FRACTAL BEHAVIOR OF THE FIBONOMIAL TRIANGLE MODULO PRIME p, WHERE THE RANK OF APPARITION OF p IS $p+1$

MICHAEL DEBELLEVUE AND EKATERINA KRYUCHKOVA

Abstract

Pascal's triangle is known to exhibit fractal behavior modulo prime numbers. We tackle the analogous notion in the Fibonomial triangle modulo prime p with the rank of apparition $p^{*}=p+1$, proving that these objects form a structure similar to the Sierpinski Gasket. Within a large triangle of $p^{*} p^{m+1}$ many rows, in the $i^{t h}$ triangle from the top and the $j^{\text {th }}$ triangle from the left, $\binom{n+i p^{*} p^{m}}{k+j p^{p} p^{m}}_{F}$ is divisible by p if and only if $\binom{n}{k}_{F}$ is divisible by p. This proves the existence of the recurring triangles of zeroes that are the principal component of the Sierpinski Gasket. The exact congruence classes follow the relationship $\binom{n+i p^{*} p^{m}}{k+j p^{*} p^{m}}_{F} \equiv_{p}(-1)^{i k-n j}\binom{i}{j}\binom{n}{k}_{F}$, where $0 \leq n, k<p^{*} p^{m}$.

1. Introduction

Pascal's triangle is known to exhibit fractal behavior modulo prime numbers. This can be proven by using Lucas' Theorem:

Theorem 1.1. Write n and k in base p with digits $n_{0}, n_{1}, \ldots, n_{m}$ and $k_{0}, k_{1}, \ldots, k_{m}$. Then,

$$
\binom{n}{k} \equiv_{p}\binom{n_{0}}{k_{0}}\binom{n_{1}}{k_{1}} \cdots\binom{n_{m}}{k_{m}} .
$$

Consider the Fibonacci numbers as defined by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. The Fibonomial triangle is formed using the Fibotorial $!_{F}$ function in place of the factorial function, where $n!{ }_{F}=F_{n} F_{n-1} F_{n-2} \cdots F_{1}$. Then the Fibonomial coefficient $\binom{n}{k}_{F}$ is defined as $\frac{n!_{F}}{(n-k)!_{F} k!_{F}}$, where $\binom{n}{0}_{F}$ is defined to be 1 for $n \geq 0$, as with binomial coefficients. The Fibonomial triangle appears to exhibit a fractal structure, but Lucas' Theorem does not directly apply to Fibonomial coefficients [8]. Instead, we prove an analogue of Lucas' Theorem for divisibility by a particular class of primes p in section 3 and address exact congruence classes in section 4.

2. Background

We define p^{*} to be the rank of apparition of p in the Fibonacci sequence. The rank of apparition is the index of the first Fibonacci number divisible by p.
The Fibonacci sequence exhibits a number of interesting properties that will be used throughout this paper, among them the divisibility property, regular divisibility by a prime, and the shifting property. The following lemmas can be found in a variety of sources, including [10].
Lemma 2.1. (Lucas [6]) For positive integers n and $m, \operatorname{gcd}\left(F_{n}, F_{m}\right)=F_{g c d(n, m)}$. If $n \mid m$ then $\operatorname{gcd}(n, m)=n$, so $\operatorname{gcd}\left(F_{n}, F_{m}\right)=F_{n}$, and so $F_{n} \mid F_{m}$.

Lemma 2.2. For positive integer i and prime $p, p \mid F_{i p^{*}}$

THE FIBONACCI QUARTERLY

The periodic nature of the Fibonacci sequence modulo p follows.
Lemma 2.3. For positive integers n and $m, F_{n+m}=F_{m} F_{n+1}+F_{m-1} F_{n}$.
By a result of Sagan and Savage [7], the Fibonomial coefficients have a combinatorial interpretation. It follows that $\binom{n}{k}_{F}$ is a nonnegative integer.
The Fibonomial coefficients conform to a recurrence relation analogous to the recurrence relation on binomial coefficients:

Lemma 2.4. For positive integers n and k,

$$
\binom{n}{k}_{F}=F_{n-k+1}\binom{n-1}{k-1}_{F}+F_{k-1}\binom{n-1}{k}_{F} .
$$

Like the binomial coefficients, the Fibonomial coefficients possess a number of useful properties, among them the negation property and the iterative property:

