POLYNOMIAL EXTENSIONS OF THE LUCAS AND GINSBURG IDENTITIES REVISITED: ADDITIONAL DIVIDENDS I

THOMAS KOSHY

Abstract. In [11], we extended the fascinating identity

$$
g_{n+k}^{3}-(-1)^{k} l_{k} g_{n}^{3}+(-1)^{k} g_{n-k}^{3}= \begin{cases}f_{k} f_{2 k} g_{3 n} & \text { if } g_{n}=f_{n} \\ \left(x^{2}+4\right) f_{k} f_{2 k} g_{3 n} & \text { if } g_{n}=l_{n}\end{cases}
$$

to Jacobsthal, Vieta, and Chebyshev polynomial families [10]. We now extract from this identity additional Fibonacci, Lucas, Jacobsthal, Vieta, and Chebyshev dividends.

1. INTRODUCTION

In [11], we introduced the extended gibonacci polynomials $g_{n}(x)$ using the recurrence $g_{n+2}(x)=$ $a(x) g_{n+1}(x)+b(x) g_{n}(x)$, where x is an arbitrary complex variable; $a(x), b(x), g_{0}(x)$, and $g_{1}(x)$ are arbitrary complex polynomials; and $n \geq 0$. We then presented Fibonacci, Lucas, Pell, PellLucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev polynomials of both types as subfamilies of the extended gibonacci family; they are denoted by $f_{n}(x), l_{n}(x), p_{n}(x)$, $q_{n}(x), J_{n}(x), j_{n}(x), V_{n}(x), v_{n}(x), T_{n}(x)$, and $U_{n}(x)$, respectively [1, 4, 5, 6, 7, 8, 9, 12, 11, 15].

These subfamilies are closely linked by the relationships in Table 1 , where $i=\sqrt{-1}[6,12$, $15,16]$.

$$
\begin{aligned}
& \begin{array}{c||l}
J_{n}(x) & =x^{(n-1) / 2} f_{n}(1 / \sqrt{x}) \\
j_{n}(x)=x^{n / 2} l_{n}(1 / \sqrt{x}) \\
\hline
\end{array} \\
& V_{n}(x)=i^{n-1} f_{n}(-i x) \\
& v_{n}(x)=i^{n} l_{n}(-i x) \\
& V_{n}(x)=U_{n-1}(x / 2) \\
& v_{n}(x)=2 T_{n}(x / 2) \\
& x V_{n}\left(x^{2}+2\right)=f_{2 n}(x) \\
& x v_{n}\left(x^{2}+2\right)=l_{2 n}(x) \\
& J_{2 n}(x)=x^{n-1} V_{n}\left(\frac{2 x+1}{x}\right) \\
& j_{2 n}(x)=x^{n} v_{n}\left(\frac{2 x+1}{x}\right)
\end{aligned}
$$

Table 1: Relationships Among the Gibonacci Subfamilies
The nth Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal-Lucas numbers are given by $F_{n}=f_{n}(1), L_{n}=l_{n}(1), P_{n}=p_{n}(1), 2 Q_{n}=q_{n}(1), J_{n}=J_{n}(2)$, and $j_{n}=j_{n}(2)$, respectively.

In the interest of brevity and convenience, we omit the argument in the functional notation, when there is no ambiguity; so g_{n} will mean $g_{n}(x)$. Again, for brevity, we let $g_{n}=f_{n}$ or $l_{n} ; b_{n}=p_{n}$ or $q_{n} ; c_{n}=J_{n}(x)$ or $j_{n}(x) ; d_{n}=V_{n}(x)$ or $v_{n}(x)$; and $e_{n}=T_{n}(x)$ or $U_{n}(x)$; and correspondingly, we let $G_{n}=F_{n}$ or $L_{n} ; B_{n}=P_{n}$ or $Q_{n} ; C_{n}=J_{n}$ or j_{n}; and $d_{n}=V_{n}$ or v_{n}. We also omit a lot of basic algebra.

2. ADDITIONAL DIVIDENDS

In [10], we established the identity

$$
g_{n+k}^{3}-(-1)^{k} l_{k} g_{n}^{3}+(-1)^{k} g_{n-k}^{3}= \begin{cases}f_{k} f_{2 k} g_{3 n} & \text { if } g_{n}=f_{n} \tag{2.1}\\ \Delta^{2} f_{k} f_{2 k} g_{3 n} & \text { if } g_{n}=l_{n}\end{cases}
$$

where $\Delta^{2}=x^{2}+4$.
The next two theorems are direct consequences of this identity, and form the cornerstone of the discourse.

