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Abstract. In [11], we extended the fascinating identity

g3n+k − (−1)klkg
3
n + (−1)kg3n−k =

{
fkf2kg3n if gn = fn

(x2 + 4)fkf2kg3n if gn = ln,

to Jacobsthal, Vieta, and Chebyshev polynomial families [10]. We now extract from this
identity additional Fibonacci, Lucas, Jacobsthal, Vieta, and Chebyshev dividends.

1. INTRODUCTION

In [11], we introduced the extended gibonacci polynomials gn(x) using the recurrence gn+2(x) =
a(x)gn+1(x) + b(x)gn(x), where x is an arbitrary complex variable; a(x), b(x), g0(x), and g1(x)
are arbitrary complex polynomials; and n ≥ 0. We then presented Fibonacci, Lucas, Pell, Pell-
Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev polynomials of both
types as subfamilies of the extended gibonacci family; they are denoted by fn(x), ln(x), pn(x),
qn(x), Jn(x), jn(x), Vn(x), vn(x), Tn(x), and Un(x), respectively [1, 4, 5, 6, 7, 8, 9, 12, 11, 15].

These subfamilies are closely linked by the relationships in Table 1, where i =
√
−1 [6, 12,

15, 16].

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)

Vn(x) = Un−1(x/2) vn(x) = 2Tn(x/2)

xVn(x2 + 2) = f2n(x) xvn(x2 + 2) = l2n(x)

J2n(x) = xn−1Vn

(
2x+1
x

)
j2n(x) = xnvn

(
2x+1
x

)
Table 1: Relationships Among the Gibonacci Subfamilies

The nth Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal-Lucas numbers are
given by Fn = fn(1), Ln = ln(1), Pn = pn(1), 2Qn = qn(1), Jn = Jn(2), and jn = jn(2),
respectively.

In the interest of brevity and convenience, we omit the argument in the functional notation,
when there is no ambiguity; so gn will mean gn(x). Again, for brevity, we let gn = fn or
ln; bn = pn or qn; cn = Jn(x) or jn(x); dn = Vn(x) or vn(x); and en = Tn(x) or Un(x); and
correspondingly, we let Gn = Fn or Ln; Bn = Pn or Qn; Cn = Jn or jn; and dn = Vn or vn.
We also omit a lot of basic algebra.

2. ADDITIONAL DIVIDENDS

In [10], we established the identity

g3n+k − (−1)klkg
3
n + (−1)kg3n−k =

{
fkf2kg3n if gn = fn

∆2fkf2kg3n if gn = ln,
(2.1)
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where ∆2 = x2 + 4.
The next two theorems are direct consequences of this identity, and form the cornerstone

of the discourse.

Theorem 2.1.

fkf2kg
3
n+k+1 = fk+1f2k+2g

3
n+k − (−1)k(fkf2klk+1 + fk+1f2k+2lk)g3n

+ (−1)kfk+1f2k+2g
3
n−k + (−1)kfkf2kg

3
n−k−1. (2.2)

Proof. Suppose gn = ln. It then follows from identity (2.1) that

l3n+k − (−1)klkl
3
n + (−1)kl3n−k = ∆2fkf2kl3n (2.3)

l3n+k+1 + (−1)klk+1l
3
n − (−1)kl3n−k−1 = ∆2fk+1f2k+2l3n. (2.4)

Multiplying equation (2.3) with fk+1f2k+2 and equation (2.4) with fkf2k, we get

fk+1f2k+2

[
l3n+k − (−1)klkl

3
n + (−1)kl3n−k

]
= ∆2fkfk+1f2kf2k+2l3n; (2.5)

fkf2k

[
l3n+k+1 + (−1)klk+1l

3
n − (−1)kl3n−k−1

]
= ∆2fkfk+1f2kf2k+2l3n, (2.6)

respectively.
Equating the two left sides yields

fk+1f2k+2

[
l3n+k − (−1)klkl

3
n + (−1)kl3n−k

]
= fkf2k

[
l3n+k+1 + (−1)klk+1l

3
n − (−1)kl3n−k−1

]
.

Regrouping the terms, we get the desired identity when gn = ln.
Identity (2.2) with gn = fn follows by a similar derivation. �

Since f1 = 1, f2 = x = l1, and f4 = x3 + 2x = xl2, the next result follows from equation
(2.2) by letting k = 1.

