POLYNOMIAL EXTENSIONS OF THE LUCAS AND GINSBURG
IDENTITIES REVISITED: ADDITIONAL DIVIDENDS 1

THOMAS KOSHY

ABSTRACT. In [11], we extended the fascinating identity
Trf2kg3n if gn = fn
(xZ + 4)fkf2k:g.3n if gn = ln;

to Jacobsthal, Vieta, and Chebyshev polynomial families [10]. We now extract from this
identity additional Fibonacci, Lucas, Jacobsthal, Vieta, and Chebyshev dividends.

goir — (=D lgh + (-1)*gd_), = {

1. INTRODUCTION

In [11], we introduced the extended gibonacci polynomials gy () using the recurrence g, yo(x) =
a(x)gn+1(x) + b(x)gn(x), where z is an arbitrary complex variable; a(z), b(z), go(x), and g1 (x)
are arbitrary complex polynomials; and n > 0. We then presented Fibonacci, Lucas, Pell, Pell-
Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev polynomials of both
types as subfamilies of the extended gibonacci family; they are denoted by f,(z), I,(z), pn(x),
an (), Jn(), jn(x), Val(z), vp(z), Ty (z), and Uy, (z), respectively [1, 4, 5, 6, 7, 8,9, 12, 11, 15].

These subfamilies are closely linked by the relationships in Table 1, where i = v/—1 [6, 12,
15, 16].

Jn(x) = a"D2f, (1)) gnlz) = ™21, (1/y/x)
Vi(z) = " fo(—iz) vp(z) = "l (—ix)
Vo(z) = Up—1(x/2) vp(x) = 2T, (x/2)
V(22 +2) = fou(x) v (22 +2) = lop(2)
Jon(z) = 2"V, (2;3337—&—1) jan(z) = a"vp (%xil)

Table 1: Relationships Among the Gibonacci Subfamilies

The nth Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal-Lucas numbers are
given by F,, = fn(l)a L, = ln(l)a P, = pn(l)v 2Qn = Qn(l)a Jp = Jn(2)’ and j, = jn(2)7
respectively.

In the interest of brevity and convenience, we omit the argument in the functional notation,
when there is no ambiguity; so g, will mean g¢,(z). Again, for brevity, we let g, = f, or
ln; by = pp or qn; ¢ = Jp(z) or ju(x); dp, = Vy(x) or vy(x); and e, = T),(z) or Uy,(z); and
correspondingly, we let G, = F,, or L,; B, = P, or Q,; C,, = J, or j,; and d, = V,, or v,.
We also omit a lot of basic algebra.

2. ADDITIONAL DIVIDENDS
In [10], we established the identity

3 k3 k3 frfor93n if gn = fn
Gnar — (=1)%lkgy, + (=1)"g, 1 = ) 2.1
e~ (1) = {Akaf%ggn if gn = In, @1)
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where A? = 22 + 4.
The next two theorems are direct consequences of this identity, and form the cornerstone
of the discourse.

Theorem 2.1.
fefoedpinir = et forvagp o — (D (frforlirr + for1 forrali) go
+ (1" fur1 forsags ik + (1" fuforgs x 1. (2.2)
Proof. Suppose g, = l,,. It then follows from identity (2.1) that
Boe— (DR + (1) = A% fy forlsn (2.3)
Bpin + (CD el — (“1)F8 i = A% fi foriolan. (2.4)
Multiplying equation (2.3) with fxy1forro and equation (2.4) with fi for, we get
frt1 forto [l%—i-k — (=D)L} + (—1)172—14 = A fi frr1 for foutalan; (2.5)
i fok {lg+k+1 + (1) gl — (—1)]“52%71} = A fi fur1 for faryalan, (2.6)
respectively.

Equating the two left sides yields

Bt Forra (B = (DRI + (18] = fofor [Bps + (<1 il = (1), ]

Regrouping the terms, we get the desired identity when g, = [,,.
Identity (2.2) with g, = f, follows by a similar derivation. O

Since fi =1, fo = 2 = I, and fy = 2% + 2z = zly, the next result follows from equation
(2.2) by letting k = 1.