Theorem 2.1.

$$
\begin{align*}
f_{k} f_{2 k} g_{n+k+1}^{3}= & f_{k+1} f_{2 k+2} g_{n+k}^{3}-(-1)^{k}\left(f_{k} f_{2 k} l_{k+1}+f_{k+1} f_{2 k+2} l_{k}\right) g_{n}^{3} \\
& +(-1)^{k} f_{k+1} f_{2 k+2} g_{n-k}^{3}+(-1)^{k} f_{k} f_{2 k} g_{n-k-1}^{3} . \tag{2.2}
\end{align*}
$$

Proof. Suppose $g_{n}=l_{n}$. It then follows from identity (2.1) that

$$
\begin{align*}
l_{n+k}^{3}-(-1)^{k} l_{k} l_{n}^{3}+(-1)^{k} l_{n-k}^{3} & =\Delta^{2} f_{k} f_{2 k} l_{3 n} \tag{2.3}\\
l_{n+k+1}^{3}+(-1)^{k} l_{k+1} l_{n}^{3}-(-1)^{k} l_{n-k-1}^{3} & =\Delta^{2} f_{k+1} f_{2 k+2} l_{3 n} . \tag{2.4}
\end{align*}
$$

Multiplying equation (2.3) with $f_{k+1} f_{2 k+2}$ and equation (2.4) with $f_{k} f_{2 k}$, we get

$$
\begin{align*}
f_{k+1} f_{2 k+2}\left[l_{n+k}^{3}-(-1)^{k} l_{k} l_{n}^{3}+(-1)^{k} l_{n-k}^{3}\right] & =\Delta^{2} f_{k} f_{k+1} f_{2 k} f_{2 k+2} l_{3 n} ; \tag{2.5}\\
f_{k} f_{2 k}\left[l_{n+k+1}^{3}+(-1)^{k} l_{k+1} l_{n}^{3}-(-1)^{k} l_{n-k-1}^{3}\right] & =\Delta^{2} f_{k} f_{k+1} f_{2 k} f_{2 k+2} l_{3 n}, \tag{2.6}
\end{align*}
$$

respectively.
Equating the two left sides yields

$$
f_{k+1} f_{2 k+2}\left[l_{n+k}^{3}-(-1)^{k} l_{k} l_{n}^{3}+(-1)^{k} l_{n-k}^{3}\right]=f_{k} f_{2 k}\left[l_{n+k+1}^{3}+(-1)^{k} l_{k+1} l_{n}^{3}-(-1)^{k} l_{n-k-1}^{3}\right] .
$$

Regrouping the terms, we get the desired identity when $g_{n}=l_{n}$.
Identity (2.2) with $g_{n}=f_{n}$ follows by a similar derivation.
Since $f_{1}=1, f_{2}=x=l_{1}$, and $f_{4}=x^{3}+2 x=x l_{2}$, the next result follows from equation (2.2) by letting $k=1$.

Corollary 2.2.

$$
\begin{equation*}
g_{n+2}^{3}=x\left(x^{2}+2\right) g_{n+1}^{3}+\left(x^{2}+1\right)\left(x^{2}+2\right) g_{n}^{3}-x\left(x^{2}+2\right) g_{n-1}^{3}-g_{n-2}^{3} . \tag{2.7}
\end{equation*}
$$

Identity (2.7) implies that the cubes of Fibonacci and Lucas polynomials satisfy the fourthorder recurrence

$$
a_{n+2}=x\left(x^{2}+2\right) a_{n+1}+\left(x^{2}+1\right)\left(x^{2}+2\right) a_{n}-x\left(x^{2}+2\right) a_{n-1}-a_{n-2},
$$

where $a_{n}=a_{n}(x)$ and $n \geq 2$. When $a_{n}=f_{n}^{3}, a_{0}=0, a_{1}=1, a_{2}=x^{3}$, and $a_{3}=\left(x^{2}+1\right)^{3}$; and when $a_{n}=l_{n}^{3}, a_{0}=8, a_{1}=x^{3}, a_{2}=\left(x^{2}+2\right)^{3}$, and $a_{3}=\left(x^{3}+3 x\right)^{3}$.