Lemma 2.5. (Gould [2]) For $n, k \in \mathbb{Z}$,

$$
\binom{n}{k}_{F}=\binom{n}{n-k}_{F} .
$$

Lemma 2.6. (Gould [2]) For $a, b, c \in \mathbb{Z}$,

$$
\binom{a}{b}_{F}\binom{b}{c}_{F}=\binom{a}{c}_{F}\binom{a-c}{a-b}_{F}
$$

It is commonly known that the Fibonacci sequence modulo an integer is periodic. The period modulo p is called the Pisano period and is denoted $\pi(p)$. A related notion is the Pisano semiperiod, defined as the period of the modulo p Fibonacci sequence up to a sign.
Southwick proved an analogue of Lucas' theorem in the case $p=5$ using a theorem by Hu and Sun [9, 4]. Southwick requested a proof using only a prior theorem by Knuth and Wilf [5]. This method is utilized in Section 3.

3. Divisibility

By a result of Harris [3], when $p^{*}=p+1, \pi(p) \mid 2 p^{*}$, and p^{*} is the Pisano semiperiod. We rely on the notion of the semiperiod and assume for this paper that p is an odd prime and $p^{*}=p+1$.
For a nonnegative integer $x, \nu_{p}(x)$ denotes the p-adic valuation of x, i.e. the highest power of p dividing x.
We use a result of Knuth and Wilf [5], adapted for the Fibonacci sequence.
Theorem 3.1. (Knuth and Wilf) The highest power of an odd prime p that divides the Fibonomial coefficient $\binom{n}{k}_{F}$ is the number of carries that occur to the left of the radix point when k / p^{*} is added to $(n-k) / p^{*}$ in p-ary notation, plus the p-adic valuation $\nu_{p}\left(F_{p^{*}}\right)=1$ if a carry occurs across the radix point.

We require that p not be a Wall-Sun-Sun prime for $\nu_{p}\left(F_{p^{*}}\right)=1$ to hold.
Since we are interested in divisibility, we only require that the p-adic valuation is at least one, so it suffices to show that a carry occurs.

As in [1] and [8], we consider the base $\mathcal{F}_{p^{*}}=\left(1, p^{*}, p^{*} p, p^{*} p^{2}, \ldots\right)$. So $n=n_{0}+n_{1} p^{*}+n_{2} p^{*} p+$ $\cdots+n_{m} p^{*} p^{m-1}=\left(n_{0}, n_{1}, n_{2}, \ldots, n_{m}\right)_{\mathcal{F}_{p^{*}}}$. In this base, division by p^{*} results in a number $\left(n_{1}, n_{2}, n_{3}, \ldots, n_{m}\right)_{p}$, with fractional part $\frac{n_{0}}{p^{*}}$ only, which simplifies the counting of the carries.
Generalizing Southwick's proof in [8], we prove the following:
Theorem 3.2. Given that $p^{*}=p+1$ and integers $n, k>0$,

$$
p\left|\binom{n}{k}_{F} \Longleftrightarrow p\right|\binom{n_{0}}{k_{0}}_{F}\binom{n_{1}}{k_{1}}_{F} \cdots\binom{n_{m}}{k_{m}}_{F} .
$$

Visually this corresponds to the recurring triangles of zeroes in the Fibonomial triangle mod p. This is illustrated in Figure 1.

Proof. By Theorem 3.1, $p \left\lvert\,\binom{ n}{k}_{F}\right.$ if and only if a carry occurs in the addition of $\left(\frac{k}{p^{*}}\right)$ and $\left(\frac{n-k}{p^{*}}\right)$ in base p. The first carry occurs across the radix point or to the left of the radix point. Let $q=n-k=\left(q_{0}, q_{1}, \ldots, q_{m}\right)_{\mathcal{F}_{p^{*}}}$
(1) First consider the conditions necessary for the carry across the radix point.

If $n_{0} \geq k_{0}$, then $q_{0}=n_{0}-k_{0}, k_{0}+\left(q_{0}\right)=n_{0}<p^{*}$. In this case, there will be no carry.