Corollary 2.2.
Goio = 2(@® +2)gp 1 + (2% + 1)(2? + 2)g5) — 2(2® +2)g5_1 — gn_»- (2.7)

O

Identity (2.7) implies that the cubes of Fibonacci and Lucas polynomials satisfy the fourth-
order recurrence

anio = (2?4 2)ans1 + (22 + 1)(2% + 2)a, — z(2® + 2)an_1 — an_o,

where a,, = a,(x) and n > 2. When a,, = f3,a0 = 0,a; = 1,a2 = 23, and a3 = (22 + 1)3; and
when a,, = I3, a0 = 8,a1 = 23, a3 = (22 + 2)3, and a3 = (2 + 3z)3.
Consequently, the cubes of Pell and Pell-Lucas polynomials satisfy the recurrence

bio = 42(22% 4+ Dbpat + 2222 + 1) (422 + 1)by, — 42222 4+ 1)bp_1 — bp_2,

where b, = b,(z) and n > 2. When b, = p3, by = 0, by = 1, by = 823, and b3 = (42 + 1)3;
and when b, = g3, by = 8, by = 83, by = (42?2 + 2)3, and b3 = (82° + 62)3.
It also follows from Corollary 2.2 that

Ghio =3G, 1 +6G, —3G,_ — G _, (2.8)
b3 o =4dx(20% + 1)b2 4 + 2227 + 1) (4a® + 1)b2 — dw(22% + 1)b_; — b3 _,
B} ,=12B) , +30B2 - 12B2 | - B} _,
92+2 + 9272 =0 (mod z? + 2)
B} ,+Bi ,=6B2 (mod 12).
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Identity (2.8) with G,, = F,, appears in [17].
The next theorem paves the way for extracting additional dividends from (2.1).

Theorem 2.3.
FifonGs pror + Frot1 forrogsp + (D (frforlirr — frr1 forroli)go (2.9)

2 fifr+1for fort+293n if g, = fn
+ (D" fara forsagy k= (D" fuforgy 1 = ,
(1 i o = (=) kot 202 fi i1 for forr203n  if gn = .

Proof. Adding equations (2.5) and (2.6), we get identity (2.9) when g, = [,,. A similar
technique yields the identity with g, = f,. O

The following result is a direct consequence of this theorem.
Corollary 2.4.
92-1-2 + $($2 + 2)92“ + (332 - 1)(=772 + 2)92

202(22 + 2gsn if g =
2 3 3 n n n
2@+ 2P g, = 2.10
T 2) g {293%2(9:2 gen gl 210
It follows from equation (2.10) that
6G'3 it G, =F,
Gy +3G) 1 —3G) 1 +Gs 5= " S 2.11
n+2 + n+1 n—1 + n—2 30G3n if Gn _ Ln; ( )
b3 o +4x(22 + 1)b3 | +2(227 + 1) (42 — 1)b3
1622%(22% + 1)bsy, if by = pn

—dz(22® + )b+ b, =
@2 o1+ b 642%(x? + 1)(22% + 1)bs,,  if by = qn;

48B3, if B, =P,

B}, +12B3 , +18B2 —12B3 | + B3 , =
n+2 n+1 n n—1 n—2 96Bs, if B, = Qn.

Identities (2.8) and (2.11) together imply that

Gs, itG,=F,

, (2.12)
5G3n if Gn = Ln.

vt - |
The Fibonacci version of this identity appears in Dickson’s classic work, History of the
Theory of Numbers, Vol. 1 [2, 8, 10, 11, 13, 14]; and Long discovered its Lucas counterpart
(10, 13].
Identity (2.11), coupled with (2.12), gives yet another interesting cubic identity:

5G if G, =F
G3 2G3 ., — G5 —2G3 G, = sn noon 2.13
n+2 + n+1 n n—1 + n—2 25G3n if Gn _ Ln ( )
It follows by identities (2.11), (2.12), and (2.13) that
3G3 if G,, = F,
G ,—-3@+G_, = " noon 2.14
2 R N T Ty (2.14)

This result, with G, = F,,, is Ginsburg’s identity [3, 10, 11].
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3. ADDITIONAL IMPLICATIONS

Next, we investigate the implications of identities (2.7) and (2.10) to the Jacobsthal, Vieta,
and Chebyshev subfamilies. To this end, the relationships in Table 1 will come in handy.