Consequently, the cubes of Pell and Pell-Lucas polynomials satisfy the recurrence

$$
b_{n+2}=4 x\left(2 x^{2}+1\right) b_{n+1}+2\left(2 x^{2}+1\right)\left(4 x^{2}+1\right) b_{n}-4 x\left(2 x^{2}+1\right) b_{n-1}-b_{n-2},
$$

where $b_{n}=b_{n}(x)$ and $n \geq 2$. When $b_{n}=p_{n}^{3}, b_{0}=0, b_{1}=1, b_{2}=8 x^{3}$, and $b_{3}=\left(4 x^{2}+1\right)^{3}$; and when $b_{n}=q_{n}^{3}, b_{0}=8, b_{1}=8 x^{3}, b_{2}=\left(4 x^{2}+2\right)^{3}$, and $b_{3}=\left(8 x^{3}+6 x\right)^{3}$.

It also follows from Corollary 2.2 that

$$
\begin{align*}
G_{n+2}^{3} & =3 G_{n+1}^{3}+6 G_{n}^{3}-3 G_{n-1}^{3}-G_{n-2}^{3} \tag{2.8}\\
b_{n+2}^{3} & =4 x\left(2 x^{2}+1\right) b_{n+1}^{3}+2\left(2 x^{2}+1\right)\left(4 x^{2}+1\right) b_{n}^{3}-4 x\left(2 x^{2}+1\right) b_{n-1}^{3}-b_{n-2}^{3} \\
B_{n+2}^{3} & =12 B_{n+1}^{3}+30 B_{n}^{3}-12 B_{n-1}^{3}-B_{n-2}^{3} \\
g_{n+2}^{3}+g_{n-2}^{3} & \equiv 0 \quad\left(\bmod x^{2}+2\right) \\
B_{n+2}^{3}+B_{n-2}^{3} & \equiv 6 B_{n}^{2} \quad(\bmod 12) .
\end{align*}
$$

THE FIBONACCI QUARTERLY

Identity (2.8) with $G_{n}=F_{n}$ appears in [17].
The next theorem paves the way for extracting additional dividends from (2.1).

Theorem 2.3.

$$
\begin{align*}
& f_{k} f_{2 k} g_{n+k+1}^{3}+f_{k+1} f_{2 k+2} g_{n+k}^{3}+(-1)^{k}\left(f_{k} f_{2 k} l_{k+1}-f_{k+1} f_{2 k+2} l_{k}\right) g_{n}^{3} \tag{2.9}\\
& \quad+(-1)^{k} f_{k+1} f_{2 k+2} g_{n-k}^{3}-(-1)^{k} f_{k} f_{2 k} g_{n-k-1}^{3}= \begin{cases}2 f_{k} f_{k+1} f_{2 k} f_{2 k+2} g_{3 n} & \text { if } g_{n}=f_{n} \\
2 \Delta^{2} f_{k} f_{k+1} f_{2 k} f_{2 k+2} g_{3 n} & \text { if } g_{n}=l_{n} .\end{cases}
\end{align*}
$$

Proof. Adding equations (2.5) and (2.6), we get identity (2.9) when $g_{n}=l_{n}$. A similar technique yields the identity with $g_{n}=f_{n}$.

The following result is a direct consequence of this theorem.

Corollary 2.4.

$$
\begin{align*}
& g_{n+2}^{3}+x\left(x^{2}+2\right) g_{n+1}^{3}+\left(x^{2}-1\right)\left(x^{2}+2\right) g_{n}^{3} \\
& -x\left(x^{2}+2\right) g_{n-1}^{3}+g_{n-2}^{3}= \begin{cases}2 x^{2}\left(x^{2}+2\right) g_{3 n} & \text { if } g_{n}=f_{n} \\
2 x^{2} \Delta^{2}\left(x^{2}+2\right) g_{3 n} & \text { if } g_{n}=l_{n}\end{cases} \tag{2.10}
\end{align*}
$$

