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Abstract. Pascal’s triangle is known to exhibit fractal behavior modulo prime numbers.
We tackle the analogous notion in the Fibonomial triangle modulo prime p with the rank of
apparition p∗ = p + 1, proving that these objects form a structure similar to the Sierpinski
Gasket. Within a large triangle of p∗pm+1 many rows, in the ith triangle from the top and

the jth triangle from the left,
(
n+ip∗pm

k+jp∗pm

)
F

is divisible by p if and only if
(
n
k

)
F

is divisible

by p. This proves the existence of the recurring triangles of zeroes that are the principal
component of the Sierpinski Gasket. The exact congruence classes follow the relationship(
n+ip∗pm

k+jp∗pm

)
F
≡p (−1)ik−nj

(
i
j

)(
n
k

)
F
, where 0 ≤ n, k < p∗pm.

1. Introduction

Pascal’s triangle is known to exhibit fractal behavior modulo prime numbers. This can be
proven by using Lucas’ Theorem:

Theorem 1.1. Write n and k in base p with digits n0, n1, . . . , nm and k0, k1, . . . , km. Then,(
n

k

)
≡p

(
n0
k0

)(
n1
k1

)
· · ·
(
nm
km

)
.

Consider the Fibonacci numbers as defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for
n ≥ 2. The Fibonomial triangle is formed using the Fibotorial !F function in place of the
factorial function, where n!F = FnFn−1Fn−2 · · ·F1. Then the Fibonomial coefficient

(
n
k

)
F

is

defined as n!F
(n−k)!F k!F

, where
(
n
0

)
F

is defined to be 1 for n ≥ 0, as with binomial coefficients.

The Fibonomial triangle appears to exhibit a fractal structure, but Lucas’ Theorem does not
directly apply to Fibonomial coefficients [8]. Instead, we prove an analogue of Lucas’ Theorem
for divisibility by a particular class of primes p in section 3 and address exact congruence classes
in section 4.

2. Background

We define p∗ to be the rank of apparition of p in the Fibonacci sequence. The rank of apparition
is the index of the first Fibonacci number divisible by p.

The Fibonacci sequence exhibits a number of interesting properties that will be used through-
out this paper, among them the divisibility property, regular divisibility by a prime, and the
shifting property. The following lemmas can be found in a variety of sources, including [10].

Lemma 2.1. (Lucas [6]) For positive integers n and m, gcd(Fn, Fm) = Fgcd(n,m). If n | m
then gcd(n,m) = n, so gcd(Fn, Fm) = Fn, and so Fn | Fm.

Lemma 2.2. For positive integer i and prime p, p | Fip∗
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The periodic nature of the Fibonacci sequence modulo p follows.

Lemma 2.3. For positive integers n and m, Fn+m = FmFn+1 + Fm−1Fn.

By a result of Sagan and Savage [7], the Fibonomial coefficients have a combinatorial inter-
pretation. It follows that

(
n
k

)
F

is a nonnegative integer.

The Fibonomial coefficients conform to a recurrence relation analogous to the recurrence re-
lation on binomial coefficients:

Lemma 2.4. For positive integers n and k,(
n

k

)
F

= Fn−k+1

(
n− 1

k − 1

)
F

+ Fk−1

(
n− 1

k

)
F

.

Like the binomial coefficients, the Fibonomial coefficients possess a number of useful properties,
among them the negation property and the iterative property:

Lemma 2.5. (Gould [2]) For n, k ∈ Z,(
n

k

)
F

=

(
n

n− k

)
F

.

Lemma 2.6. (Gould [2]) For a, b, c ∈ Z,(
a

b

)
F

(
b

c

)
F

=

(
a

c

)
F

(
a− c
a− b

)
F

.

It is commonly known that the Fibonacci sequence modulo an integer is periodic. The period
modulo p is called the Pisano period and is denoted π(p). A related notion is the Pisano
semiperiod, defined as the period of the modulo p Fibonacci sequence up to a sign.

Southwick proved an analogue of Lucas’ theorem in the case p = 5 using a theorem by Hu
and Sun [9, 4]. Southwick requested a proof using only a prior theorem by Knuth and Wilf
[5]. This method is utilized in Section 3.

3. Divisibility

By a result of Harris [3], when p∗ = p + 1, π(p) | 2p∗, and p∗ is the Pisano semiperiod. We
rely on the notion of the semiperiod and assume for this paper that p is an odd prime and
p∗ = p+ 1.

For a nonnegative integer x, νp(x) denotes the p-adic valuation of x, i.e. the highest power of
p dividing x.

We use a result of Knuth and Wilf [5], adapted for the Fibonacci sequence.

Theorem 3.1. (Knuth and Wilf) The highest power of an odd prime p that divides the Fi-
bonomial coefficient

(
n
k

)
F

is the number of carries that occur to the left of the radix point when
k/p∗ is added to (n− k)/p∗ in p-ary notation, plus the p-adic valuation νp(Fp∗) = 1 if a carry
occurs across the radix point.