3.1. Jacobsthal Byproducts. Since J,(z) = z("D/2f,(u), it follows from identity (2.7)

that ( \( w
2 +1 r+1)2x +1 2¢ + 1
f7§+2 ﬁfnJrl fn l’\/> fn 1 f2727

where u = 1/y/z and f, = f,(u). Multiplying this equation with z3("+1/2 yields
J2+2(:r) = (2z + 1)J,§+1(x) +a(z+ 12z +1)J3(2) — 232z + 1)J3_(z) — 2503 ().
Likewise, since j,(x) = 2™/2l,(u), it follows from identity (2.7) that
Jn2(®) = (22 + V)i (@) + x(z + 1)z + 1)ja(2) — 2°(22 + 1)jn_1(z) — 2%5_5(2).
Combining these two equations, we get the cubic identity
=02+ 1) +a(z+1)(2z+ 1) —2*(2x +1)cb_y — 2% _,. (3.1)

Consequently, the cubes of Jacobsthal and Jacobsthal-Lucas polynomlals satisfy the recur-
rence

22

Znt2 = (2:13 + Dzpp1 +z(z+1) (22 + 1)z, — 2222 + 1) 21 — 252, 9,
where z, = z,(z) = ¢3; when 2, = J3(z ) 20 =0, 21 =1 = 29, and 23 = (z + 1)3; and when
2 =j3(x), 20=8,21 =1, 22 = (20 +1)3, and 23 = (32 + 1)3.
Identity (3.1) implies that

C3+2 =5C2. + 3002 —40C3_; — 64C3_, (3.2)
o+ 2%_o =0 (mod 2z +1)
C3.,=C3_, (mod5).

Identity (2.10) also has Jacobsthal consequences. Replacing z with 1/4/z and multiplying
both sides of the resulting equation with z3("+1/2 yields

ot e+ 1), —x(r—1)(2z+ 1)) (3.3)
2(2 1)esn if ¢, = Jn
22z + 1)ey_y + a0y = (22 + L)es 2 J(x)
22z + 1)(4x + 1)cgn,  if ¢ = jn(x).
Consequently,
10Cs, if Cp, = J
C3L o +505, 1 — 1003 — 4003 _, +64C2_, = " o 3.4
Identity (3.4), coupled with (3.2), implies
Cs, ifC,=J,
C3,, +20% —8C3 =3 " . (3.5)
9C3, if Cy = jn,

as in [11].
It follows by identities (3.4) and (3.5) that
9Cs, if C,=J,

c3 403, — 1203 — 3203, +64C3_, =
nt2 T 405 1 n n—1 n—2 81C5, if Cp = jp.
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Consequently, C3,, = C3, (mod 4).
Next, we pursue the implications of Corollaries 2.2 and 2.4 to the Vieta family.

3.2. Vieta Byproducts. Since V,,(z) = i" "' f,(—iz), replace x with —iz in identity (2.7)
and then multiply the resulting equation with 3"+ This yields

Vi = (2 = 2)V3 = (2% = 1)(2® = 2)V) + 2(2? = 2)V; ) = Vi,

n

Using the link vy, (z) = i"l,(—ix), it follows likewise from (2.7) that

v =x(x? =2l — (2% — 1) (2 — 2)v + x(2? — 2)vd_, — v _,.

Thus,
dyyo = x(2® = 2)d g — (2% = 1)(@® = 2)dy, + 2(2® = 2)dy_y — d . (3.6)

Identity (2.10) similarly yields

2Az2ds, if d, = V,(z)

3.7
2Az% (2% — 4)d3,, if d,, = vn(2), (3.7)

Ao+ Axdd | — A(x* + 1)d> + Axdd_ +d2_y = {
where A = 22 — 2.