Corollary 2.2.

g3n+2 = x(x2 + 2)g3n+1 + (x2 + 1)(x2 + 2)g3n − x(x2 + 2)g3n−1 − g3n−2. (2.7)

�
Identity (2.7) implies that the cubes of Fibonacci and Lucas polynomials satisfy the fourth-

order recurrence

an+2 = x(x2 + 2)an+1 + (x2 + 1)(x2 + 2)an − x(x2 + 2)an−1 − an−2,

where an = an(x) and n ≥ 2. When an = f3
n, a0 = 0, a1 = 1, a2 = x3, and a3 = (x2 + 1)3; and

when an = l3n, a0 = 8, a1 = x3, a2 = (x2 + 2)3, and a3 = (x3 + 3x)3.
Consequently, the cubes of Pell and Pell-Lucas polynomials satisfy the recurrence

bn+2 = 4x(2x2 + 1)bn+1 + 2(2x2 + 1)(4x2 + 1)bn − 4x(2x2 + 1)bn−1 − bn−2,

where bn = bn(x) and n ≥ 2. When bn = p3n, b0 = 0, b1 = 1, b2 = 8x3, and b3 = (4x2 + 1)3;
and when bn = q3n, b0 = 8, b1 = 8x3, b2 = (4x2 + 2)3, and b3 = (8x3 + 6x)3.

It also follows from Corollary 2.2 that

G3
n+2 = 3G3

n+1 + 6G3
n − 3G3

n−1 −G3
n−2 (2.8)

b3n+2 = 4x(2x2 + 1)b3n+1 + 2(2x2 + 1)(4x2 + 1)b3n − 4x(2x2 + 1)b3n−1 − b3n−2

B3
n+2 = 12B3

n+1 + 30B3
n − 12B3

n−1 −B3
n−2

g3n+2 + g3n−2 ≡ 0 (mod x2 + 2)

B3
n+2 + B3

n−2 ≡ 6B2
n (mod 12).
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Identity (2.8) with Gn = Fn appears in [17].
The next theorem paves the way for extracting additional dividends from (2.1).

Theorem 2.3.

fkf2kg
3
n+k+1 + fk+1f2k+2g

3
n+k + (−1)k(fkf2klk+1 − fk+1f2k+2lk)g3n (2.9)

+ (−1)kfk+1f2k+2g
3
n−k − (−1)kfkf2kg

3
n−k−1 =

{
2fkfk+1f2kf2k+2g3n if gn = fn

2∆2fkfk+1f2kf2k+2g3n if gn = ln.

Proof. Adding equations (2.5) and (2.6), we get identity (2.9) when gn = ln. A similar
technique yields the identity with gn = fn. �

The following result is a direct consequence of this theorem.

Corollary 2.4.

g3n+2 + x(x2 + 2)g3n+1 + (x2 − 1)(x2 + 2)g3n

− x(x2 + 2)g3n−1 + g3n−2 =

{
2x2(x2 + 2)g3n if gn = fn

2x2∆2(x2 + 2)g3n if gn = ln.
(2.10)

It follows from equation (2.10) that

G3
n+2 + 3G3

n+1 − 3G3
n−1 + G3

n−2 =

{
6G3n if Gn = Fn

30G3n if Gn = Ln;
(2.11)

b3n+2 + 4x(2x2 + 1)b3n+1 + 2(2x2 + 1)(4x2 − 1)b3n

− 4x(2x2 + 1)b3n−1 + b3n−2 =

{
16x2(2x2 + 1)b3n if bn = pn

64x2(x2 + 1)(2x2 + 1)b3n if bn = qn;

B3
n+2 + 12B3

n+1 + 18B3
n − 12B3

n−1 + B3
n−2 =

{
48B3n if Bn = Pn

96B3n if Bn = Qn.

Identities (2.8) and (2.11) together imply that

G3
n+1 + G3

n −G3
n−1 =

{
G3n if Gn = Fn

5G3n if Gn = Ln.
(2.12)

The Fibonacci version of this identity appears in Dickson’s classic work, History of the
Theory of Numbers, Vol. 1 [2, 8, 10, 11, 13, 14]; and Long discovered its Lucas counterpart
[10, 13].

Identity (2.11), coupled with (2.12), gives yet another interesting cubic identity:

G3
n+2 + 2G3

n+1 −G3
n − 2G3

n−1 + G3
n−2 =

{
5G3n if Gn = Fn

25G3n if Gn = Ln.
(2.13)

It follows by identities (2.11), (2.12), and (2.13) that

G3
n+2 − 3G3

n + G3
n−2 =

{
3G3n if Gn = Fn

15G3n if Gn = Ln.
(2.14)

This result, with Gn = Fn, is Ginsburg’s identity [3, 10, 11].
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3. ADDITIONAL IMPLICATIONS

Next, we investigate the implications of identities (2.7) and (2.10) to the Jacobsthal, Vieta,
and Chebyshev subfamilies. To this end, the relationships in Table 1 will come in handy.