We require that p not be a Wall-Sun-Sun prime for νp(Fp∗) = 1 to hold.

Since we are interested in divisibility, we only require that the p-adic valuation is at least one,
so it suffices to show that a carry occurs.
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As in [1] and [8], we consider the base Fp∗ = (1, p∗, p∗p, p∗p2, . . . ). So n = n0 +n1p
∗+n2p

∗p+
· · · + nmp

∗pm−1 = (n0, n1, n2, . . . , nm)Fp∗ . In this base, division by p∗ results in a number

(n1, n2, n3, . . . , nm)p, with fractional part n0
p∗ only, which simplifies the counting of the carries.

Generalizing Southwick’s proof in [8], we prove the following:

Theorem 3.2. Given that p∗ = p+ 1 and integers n, k > 0,

p |
(
n

k

)
F

⇐⇒ p |
(
n0
k0

)
F

(
n1
k1

)
F

· · ·
(
nm
km

)
F

.

Visually this corresponds to the recurring triangles of zeroes in the Fibonomial triangle mod
p. This is illustrated in Figure 1.

Proof. By Theorem 3.1, p |
(
n
k

)
F

if and only if a carry occurs in the addition of ( k
p∗ ) and (n−kp∗ )

in base p. The first carry occurs across the radix point or to the left of the radix point. Let
q = n− k = (q0, q1, . . . , qm)Fp∗

(1) First consider the conditions necessary for the carry across the radix point.
If n0 ≥ k0, then q0 = n0 − k0, k0 + (q0) = n0 < p∗. In this case, there will be no

carry.
Alternatively, if k0 > n0, then a borrow occurs, so q0 = n0 − k0 + p∗. The addition

of k0
p∗ and q0

p∗ produces:

k0 + n0 − k0 + p∗

p∗
=
n0 + p∗

p∗
≥ 1.

Thus a carry occurs across the radix point if and only if k0 > n0.

(2) If a carry across the radix point does not occur, then let the first carry occur in the
(j + 1)st digit, that is, in the addition of kj with qj (note that the (j + 1)st digit of n
in base Fp∗ is njp

∗pj−1). The division by p∗ moves the digits to the right by one, so

the carry occurs at the jth digit in base p.
If nj ≥ kj , then kj + qj = kj + (nj − kj) < p since we assume there was no previous

carry.
If kj > nj , the subtraction nj − kj results in a borrow, so qj = nj − kj + p, and so

kj + qj = kj + (nj − kj + p) = nj + p ≥ p.
This case is the only case in which a carry occurs.

Therefore if a carry occurs in the jth position, then nj < kj , and so p |
(nj

kj

)
F

since(nj

kj

)
= 0, and so p |

(
n0

k0

)
F

(
n1

k1

)
F
· · ·
(
nm

km

)
F

. Using the above result and Theorem 3.1, we

conclude that if p |
(
n
k

)
F

then p |
(
n0

k0

)
F

(
n1

k1

)
F
· · ·
(
nm

km

)
F
.

For the reverse direction, we note that all these steps and Theorem 3.1 are reversible.

Note that for n < k the statement follows trivially.

Therefore, p |
(
n
k

)
F
⇔ p |

(
n0

k0

)
F

(
n1

k1

)
F
· · ·
(
nm

km

)
F

. �

Corollary 3.3. Given 0 ≤ m and 0 ≤ n, k < p∗pm, for all i, j ∈ Z such that 0 ≤ j < i < p,

p |
(
n+ ip∗pm

k + jp∗pm

)
F

⇐⇒ p |
(
n

k

)
F

.
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Proof. By Theorem 3.2, since p -
(
i
j

)
F

,

p |
(
n

k

)
F

⇐⇒ p |
(
n0
k0

)
F

(
n1
k1

)
F

· · ·
(
nm
km

)
F

⇐⇒ p |
(
n0
k0

)
F

(
n1
k1

)
F

· · ·
(
nm
km

)
F

(
i

j

)
F

⇐⇒ p |
(
n+ ip∗pm

k + jp∗pm

)
F

.

�

4. Exact Nonzero Congruence Classes

We begin with a number of necessary Lemmas.

Lemma 4.1. If a
b , a

c , b
c ∈ Z, with a

c ≡p a
′ and b

c ≡p b
′ 6≡p 0, then a

b ≡p a
′(b′)−1.

Proof. Since c 6= 0, we can multiply the fraction a
b by 1/c

1/c . Since the resulting fraction is an

integer, it can be reduced modulo p to a′(b′)−1. Note that (b′)−1 exists because p is prime and
b′ 6≡p 0. �

Lemma 4.2. For 0 ≤ n < p∗pm, Fn+p∗pm ≡p −Fn.

Proof. Since p∗ = 1
2π(p) is the semiperiod, Fn+p∗ ≡p −Fn.

Then, since (pm − 1) is even and π(p) = 2p∗, Fn+p∗ ≡p −Fn implies Fn+p∗pm ≡p −Fn.