It follows from equation (2.10) that

$$
\left.\begin{array}{rl}
G_{n+2}^{3}+3 G_{n+1}^{3}-3 G_{n-1}^{3}+G_{n-2}^{3} & = \begin{cases}6 G_{3 n} & \text { if } G_{n}=F_{n} \\
30 G_{3 n} & \text { if } G_{n}=L_{n} ;\end{cases} \tag{2.11}\\
b_{n+2}^{3}+4 x\left(2 x^{2}+1\right) b_{n+1}^{3}+2\left(2 x^{2}+1\right)\left(4 x^{2}-1\right) b_{n}^{3}
\end{array}\right\} \begin{array}{ll}
16 x^{2}\left(2 x^{2}+1\right) b_{3 n} & \text { if } b_{n}=p_{n} \\
64 x^{2}\left(x^{2}+1\right)\left(2 x^{2}+1\right) b_{3 n} & \text { if } b_{n}=q_{n} ;
\end{array}, ~\left(2 x\left(2 x^{2}+1\right) b_{n-1}^{3}+b_{n-2}^{3}=11, ~\left(\begin{array}{ll}
48 B_{3 n} & \text { if } B_{n}=P_{n} \\
96 B_{3 n} & \text { if } B_{n}=Q_{n} .
\end{array}\right.\right.
$$

Identities (2.8) and (2.11) together imply that

$$
G_{n+1}^{3}+G_{n}^{3}-G_{n-1}^{3}= \begin{cases}G_{3 n} & \text { if } G_{n}=F_{n} \tag{2.12}\\ 5 G_{3 n} & \text { if } G_{n}=L_{n}\end{cases}
$$

The Fibonacci version of this identity appears in Dickson's classic work, History of the Theory of Numbers, Vol. $1[2,8,10,11,13,14]$; and Long discovered its Lucas counterpart [10, 13].

Identity (2.11), coupled with (2.12), gives yet another interesting cubic identity:

$$
G_{n+2}^{3}+2 G_{n+1}^{3}-G_{n}^{3}-2 G_{n-1}^{3}+G_{n-2}^{3}= \begin{cases}5 G_{3 n} & \text { if } G_{n}=F_{n} \tag{2.13}\\ 25 G_{3 n} & \text { if } G_{n}=L_{n}\end{cases}
$$

It follows by identities (2.11), (2.12), and (2.13) that

$$
G_{n+2}^{3}-3 G_{n}^{3}+G_{n-2}^{3}= \begin{cases}3 G_{3 n} & \text { if } G_{n}=F_{n} \tag{2.14}\\ 15 G_{3 n} & \text { if } G_{n}=L_{n}\end{cases}
$$

This result, with $G_{n}=F_{n}$, is Ginsburg's identity $[3,10,11]$.

3. ADDITIONAL IMPLICATIONS

Next, we investigate the implications of identities (2.7) and (2.10) to the Jacobsthal, Vieta, and Chebyshev subfamilies. To this end, the relationships in Table 1 will come in handy.
3.1. Jacobsthal Byproducts. Since $J_{n}(x)=x^{(n-1) / 2} f_{n}(u)$, it follows from identity (2.7) that

$$
f_{n+2}^{3}=\frac{2 x+1}{x \sqrt{x}} f_{n+1}^{3}+\frac{(x+1)(2 x+1)}{x^{2}} f_{n}^{3}-\frac{2 x+1}{x \sqrt{x}} f_{n-1}^{3}-f_{n-2}^{3},
$$

where $u=1 / \sqrt{x}$ and $f_{n}=f_{n}(u)$. Multiplying this equation with $x^{3(n+1) / 2}$ yields

$$
J_{n+2}^{3}(x)=(2 x+1) J_{n+1}^{3}(x)+x(x+1)(2 x+1) J_{n}^{3}(x)-x^{3}(2 x+1) J_{n-1}^{3}(x)-x^{6} J_{n-2}^{3}(x) .
$$

Likewise, since $j_{n}(x)=x^{n / 2} l_{n}(u)$, it follows from identity (2.7) that

$$
j_{n+2}^{3}(x)=(2 x+1) j_{n+1}^{3}(x)+x(x+1)(2 x+1) j_{n}^{3}(x)-x^{3}(2 x+1) j_{n-1}^{3}(x)-x^{6} j_{n-2}^{3}(x) .
$$