Alternatively, if $k_{0}>n_{0}$, then a borrow occurs, so $q_{0}=n_{0}-k_{0}+p^{*}$. The addition of $\frac{k_{0}}{p^{*}}$ and $\frac{q_{0}}{p *}$ produces:

$$
\frac{k_{0}+n_{0}-k_{0}+p^{*}}{p^{*}}=\frac{n_{0}+p^{*}}{p^{*}} \geq 1 .
$$

Thus a carry occurs across the radix point if and only if $k_{0}>n_{0}$.
(2) If a carry across the radix point does not occur, then let the first carry occur in the $(j+1)^{s t}$ digit, that is, in the addition of k_{j} with q_{j} (note that the $(j+1)^{s t}$ digit of n in base $\mathcal{F}_{p^{*}}$ is $n_{j} p^{*} p^{j-1}$). The division by p^{*} moves the digits to the right by one, so the carry occurs at the $j^{\text {th }}$ digit in base p.

If $n_{j} \geq k_{j}$, then $k_{j}+q_{j}=k_{j}+\left(n_{j}-k_{j}\right)<p$ since we assume there was no previous carry.

If $k_{j}>n_{j}$, the subtraction $n_{j}-k_{j}$ results in a borrow, so $q_{j}=n_{j}-k_{j}+p$, and so

$$
k_{j}+q_{j}=k_{j}+\left(n_{j}-k_{j}+p\right)=n_{j}+p \geq p
$$

This case is the only case in which a carry occurs.
Therefore if a carry occurs in the $j^{\text {th }}$ position, then $n_{j}<k_{j}$, and so $p \left\lvert\,\binom{ n_{j}}{k_{j}}\right.$ since $\binom{n_{j}}{k_{j}}=0$, and so $p \left\lvert\,\binom{ n_{0}}{k_{0}}_{F}\binom{n_{1}}{k_{1}}_{F} \cdots\binom{n_{m}}{k_{m}}_{F}\right.$. Using the above result and Theorem 3.1, we conclude that if $p \left\lvert\,\binom{ n}{k}_{F}\right.$ then $p \left\lvert\,\binom{ n_{0}}{k_{0}}_{F}\binom{n_{1}}{k_{1}}_{F} \cdots\binom{n_{m}}{k_{m}}_{F}\right.$.
For the reverse direction, we note that all these steps and Theorem 3.1 are reversible.
Note that for $n<k$ the statement follows trivially.
Therefore, $p\left|\binom{n}{k}_{F} \Leftrightarrow p\right|\binom{n_{0}}{k_{0}}_{F}\binom{n_{1}}{k_{1}}_{F} \cdots\binom{n_{m}}{k_{m}}_{F}$.
Corollary 3.3. Given $0 \leq m$ and $0 \leq n, k<p^{*} p^{m}$, for all $i, j \in \mathbb{Z}$ such that $0 \leq j<i<p$,

$$
p\left|\binom{n+i p^{*} p^{m}}{k+j p^{*} p^{m}}_{F} \Longleftrightarrow p\right|\binom{n}{k}_{F} .
$$

THE FIBONACCI QUARTERLY

Proof. By Theorem 3.2, since $p \nmid\binom{i}{j}_{F}$,

$$
\begin{aligned}
p\left|\binom{n}{k}_{F} \Longleftrightarrow p\right|\binom{n_{0}}{k_{0}}_{F}\binom{n_{1}}{k_{1}}_{F} \ldots\binom{n_{m}}{k_{m}}_{F} & \Longleftrightarrow p \left\lvert\,\binom{ n_{0}}{k_{0}}_{F}\binom{n_{1}}{k_{1}}_{F} \ldots\binom{n_{m}}{k_{m}}_{F}\binom{i}{j}_{F}\right. \\
& \Longleftrightarrow p \left\lvert\,\binom{ n+i p^{*} p^{m}}{k+j p^{*} p^{m}}_{F} .\right.
\end{aligned}
$$

4. Exact Nonzero Congruence Classes

We begin with a number of necessary Lemmas.
Lemma 4.1. If $\frac{a}{b}, \frac{a}{c}, \frac{b}{c} \in \mathbb{Z}$, with $\frac{a}{c} \equiv_{p} a^{\prime}$ and $\frac{b}{c} \equiv_{p} b^{\prime} \not \equiv_{p} 0$, then $\frac{a}{b} \equiv_{p} a^{\prime}\left(b^{\prime}\right)^{-1}$.
Proof. Since $c \neq 0$, we can multiply the fraction $\frac{a}{b}$ by $\frac{1 / c}{1 / c}$. Since the resulting fraction is an integer, it can be reduced modulo p to $a^{\prime}\left(b^{\prime}\right)^{-1}$. Note that $\left(b^{\prime}\right)^{-1}$ exists because p is prime and $b^{\prime} \not \equiv_{p} 0$.