3.1. Jacobsthal Byproducts. Since Jn(x) = x(n−1)/2fn(u), it follows from identity (2.7)
that

f3
n+2 =

2x + 1

x
√
x

f3
n+1 +

(x + 1)(2x + 1)

x2
f3
n −

2x + 1

x
√
x

f3
n−1 − f3

n−2,

where u = 1/
√
x and fn = fn(u). Multiplying this equation with x3(n+1)/2 yields

J3
n+2(x) = (2x + 1)J3

n+1(x) + x(x + 1)(2x + 1)J3
n(x)− x3(2x + 1)J3

n−1(x)− x6J3
n−2(x).

Likewise, since jn(x) = xn/2ln(u), it follows from identity (2.7) that

j3n+2(x) = (2x + 1)j3n+1(x) + x(x + 1)(2x + 1)j3n(x)− x3(2x + 1)j3n−1(x)− x6j3n−2(x).

Combining these two equations, we get the cubic identity

c3n+2 = (2x + 1)c3n+1 + x(x + 1)(2x + 1)c3n − x3(2x + 1)c3n−1 − x6c3n−2. (3.1)

Consequently, the cubes of Jacobsthal and Jacobsthal-Lucas polynomials satisfy the recur-
rence

zn+2 = (2x + 1)zn+1 + x(x + 1)(2x + 1)zn − x3(2x + 1)zn−1 − x6zn−2,

where zn = zn(x) = c3n; when zn = J3
n(x), z0 = 0, z1 = 1 = z2, and z3 = (x + 1)3; and when

zn = j3n(x), z0 = 8, z1 = 1, z2 = (2x + 1)3, and z3 = (3x + 1)3.
Identity (3.1) implies that

C3
n+2 = 5C3

n+1 + 30C3
n − 40C3

n−1 − 64C3
n−2 (3.2)

c3n+2 + x6c3n−2 ≡ 0 (mod 2x + 1)

C3
n+2 ≡ C3

n−2 (mod 5).

Identity (2.10) also has Jacobsthal consequences. Replacing x with 1/
√
x and multiplying

both sides of the resulting equation with x3(n+1)/2 yields

c3n+2 + (2x + 1)c3n+1 − x(x− 1)(2x + 1)c3n (3.3)

− x3(2x + 1)c3n−1 + x6c3n−2 =

{
2(2x + 1)c3n if cn = Jn(x)

2(2x + 1)(4x + 1)c3n if cn = jn(x).

Consequently,

C3
n+2 + 5C3

n+1 − 10C3
n − 40C3

n−1 + 64C3
n−2 =

{
10C3n if Cn = Jn

90C3n if Cn = jn.
(3.4)

Identity (3.4), coupled with (3.2), implies

C3
n+1 + 2C3

n − 8C3
n−1 =

{
C3n if Cn = Jn

9C3n if Cn = jn,
(3.5)

as in [11].
It follows by identities (3.4) and (3.5) that

C3
n+2 + 4C3

n+1 − 12C3
n − 32C3

n−1 + 64C3
n−2 =

{
9C3n if Cn = Jn

81C3n if Cn = jn.
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Consequently, C3
n+2 ≡ C3n (mod 4).

Next, we pursue the implications of Corollaries 2.2 and 2.4 to the Vieta family.

3.2. Vieta Byproducts. Since Vn(x) = in−1fn(−ix), replace x with −ix in identity (2.7)

and then multiply the resulting equation with i3(n+1). This yields

V 3
n+2 = x(x2 − 2)V 3

n+1 − (x2 − 1)(x2 − 2)V 3
n + x(x2 − 2)V 3

n−1 − V 3
n−2.

Using the link vn(x) = inln(−ix), it follows likewise from (2.7) that

v3n+2 = x(x2 − 2)v3n+1 − (x2 − 1)(x2 − 2)v3n + x(x2 − 2)v3n−1 − v3n−2.

Thus,

d3n+2 = x(x2 − 2)d3n+1 − (x2 − 1)(x2 − 2)d3n + x(x2 − 2)d3n−1 − d3n−2. (3.6)

Identity (2.10) similarly yields

d3n+2 + Axd3n+1 −A(x2 + 1)d3n + Axd3n−1 + d3n−2 =

{
2Ax2d3n if dn = Vn(x)

2Ax2(x2 − 4)d3n if dn = vn(x),
(3.7)

where A = x2 − 2.