Combining these two equations, we get the cubic identity

$$
\begin{equation*}
c_{n+2}^{3}=(2 x+1) c_{n+1}^{3}+x(x+1)(2 x+1) c_{n}^{3}-x^{3}(2 x+1) c_{n-1}^{3}-x^{6} c_{n-2}^{3} . \tag{3.1}
\end{equation*}
$$

Consequently, the cubes of Jacobsthal and Jacobsthal-Lucas polynomials satisfy the recurrence

$$
z_{n+2}=(2 x+1) z_{n+1}+x(x+1)(2 x+1) z_{n}-x^{3}(2 x+1) z_{n-1}-x^{6} z_{n-2}
$$

where $z_{n}=z_{n}(x)=c_{n}^{3}$; when $z_{n}=J_{n}^{3}(x), z_{0}=0, z_{1}=1=z_{2}$, and $z_{3}=(x+1)^{3}$; and when $z_{n}=j_{n}^{3}(x), z_{0}=8, z_{1}=1, z_{2}=(2 x+1)^{3}$, and $z_{3}=(3 x+1)^{3}$.

Identity (3.1) implies that

$$
\begin{align*}
C_{n+2}^{3} & =5 C_{n+1}^{3}+30 C_{n}^{3}-40 C_{n-1}^{3}-64 C_{n-2}^{3} \tag{3.2}\\
c_{n+2}^{3}+x^{6} c_{n-2}^{3} & \equiv 0 \quad(\bmod 2 x+1) \\
C_{n+2}^{3} & \equiv C_{n-2}^{3} \quad(\bmod 5) .
\end{align*}
$$

Identity (2.10) also has Jacobsthal consequences. Replacing x with $1 / \sqrt{x}$ and multiplying both sides of the resulting equation with $x^{3(n+1) / 2}$ yields

$$
\begin{align*}
& c_{n+2}^{3}+(2 x+1) c_{n+1}^{3}-x(x-1)(2 x+1) c_{n}^{3} \tag{3.3}\\
& -\quad-x^{3}(2 x+1) c_{n-1}^{3}+x^{6} c_{n-2}^{3}
\end{align*}= \begin{cases}2(2 x+1) c_{3 n} & \text { if } c_{n}=J_{n}(x) \\
2(2 x+1)(4 x+1) c_{3 n} & \text { if } c_{n}=j_{n}(x) .\end{cases}
$$

Consequently,

$$
C_{n+2}^{3}+5 C_{n+1}^{3}-10 C_{n}^{3}-40 C_{n-1}^{3}+64 C_{n-2}^{3}= \begin{cases}10 C_{3 n} & \text { if } C_{n}=J_{n} \tag{3.4}\\ 90 C_{3 n} & \text { if } C_{n}=j_{n} .\end{cases}
$$

Identity (3.4), coupled with (3.2), implies

$$
C_{n+1}^{3}+2 C_{n}^{3}-8 C_{n-1}^{3}= \begin{cases}C_{3 n} & \text { if } C_{n}=J_{n} \tag{3.5}\\ 9 C_{3 n} & \text { if } C_{n}=j_{n},\end{cases}
$$

as in [11].
It follows by identities (3.4) and (3.5) that

$$
C_{n+2}^{3}+4 C_{n+1}^{3}-12 C_{n}^{3}-32 C_{n-1}^{3}+64 C_{n-2}^{3}= \begin{cases}9 C_{3 n} & \text { if } C_{n}=J_{n} \\ 81 C_{3 n} & \text { if } C_{n}=j_{n}\end{cases}
$$

THE FIBONACCI QUARTERLY

Consequently, $C_{n+2}^{3} \equiv C_{3 n}(\bmod 4)$.
Next, we pursue the implications of Corollaries 2.2 and 2.4 to the Vieta family.
3.2. Vieta Byproducts. Since $V_{n}(x)=i^{n-1} f_{n}(-i x)$, replace x with $-i x$ in identity (2.7) and then multiply the resulting equation with $i^{3(n+1)}$. This yields

$$
V_{n+2}^{3}=x\left(x^{2}-2\right) V_{n+1}^{3}-\left(x^{2}-1\right)\left(x^{2}-2\right) V_{n}^{3}+x\left(x^{2}-2\right) V_{n-1}^{3}-V_{n-2}^{3} .
$$