Lemma 4.2. For $0 \leq n<p^{*} p^{m}, F_{n+p^{*} p^{m}} \equiv_{p}-F_{n}$.
Proof. Since $p^{*}=\frac{1}{2} \pi(p)$ is the semiperiod, $F_{n+p^{*}} \equiv_{p}-F_{n}$.
Then, since $\left(p^{m}-1\right)$ is even and $\pi(p)=2 p^{*}, F_{n+p^{*}} \equiv_{p}-F_{n}$ implies $F_{n+p^{*} p^{m}} \equiv_{p}-F_{n}$.

Lemma 4.3. For $i>0$,

$$
\frac{F_{i p^{*} p^{m}}}{F_{p^{*} p^{m}}} \equiv_{p} i(-1)^{i-1} .
$$

Proof. We prove this by induction.
First, let $i=1$. Then, the statement follows trivially.
Now, assume the inductive hypothesis:

$$
\frac{F_{i p^{*} p^{m}}}{F_{p^{*} p^{m}}} \equiv_{p}(-1)^{i-1} i
$$

Consider

$$
\frac{F_{(1+i) p^{*} p^{m}}}{F_{p^{*} p^{m}}}=\frac{F_{p^{*} p^{m}+i p^{*} p^{m}}}{F_{p^{*} p^{m}}} .
$$

We apply the shifting property of the Fibonacci sequence to obtain:

$$
\frac{F_{p^{*} p^{m}+i p^{*} p^{m}}}{F_{p^{*} p^{m}}}=\frac{F_{p^{*} p^{m}} F_{i p^{*} p^{m}+1}+F_{p^{*} p^{m}-1} F_{i p^{*} p^{m}}}{F_{p^{*} p^{m}}} .
$$

Then we simplify by canceling like terms on the left and applying the induction hypothesis on the right:

$$
F_{i p^{*} p^{m}+1}+F_{p^{*} p^{m}-1}(-1)^{i-1}(i) \equiv_{p}(-1)^{i}+(-1)^{i}(i) \equiv_{p}(-1)^{(i+1)-1}(i+1) .
$$

Lemma 4.4. For $i>0$,

$$
\binom{i p^{*} p^{m}}{p^{*} p^{m}}_{F} \equiv_{p} i .
$$

Proof. By definition of the Fibonomial coefficient,

$$
\binom{i p^{*} p^{m}}{p^{*} p^{m}}_{F}=\frac{F_{i p^{*} p^{m}} F_{i p^{*} p^{m}-1} \cdots F_{(i-1) p^{*} p^{m}} F_{(i-1) p^{*} p^{m}-1} \cdots F_{1}}{\left(F_{(i-1) p^{*} p^{m}} F_{(i-1) p^{*} p^{m}-1} \cdots F_{1}\right) F_{p^{*} p^{m}} F_{p^{*} p^{m}-1} \cdots F_{1}}
$$

Canceling like terms gives

$$
\frac{F_{i p^{*} p^{m}} F_{i p^{*} p^{m}-1} \cdots F_{i p^{*} p^{m}-\left(p^{*} p^{m}-1\right)}}{F_{p^{*} p^{m}} F_{p^{*} p^{m}-1} \cdots F_{1}}
$$

The terms in the above expression take three forms, which we represent separately for clarity. Note that all reduction modulo p happens term-wise, and thus the result is an integer.
(1) We first consider terms of the form $F_{i p^{*} p^{m}-a}$, where $p^{*} \nmid a$. For each of these terms, we identify a corresponding term in the denominator:

$$
\frac{F_{i p^{*} p^{m}-a}}{F_{p^{*} p^{m}-a}} .
$$

Altogether, these terms take the form

$$
\prod_{\substack{a=1 \\ p^{*} \nmid a}}^{p^{*} p^{m}-1} \frac{F_{i p^{*} p^{m}-a}}{F_{p}^{*} p^{m}-a} .
$$

We apply Lemma 4.2 to the top so that we can cancel the top and bottom. Since there are $p^{*} p^{m}-1-\left(p^{m}-1\right)=p^{m+1}$ many such terms, the result after applying Lemma 4.2 to each is $(-1)^{(i-1)\left(p^{m+1}\right)} \equiv_{p}(-1)^{i-1}$, because p^{m+1} is odd, as p is assumed to be an odd prime.
(2) Next we consider terms of the form $F_{\left(i p^{m}-a\right) p^{*}}$:

$$
\prod_{a=1}^{p^{m}-1} \frac{F_{\left(i p^{m}-a\right) p^{*}}}{F_{\left(p^{m}-a\right) p^{*}}} .
$$