3.2.1. Fibonacci and Lucas Implications. Identities (3.6) and (3.7) have Fibonacci and Lucas
implications. Using the relationships xVn(x2 + 2) = f2n and xvn(x2 + 2) = l2n, we have
xdn(x2 + 2) = g2n. It then follows from identity (3.6) that

g32n+4 = (x2 + 2)(x4 + 4x2 + 2)g32n+2 − (x2 + 1)(x2 + 3)(x4 + 4x2 + 2)g32n

+ (x2 + 2)(x4 + 4x2 + 2)g32n−2 − g32n−4. (3.8)

This implies

G3
2n+4 = 21G3

2n+2 − 56G3
2n + 21G3

2n−2 −G3
2n−4

b32n+4 = 4(2x2 + 1)(8x4 + 8x2 + 1)b32n+2 − 2(4x2 + 1)(4x2 + 3)(8x4 + 8x2 + 1)b32n

+ 4(2x2 + 1)(8x4 + 8x2 + 1)b32n−2 − b32n−4

B3
2n+4 = 204B3

2n+2 − 1190B3
2n + 204B3

2n−2 −B3
2n−4

g32n+4 + g32n−4 ≡ 0 (mod x4 + 4x2 + 2).

With E = x4 + 4x2 + 2, identity (3.7) yields

g32n+4 + E(x2 + 2)g32n+2 − E(E + 3)g32n (3.9)

+ E(x2 + 2)g32n−2 + g32n−4 =

{
2Ex2(x2 + 2)2g6n if gn = fn

2Ex4(x2 + 2)2(x2 + 4)g6n if gn = ln.
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Consequently,

G3
2n+4 + 21G3

2n+2 − 70G3
2n + 21G3

2n−2 + G3
2n−4 =

{
126G6n if Gn = Fn

630G6n if Gn = Ln;

b32n+4 + 4F (2x2 + 1)b32n+2 − 2F (16x4 + 16x2 + 5)b32n

+ 4F (2x2 + 1)b32n−2 + b32n−4 =

{
64Fx2(2x2 + 1)2b6n if bn = pn

256Fx2(x2 + 1)(2x2 + 1)2b6n if bn = qn;

B3
2n+4 + 204B3

2n+2 − 1258B3
2n + 204B3

2n−2 + B3
2n−4 =

{
9, 792B6n if Bn = Pn

19, 584B6n if Bn = Qn,

where F = 8x4 + 8x2 + 1.

3.2.2. Jacobsthal Implications. As can be predicted, identities (3.6) and (3.7), together with
the relationships J2n(x) = xn−1Vn(u) and j2n(x) = xnvn(u), have Jacobsthal consequences,

where u =
2x + 1

x
. To begin with, it follows from identity (3.6) that

x4d3n+2 = x(2x + 1)(2x2 + 4x + 1)d3n+1 − (2x2 + 4x + 1)(3x2 + 4x + 1)d3n

+ x(2x + 1)(2x2 + 4x + 1)d3n−1 − x4d3n−2, (3.10)

where dn = dn(u).
Using the above Vieta-Jacobsthal links, this yields the Jacobsthal identity

c32n+4 = (2x + 1)(2x2 + 4x + 1)c32n+2 − x2(2x2 + 4x + 1)(3x2 + 4x + 1)c32n

+ x6(2x + 1)(2x2 + 4x + 1)c32n−2 − x12c32n−4.

This implies

C3
2n+4 = 85C3

2n+2 − 1428C3
2n + 5440C3

2n−2 − 4096C3
2n−4. (3.11)

A similar derivation from identity (3.7) yields

x4d3n+2 + Ax(2x + 1)d3n+1

− A(5x2 + 4x + 1)d3n + Ax(2x + 1)d3n−1 + x4d3n−2 =

{
2A(2x + 1)2d3n if dn = Vn

2A(4x + 1)(2x + 1)2d3n if dn = vn,

where dn = dn(u) and A = 2x2 + 4x + 1.
Consequently,

c32n+4 + A(2x + 1)c32n+2 −Ax2(5x2 + 4x + 1)c32n

+ Ax6(2x + 1)c32n−2 + x12c32n−4 =

{
2A(2x + 1)2c6n if cn = Jn(x)

2A(4x + 1)(2x + 1)2c6n if cn = jn(x).

In particular, we have

C3
2n+4 + 85C3

2n+2 − 1972C3
2n + 5440C3

2n−2 − 4096C3
2n−4 =

{
850C6n if Cn = Jn

7, 650C6n if Cn = jn.
(3.12)

Finally, we present the consequences of Corollaries 2.2 and 2.4 to the Chebyshhev family.
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3.3. Chebyshev Byproducts. Since Un−1(x) = Vn(2x) and 2Tn(x) = vn(2x), it follows from
identities (3.6) and (3.7) that

e3n+2 = 4x(2x2 − 1)e3n+1 − 2(2x2 − 1)(4x2 − 1)e3n + 4x(2x2 − 1)e3n−1 − e3n−2.

Likewise,

e3n+2 + 4Bxe3n+1 − 2B(4x2 + 1)e3n + 4Bxe3n−1 + e3n−2 =

{
16Bx2e3n+2 if en = Un(x)

64Bx2(x2 − 1)e3n if en = Tn(x),

where B = 2x2 − 1.
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