{6n} & \text{if } C_n = j_n. \end{cases}$$
(3.12)

Finally, we present the consequences of Corollaries 2.2 and 2.4 to the Chebyshhev family.

MAY 2018

THE FIBONACCI QUARTERLY

3.3. Chebyshev Byproducts. Since $U_{n-1}(x) = V_n(2x)$ and $2T_n(x) = v_n(2x)$, it follows from identities (3.6) and (3.7) that

$$e_{n+2}^3 = 4x(2x^2 - 1)e_{n+1}^3 - 2(2x^2 - 1)(4x^2 - 1)e_n^3 + 4x(2x^2 - 1)e_{n-1}^3 - e_{n-2}^3.$$

Likewise,

$$e_{n+2}^{3} + 4Bxe_{n+1}^{3} - 2B(4x^{2}+1)e_{n}^{3} + 4Bxe_{n-1}^{3} + e_{n-2}^{3} = \begin{cases} 16Bx^{2}e_{3n+2} & \text{if } e_{n} = U_{n}(x) \\ 64Bx^{2}(x^{2}-1)e_{3n} & \text{if } e_{n} = T_{n}(x), \end{cases}$$

where $B = 2x^2 - 1$.

4. Acknowledgment

The author thanks Z. Gao for his computational help, and to the reviewer for helpful suggestions and comments that enhanced the exposition of the original version.

References

- [1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.5 (1970), 407–420.
- [2] L. E. Dickson, History of the Theory of Numbers, Vol I, Chelsea, New York, 1966.
- [3] J. Ginsburg, A relationship between cubes of Fibonacci numbers, Scripts Mathematica, 1953, 242.
- [4] A. F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly, **34.1** (1996), 40–54.
- [5] A. F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quarterly, 35.2 (1997), 137–148.
- [6] A. F. Horadam, Vieta polynomials, The Fibonacci Quarterly, 40.3 (2002), 223–232.
- [7] A. F. Horadam and Bro. J. M. Mahon, *Pell and Pell-Lucas polynomials*, The Fibonacci Quarterly, 23.1 (1985), 7–20.
- [8] T. Koshy, Fibonacci and Lucas Numbers with Applications, Vol. I, Wiley, New York, 2018.
- [9] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
- [10] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities, The Fibonacci Quarterly, 52.2 (2014), 141–147.
- T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities: Revisited, The Fibonacci Quarterly, 55.2 (2017), 147–151.
- [12] T. Koshy, Vieta polynomials and their close relatives, The Fibonacci Quarterly, 54.2 (2016), 141–148.
- [13] C. T. Long, Discovering Fibonacci identities, The Fibonacci Quarterly, 24.2 (1986), 160–166.
- [14] R. S. Melham, Families of identities involving sums of powers of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, 37.4 (1999), 315–319.
- [15] N. Robbins, Vieta's triangular array and a related family of polynomials, International Journal of Mathematics and Mathematical Sciences, 14 (1991), 239–244.
- [16] A. G. Shannon and A. F. Horadam, Some relationships among Vieta, Morgan-Voyce and Jacobsthal polynomials, Applications of Fibonacci Numbers (ed. F. T. Howard), Vol. 8, Kluwer, Dordrecht, 1999, 307–323.
- [17] D. Zeitlin and F. D. Parker, Problem H-14, The Fibonacci Quarterly, 1.2 (1963), 54.

MSC2010: 11B37, 11B39, 11B50

Department of Mathematics, Framingham State University, Framingham, Massachusetts 01701, USA

E-mail address: tkoshy@emeriti.framingham.edu