By Lemma 4.1 and Lemma 4.3,

$$
\left(\prod_{a=1}^{p^{m}-1} \frac{F_{\left(i p^{m}-a\right) p^{*}}}{F_{\left(p^{m}-a\right) p^{*}}}\right)\left(\frac{\frac{1}{F_{p^{*}}}}{\frac{1}{F_{p^{*}}}}\right)^{p^{m}-1} \equiv_{p} \prod_{a=1}^{p^{m}-1} \frac{(-1)^{i p^{m}-a-1}\left(i p^{m}-a\right)}{(-1)^{p^{m}-a-1}\left(p^{m}-a\right)} \equiv_{p} \prod_{a=1}^{p^{m}-1} \frac{(-1)^{(i-1) p^{m}}(-a)}{(-a)}
$$

Note that in the modular group we use division notation to represent multiplication by an inverse.

Since p^{m} is odd and $p^{m}-1$ is even,

$$
\prod_{a=1}^{p^{m}-1} \frac{(-1)^{(i-1) p^{m}}(-a)}{(-a)} \equiv_{p}(-1)^{(i-1)\left(p^{m}-1\right)} \equiv_{p} 1 .
$$

(3) The only remaining term is the quotient $\frac{F_{i p^{*} p^{m}}}{F_{p^{*} p^{m}}} \equiv_{p} i(-1)^{i-1}$, by Lemma 4.3.

THE FIBONACCI QUARTERLY

From the three cases above,

$$
\binom{i p^{*} p^{m}}{p^{*} p^{m}}_{F} \equiv_{p} i(-1)^{2(i-1)} \equiv_{p} i
$$

Lemma 4.5. For $0 \leq i, j<p$,

$$
\binom{i p^{*} p^{m}}{j p^{*} p^{m}}_{F} \equiv_{p}\binom{i}{j} .
$$

Proof. We prove this using induction. For a base case, let $i=0$. Then if $j=0$,

$$
\binom{0}{0}_{F} \equiv_{p} 1 \equiv_{p}\binom{0}{0} .
$$

If $j>0$, then

$$
\binom{0}{j p^{*} p^{m}}_{F} \equiv_{p} 0 \equiv_{p}\binom{0}{j} .
$$

Now assume $\binom{i p^{*} p^{m}}{j p^{*} p^{m}}_{F} \equiv_{p}\binom{i}{j}$. Then we apply Lemmas 2.5 and 2.6.
We let $a=(i+1) p^{*} p^{m}, b=(i+1-j) p^{*} p^{m}$, and $c=p^{*} p^{m}$, thus yielding the following:

$$
\binom{(i+1) p^{*} p^{m}}{j p^{*} p^{m}}_{F}\binom{(i+1-j) p^{*} p^{m}}{p^{*} p^{m}}_{F}=\binom{(i+1) p^{*} p^{m}}{p^{*} p^{m}}_{F}\binom{i p^{*} p^{m}}{j p^{*} p^{m}}_{F}
$$

Applying the induction hypothesis and Lemma 4.4 gives

$$
\binom{(i+1) p^{*} p^{m}}{j p^{*} p^{m}}_{F}(i+1-j) \equiv_{p}(i+1)\binom{i}{j} .
$$

We then multiply both sides by $(i+1-j)^{-1}$ to obtain

$$
\binom{(i+1) p^{*} p^{m}}{j p^{*} p^{m}}_{F} \equiv_{p} \frac{(i+1)}{(i+1-j)}\binom{i}{j} .
$$

Equivalently,

$$
\binom{(i+1) p^{*} p^{m}}{j p^{*} p^{m}}_{F} \equiv_{p}\binom{i+1}{j},
$$

as desired.

We now proceed with our main theorem for the exact congruence classes of the Fibonomial triangle modulo p. For a visual representation of the relation using $p=7$, see Figure 1.