Using the link $v_{n}(x)=i^{n} l_{n}(-i x)$, it follows likewise from (2.7) that

$$
v_{n+2}^{3}=x\left(x^{2}-2\right) v_{n+1}^{3}-\left(x^{2}-1\right)\left(x^{2}-2\right) v_{n}^{3}+x\left(x^{2}-2\right) v_{n-1}^{3}-v_{n-2}^{3} .
$$

Thus,

$$
\begin{equation*}
d_{n+2}^{3}=x\left(x^{2}-2\right) d_{n+1}^{3}-\left(x^{2}-1\right)\left(x^{2}-2\right) d_{n}^{3}+x\left(x^{2}-2\right) d_{n-1}^{3}-d_{n-2}^{3} . \tag{3.6}
\end{equation*}
$$

Identity (2.10) similarly yields

$$
d_{n+2}^{3}+A x d_{n+1}^{3}-A\left(x^{2}+1\right) d_{n}^{3}+A x d_{n-1}^{3}+d_{n-2}^{3}= \begin{cases}2 A x^{2} d_{3 n} & \text { if } d_{n}=V_{n}(x) \tag{3.7}\\ 2 A x^{2}\left(x^{2}-4\right) d_{3 n} & \text { if } d_{n}=v_{n}(x),\end{cases}
$$

where $A=x^{2}-2$.
3.2.1. Fibonacci and Lucas Implications. Identities (3.6) and (3.7) have Fibonacci and Lucas implications. Using the relationships $x V_{n}\left(x^{2}+2\right)=f_{2 n}$ and $x v_{n}\left(x^{2}+2\right)=l_{2 n}$, we have $x d_{n}\left(x^{2}+2\right)=g_{2 n}$. It then follows from identity (3.6) that

$$
\begin{align*}
g_{2 n+4}^{3}= & \left(x^{2}+2\right)\left(x^{4}+4 x^{2}+2\right) g_{2 n+2}^{3}-\left(x^{2}+1\right)\left(x^{2}+3\right)\left(x^{4}+4 x^{2}+2\right) g_{2 n}^{3} \\
& +\left(x^{2}+2\right)\left(x^{4}+4 x^{2}+2\right) g_{2 n-2}^{3}-g_{2 n-4}^{3} . \tag{3.8}
\end{align*}
$$

This implies

$$
\begin{aligned}
G_{2 n+4}^{3}= & 21 G_{2 n+2}^{3}-56 G_{2 n}^{3}+21 G_{2 n-2}^{3}-G_{2 n-4}^{3} \\
b_{2 n+4}^{3}= & 4\left(2 x^{2}+1\right)\left(8 x^{4}+8 x^{2}+1\right) b_{2 n+2}^{3}-2\left(4 x^{2}+1\right)\left(4 x^{2}+3\right)\left(8 x^{4}+8 x^{2}+1\right) b_{2 n}^{3} \\
& +4\left(2 x^{2}+1\right)\left(8 x^{4}+8 x^{2}+1\right) b_{2 n-2}^{3}-b_{2 n-4}^{3} \\
B_{2 n+4}^{3}= & 204 B_{2 n+2}^{3}-1190 B_{2 n}^{3}+204 B_{2 n-2}^{3}-B_{2 n-4}^{3} \\
g_{2 n+4}^{3}+g_{2 n-4}^{3} \equiv & 0 \quad\left(\bmod x^{4}+4 x^{2}+2\right) .
\end{aligned}
$$

With $E=x^{4}+4 x^{2}+2$, identity (3.7) yields

$$
\begin{align*}
& g_{2 n+4}^{3}+E\left(x^{2}+2\right) g_{2 n+2}^{3}-E(E+3) g_{2 n}^{3} \tag{3.9}\\
& \quad+E\left(x^{2}+2\right) g_{2 n-2}^{3}+g_{2 n-4}^{3}= \begin{cases}2 E x^{2}\left(x^{2}+2\right)^{2} g_{6 n} & \text { if } g_{n}=f_{n} \\
2 E x^{4}\left(x^{2}+2\right)^{2}\left(x^{2}+4\right) g_{6 n} & \text { if } g_{n}=l_{n}\end{cases}
\end{align*}
$$