3.2.1. Fibonacci and Lucas Implications. Identities (3.6) and (3.7) have Fibonacci and Lucas
implications. Using the relationships 2V;,(z? + 2) = fo, and zv, (2% + 2) = ls,, we have
xdy, (2% + 2) = gon. It then follows from identity (3.6) that
Gonra = (2% + 2) (@ + 427 + 23,15 — (27 + 1)(2” + 3) (2" + 42” + 2)g3,
+ (2% +2) (2" + 42% + 2)g3, 5 — G4 (3.8)

This implies

G,ia = 21G3, 5 — 56G5, +21G5,_, — G5, 4
b3, a = 4227 + 1) (82 + 822 + 1)b3 5 — 2(42? + 1) (42” + 3) (82 + 822 + 1)b3,
+4(22% 4+ 1)(82* + 822 + 1)b3,_o — b3, 4
B3, 4 = 20483, , — 119083, + 20483, _, — B3, 4
gg’n+4 +g5. 4=0 (mod z* +42% +2).

With E = 2* + 422 4 2, identity (3.7) yields

Pnta T E(@® +2)g3 1 — E(E + 3)g3, (3.9)

2E22 (22 + 2)2 g6, if g = fn

+ E(2® +2)g5, o+ gony =
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Consequently,

126G, if G, = F,
630Gs, if Gn = Ly;
b3, s +AF (227 + 1)b3,, o — 2F(162* + 162* + 5)b3,

64F 22 (222 + 1)2bg,, if b, = pn
256 Fa? (2% + 1)(202 + 1)2bg,  if by = qu;

G§n+4 + 21G%n+2 - 70G%n + 21G%n—2 + ng—él - {

+AF (20 + 1)b3, o + b3, 4 = {

9,792B¢, if B, =P,

By 24 2, 00 = {0
Y n n — s

where F = 8z* 4+ 822 + 1.

3.2.2. Jacobsthal Implications. As can be predicted, identities (3.6) and (3.7), together with
the relationships Jon(z) = 2" 'V, (u) and jy, @) = z™v,(u), have Jacobsthal consequences,

2 1
where u = T

. To begin with, it follows from identity (3.6) that

ztd

1o =220+ 1)(22% + 4o + 1)d>  — (22° + 4z + 1)(32% + 42 + 1)d>
+ 2(2z +1)(22° + 4 + 1)d>_, — 2*d3_,, (3.10)

where d,, = d,,(u).
Using the above Vieta-Jacobsthal links, this yields the Jacobsthal identity

c§n+4 = (22 +1)(22% + 42 + 1)c§n+2 — 22(222 + 4z 4+ 1)(32° + 4z + 1)c3,,
+ 2802z 4+ 1)(222 + 4z + 1)c3,, o — 21265,
This implies
O3,y = 85C5, 5 — 1428C35, + 5440C5,_ — 4096C3,_,. (3.11)
A similar derivation from identity (3.7) yields
ztd?

n

io+ Az(22 + 1)d2 4

2A(21‘ + 1>2d3n if dy, =V,

— A(5a® + 4z + 1)d) + Az(2z + 1)d} Dy =
($ +4x + )n+ x($+ )n—1+l‘ n—2 2A(4$+1)(2x+1)2d3n ifdn:'Un,

where d,, = d,,(u) and A = 222 + 42 + 1.
Consequently,

Cnaa + A2z +1)c3,, o — A2?(52® + 4z + 1)c3,

2A(2z + 1)%cgy, if ¢, = Ju(z)

+ AzS 2z + 1)e3, o + 2125, 4 =
T2 D T4 = 944+ 1) (22 + 12 i € = ().
In particular, we have

850C%n, it Gy =Jp

, o (3.12)
7,650Cs, if Cp = jn.

C3ia + 8503, 5 — 1972C5, + 544003, _, — 4096C5,_, = {

Finally, we present the consequences of Corollaries 2.2 and 2.4 to the Chebyshhev family.
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3.3. Chebyshev Byproducts. Since U,,_1(z) = V,,(2z) and 27}, (z) = v,(2x), it follows from
identities (3.6) and (3.7) that
ei+2 = 4a(22% — 1)6731+1 —2(22% — 1)(42® — 1)ed +4x(22% — 1)ed_| — €3 _,.
Likewise,

16Bx2e3, 42 if e, = Up(x)

3 3 2 3 3 3
e + 4Bxe —2B(4z” +1)el +4Bxe> _{ +e€2_o =
nt2 ntl ( Jen nel T2 64Bx?(2? — 1)es, if e, = Tp(x),

where B = 222 — 1.
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