Theorem 4.6. For $0<n<p^{*} p^{m}, 0 \leq k<p^{*} p^{m}, 0 \leq i, j<p, 0 \leq m$,

$$
\binom{n+i p^{*} p^{m}}{k+j p^{*} p^{m}}_{F} \equiv_{p}(-1)^{i k-n j}\binom{i}{j}\binom{n}{k}_{F} .
$$

Figure 1. Exact congruence classes modulo 7.
Proof. We proceed by induction.
First let $n=k=0$. Then the statement follows directly from Lemma 4.5.
When $n=0, k>0$, by Theorem 3.3, since $p\binom{0}{k}_{F}$,

$$
\binom{i p^{*} p^{m}}{k+j p^{*} p^{m}}_{F} \equiv_{p} 0 \equiv_{p}(-1)^{i k-0 j}\binom{i}{j}\binom{0}{k} .
$$

Let $n>0, k \geq 0$. We assume

$$
\binom{n-1+i p^{*} p^{m}}{k+j p^{*} p^{m}}_{F} \equiv_{p}(-1)^{i k-(n-1) j}\binom{i}{j}\binom{n-1}{k}_{F}
$$

for all k.
Using the recurrence relation for Fibonomial coefficients,

$$
\begin{aligned}
\binom{n+i p^{*} p^{m}}{k+j p^{*} p^{m}}_{F} \equiv & F_{n+(i-j) p^{*} p^{m}-k+1}\binom{n-1+i p^{*} p^{m}}{k-1+j p^{*} p^{m}}_{F}+F_{k-1+j p^{*} p^{m}}\binom{n-1+i p^{*} p^{m}}{k+j p^{*} p^{m}}_{F} \\
\equiv & \equiv_{p}(-1)^{i-j} F_{n-k+1}(-1)^{i(k-1)-(n-1) j}\binom{i}{j}\binom{n-1}{k-1}_{F} \\
& \quad+(-1)^{j} F_{k-1}(-1)^{i(k)-(n-1) j}\binom{i}{j}\binom{n-1}{k}_{F} \\
\equiv & \equiv_{p}(-1)^{i k-n j}\binom{i}{j}\left[F_{n-k+1}\binom{n-1}{k-1}_{F}+F_{k-1}\binom{n-1}{k}_{F}\right] \\
\equiv & p(-1)^{i k-n j}\binom{i}{j}\binom{n}{k}_{F} .
\end{aligned}
$$

THE FIBONACCI QUARTERLY

This completes the proof.

5. Further Directions

In Theorem 4.6, note that

$$
i k-n j=\operatorname{det}\left(\begin{array}{cc}
i & n \\
j & k
\end{array}\right) .
$$

This may be a coincidence but, alternatively, it might indicate the existence of a more general relation for different types of primes.
Theorem 4.6 can be generalized to other primes by proving variants of the prerequisite lemmas. For example, in the case $p=5,5^{*}=5$, and $F_{n+5} \equiv_{5} 3 F_{n}[9,8]$.
However, for some primes, problems arise. In the case $p=11, p^{*}=10$. In this case, one would need a base other than base $\mathcal{F}_{p^{*}}$, because the divisibility theorem cannot be proven in base $\mathcal{F}_{p^{*}}[8]$. The form of such a base remains to be investigated.

References

[1] X. Chen and B. Sagan, The fractal nature of the Fibonomial triangle, (2013), arXiv:1306.2377.
[2] M. Dziemianczuk, Generalization of Fibonomial coefficients, (2009), arXiv:0908.3248.
[3] T. Harris, Notes on the Pisano semiperiod, http://www.tkmharris.net/maths/.
[4] H. Hu and Z.-W. Sun, An extension of Lucas' theorem, Proceedings of the American Mathematical Society, 129.12 (2001), 3471-3478.
[5] D. E. Knuth and H. S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Rein Angew. Math., 396 (1989), 212-219.
[6] E. Lucas, Théorie des fonctions numériques simplement périodiques, American Journal of Mathematics, 1.4 (1878), 289-321.
[7] B. E. Sagan and C. D. Savage, Combinatorial interpretations of binomial coefficient analogues related to Lucas sequences, Integers, 10.6 (2010), 697-703.
[8] J. Southwick, A conjecture concerning the Fibonomial triangle, (2016), arXiv:1604.04775.
[9] J. T. Southwick, Divisibility conditions for Fibonomial coefficients, Ph. D. thesis, Wake Forest University, 2016.
[10] H. J. Wilcox, Fibonacci sequences of period n in groups, The Fibonacci Quarterly, 24.4 (1986), 356-361.
MSC2010: 11B65, 11B39
Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130
E-mail address: michael.debellevue@gmail.com
Center for Applied Mathematics, Cornell University, Ithaca, NY 14853
E-mail address: ek672@cornell.edu