Consequently,

$$
\begin{aligned}
& G_{2 n+4}^{3}+21 G_{2 n+2}^{3}-70 G_{2 n}^{3}+21 G_{2 n-2}^{3}+G_{2 n-4}^{3}= \begin{cases}126 G_{6 n} & \text { if } G_{n}=F_{n} \\
630 G_{6 n} & \text { if } G_{n}=L_{n}\end{cases} \\
& b_{2 n+4}^{3}+4 F\left(2 x^{2}+1\right) b_{2 n+2}^{3}-2 F\left(16 x^{4}+16 x^{2}+5\right) b_{2 n}^{3} \\
& \quad+4 F\left(2 x^{2}+1\right) b_{2 n-2}^{3}+b_{2 n-4}^{3}= \begin{cases}64 F x^{2}\left(2 x^{2}+1\right)^{2} b_{6 n} & \text { if } b_{n}=p_{n} \\
256 F x^{2}\left(x^{2}+1\right)\left(2 x^{2}+1\right)^{2} b_{6 n} & \text { if } b_{n}=q_{n}\end{cases} \\
& \quad B_{2 n+4}^{3}+204 B_{2 n+2}^{3}-1258 B_{2 n}^{3}+204 B_{2 n-2}^{3}+B_{2 n-4}^{3}= \begin{cases}9,792 B_{6 n} & \text { if } B_{n}=P_{n} \\
19,584 B_{6 n} & \text { if } B_{n}=Q_{n},\end{cases}
\end{aligned}
$$

where $F=8 x^{4}+8 x^{2}+1$.
3.2.2. Jacobsthal Implications. As can be predicted, identities (3.6) and (3.7), together with the relationships $J_{2 n}(x)=x^{n-1} V_{n}(u)$ and $j_{2 n}(x)=x^{n} v_{n}(u)$, have Jacobsthal consequences, where $u=\frac{2 x+1}{x}$. To begin with, it follows from identity (3.6) that

$$
\begin{align*}
x^{4} d_{n+2}^{3}= & x(2 x+1)\left(2 x^{2}+4 x+1\right) d_{n+1}^{3}-\left(2 x^{2}+4 x+1\right)\left(3 x^{2}+4 x+1\right) d_{n}^{3} \\
& +x(2 x+1)\left(2 x^{2}+4 x+1\right) d_{n-1}^{3}-x^{4} d_{n-2}^{3}, \tag{3.10}
\end{align*}
$$

where $d_{n}=d_{n}(u)$.
Using the above Vieta-Jacobsthal links, this yields the Jacobsthal identity

$$
\begin{aligned}
c_{2 n+4}^{3}= & (2 x+1)\left(2 x^{2}+4 x+1\right) c_{2 n+2}^{3}-x^{2}\left(2 x^{2}+4 x+1\right)\left(3 x^{2}+4 x+1\right) c_{2 n}^{3} \\
& +x^{6}(2 x+1)\left(2 x^{2}+4 x+1\right) c_{2 n-2}^{3}-x^{12} c_{2 n-4}^{3} .
\end{aligned}
$$

This implies

$$
\begin{equation*}
C_{2 n+4}^{3}=85 C_{2 n+2}^{3}-1428 C_{2 n}^{3}+5440 C_{2 n-2}^{3}-4096 C_{2 n-4}^{3} . \tag{3.11}
\end{equation*}
$$

A similar derivation from identity (3.7) yields

$$
\begin{gathered}
x^{4} d_{n+2}^{3}+A x(2 x+1) d_{n+1}^{3} \\
-A\left(5 x^{2}+4 x+1\right) d_{n}^{3}+A x(2 x+1) d_{n-1}^{3}+x^{4} d_{n-2}^{3}= \begin{cases}2 A(2 x+1)^{2} d_{3 n} & \text { if } d_{n}=V_{n} \\
2 A(4 x+1)(2 x+1)^{2} d_{3 n} & \text { if } d_{n}=v_{n}\end{cases}
\end{gathered}
$$

where $d_{n}=d_{n}(u)$ and $A=2 x^{2}+4 x+1$.
Consequently,

$$
\begin{aligned}
& c_{2 n+4}^{3}+A(2 x+1) c_{2 n+2}^{3}-A x^{2}\left(5 x^{2}+4 x+1\right) c_{2 n}^{3} \\
& +A x^{6}(2 x+1) c_{2 n-2}^{3}+x^{12} c_{2 n-4}^{3}= \begin{cases}2 A(2 x+1)^{2} c_{6 n} & \text { if } c_{n}=J_{n}(x) \\
2 A(4 x+1)(2 x+1)^{2} c_{6 n} & \text { if } c_{n}=j_{n}(x)\end{cases}
\end{aligned}
$$

In particular, we have

$$
C_{2 n+4}^{3}+85 C_{2 n+2}^{3}-1972 C_{2 n}^{3}+5440 C_{2 n-2}^{3}-4096 C_{2 n-4}^{3}= \begin{cases}850 C_{6 n} & \text { if } C_{n}=J_{n} \tag{3.12}\\ 7,650 C_{6 n} & \text { if } C_{n}=j_{n}\end{cases}
$$

Finally, we present the consequences of Corollaries 2.2 and 2.4 to the Chebyshhev family.

THE FIBONACCI QUARTERLY

3.3. Chebyshev Byproducts. Since $U_{n-1}(x)=V_{n}(2 x)$ and $2 T_{n}(x)=v_{n}(2 x)$, it follows from identities (3.6) and (3.7) that

$$
e_{n+2}^{3}=4 x\left(2 x^{2}-1\right) e_{n+1}^{3}-2\left(2 x^{2}-1\right)\left(4 x^{2}-1\right) e_{n}^{3}+4 x\left(2 x^{2}-1\right) e_{n-1}^{3}-e_{n-2}^{3} .
$$

Likewise,

$$
e_{n+2}^{3}+4 B x e_{n+1}^{3}-2 B\left(4 x^{2}+1\right) e_{n}^{3}+4 B x e_{n-1}^{3}+e_{n-2}^{3}= \begin{cases}16 B x^{2} e_{3 n+2} & \text { if } e_{n}=U_{n}(x) \\ 64 B x^{2}\left(x^{2}-1\right) e_{3 n} & \text { if } e_{n}=T_{n}(x)\end{cases}
$$

where $B=2 x^{2}-1$.

4. Acknowledgment

The author thanks Z. Gao for his computational help, and to the reviewer for helpful suggestions and comments that enhanced the exposition of the original version.

References

[1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.5 (1970), 407-420.
[2] L. E. Dickson, History of the Theory of Numbers, Vol I, Chelsea, New York, 1966.
[3] J. Ginsburg, A relationship between cubes of Fibonacci numbers, Scripts Mathematica, 1953, 242.
[4] A. F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly, 34.1 (1996), 40-54.
[5] A. F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quarterly, 35.2 (1997), 137-148.
[6] A. F. Horadam, Vieta polynomials, The Fibonacci Quarterly, 40.3 (2002), 223-232.
[7] A. F. Horadam and Bro. J. M. Mahon, Pell and Pell-Lucas polynomials, The Fibonacci Quarterly, 23.1 (1985), 7-20.
[8] T. Koshy, Fibonacci and Lucas Numbers with Applications, Vol. I, Wiley, New York, 2018.
[9] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
[10] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities, The Fibonacci Quarterly, 52.2 (2014), 141-147.
[11] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities: Revisited, The Fibonacci Quarterly, 55.2 (2017), 147-151.
[12] T. Koshy, Vieta polynomials and their close relatives, The Fibonacci Quarterly, 54.2 (2016), 141-148.
[13] C. T. Long, Discovering Fibonacci identities, The Fibonacci Quarterly, 24.2 (1986), 160-166.
[14] R. S. Melham, Families of identities involving sums of powers of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, 37.4 (1999), 315-319.
[15] N. Robbins, Vieta's triangular array and a related family of polynomials, International Journal of Mathematics and Mathematical Sciences, 14 (1991), 239-244.
[16] A. G. Shannon and A. F. Horadam, Some relationships among Vieta, Morgan-Voyce and Jacobsthal polynomials, Applications of Fibonacci Numbers (ed. F. T. Howard), Vol. 8, Kluwer, Dordrecht, 1999, 307-323.
[17] D. Zeitlin and F. D. Parker, Problem H-14, The Fibonacci Quarterly, 1.2 (1963), 54.
MSC2010: 11B37, 11B39, 11B50
Department of Mathematics, Framingham State University, Framingham, Massachusetts 01701, USA

E-mail address: tkoshy@emeriti.framingham.edu