�

Lemma 4.3. For i > 0,
Fip∗pm

Fp∗pm
≡p i(−1)i−1.

Proof. We prove this by induction.

First, let i = 1. Then, the statement follows trivially.

Now, assume the inductive hypothesis:

Fip∗pm

Fp∗pm
≡p (−1)i−1i.

Consider

F(1+i)p∗pm

Fp∗pm
=
Fp∗pm+ip∗pm

Fp∗pm
.

We apply the shifting property of the Fibonacci sequence to obtain:

Fp∗pm+ip∗pm

Fp∗pm
=
Fp∗pmFip∗pm+1 + Fp∗pm−1Fip∗pm

Fp∗pm
.

Then we simplify by canceling like terms on the left and applying the induction hypothesis on
the right:

Fip∗pm+1 + Fp∗pm−1(−1)i−1(i) ≡p (−1)i + (−1)i(i) ≡p (−1)(i+1)−1(i+ 1).

�
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Lemma 4.4. For i > 0, (
ip∗pm

p∗pm

)
F

≡p i.

Proof. By definition of the Fibonomial coefficient,(
ip∗pm

p∗pm

)
F

=
Fip∗pmFip∗pm−1 · · ·F(i−1)p∗pmF(i−1)p∗pm−1 · · ·F1

(F(i−1)p∗pmF(i−1)p∗pm−1 · · ·F1)Fp∗pmFp∗pm−1 · · ·F1

Canceling like terms gives

Fip∗pmFip∗pm−1 · · ·Fip∗pm−(p∗pm−1)

Fp∗pmFp∗pm−1 · · ·F1

The terms in the above expression take three forms, which we represent separately for clarity.
Note that all reduction modulo p happens term-wise, and thus the result is an integer.

(1) We first consider terms of the form Fip∗pm−a, where p∗ - a. For each of these terms,
we identify a corresponding term in the denominator:

Fip∗pm−a
Fp∗pm−a

.

Altogether, these terms take the form

p∗pm−1∏
a=1
p∗-a

Fip∗pm−a
F ∗p p

m − a
.

We apply Lemma 4.2 to the top so that we can cancel the top and bottom. Since there
are p∗pm − 1 − (pm − 1) = pm+1 many such terms, the result after applying Lemma

4.2 to each is (−1)(i−1)(p
m+1) ≡p (−1)i−1, because pm+1 is odd, as p is assumed to be

an odd prime.
(2) Next we consider terms of the form F(ipm−a)p∗ :

pm−1∏
a=1

F(ipm−a)p∗

F(pm−a)p∗
.

By Lemma 4.1 and Lemma 4.3,(
pm−1∏
a=1

F(ipm−a)p∗

F(pm−a)p∗

)( 1
Fp∗

1
Fp∗

)pm−1

≡p

pm−1∏
a=1

(−1)ip
m−a−1(ipm − a)

(−1)pm−a−1(pm − a)
≡p

pm−1∏
a=1

(−1)(i−1)p
m

(−a)

(−a)
.

Note that in the modular group we use division notation to represent multiplication
by an inverse.

Since pm is odd and pm − 1 is even,

pm−1∏
a=1

(−1)(i−1)p
m

(−a)

(−a)
≡p (−1)(i−1)(p

m−1) ≡p 1.

(3) The only remaining term is the quotient
Fip∗pm
Fp∗pm

≡p i(−1)i−1, by Lemma 4.3.
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From the three cases above, (
ip∗pm

p∗pm

)
F

≡p i(−1)2(i−1) ≡p i

�

Lemma 4.5. For 0 ≤ i, j < p, (
ip∗pm

jp∗pm

)
F

≡p

(
i

j

)
.

Proof. We prove this using induction. For a base case, let i = 0. Then if j = 0,(
0

0

)
F

≡p 1 ≡p

(
0

0

)
.

If j > 0, then (
0

jp∗pm

)
F

≡p 0 ≡p

(
0

j

)
.

Now assume
(
ip∗pm

jp∗pm

)
F
≡p

(
i
j

)
. Then we apply Lemmas 2.5 and 2.6.

We let a = (i+ 1)p∗pm, b = (i+ 1− j)p∗pm, and c = p∗pm, thus yielding the following:

(
(i+ 1)p∗pm

jp∗pm

)
F

(
(i+ 1− j)p∗pm

p∗pm

)
F

=

(
(i+ 1)p∗pm

p∗pm

)
F

(
ip∗pm

jp∗pm

)
F

Applying the induction hypothesis and Lemma 4.4 gives

(
(i+ 1)p∗pm

jp∗pm

)
F

(i+ 1− j) ≡p (i+ 1)

(
i

j

)
.

We then multiply both sides by (i+ 1− j)−1 to obtain

(
(i+ 1)p∗pm

jp∗pm

)
F

≡p
(i+ 1)

(i+ 1− j)

(
i

j

)
.

Equivalently, (
(i+ 1)p∗pm

jp∗pm

)
F

≡p

(
i+ 1

j

)
,

as desired.

�

We now proceed with our main theorem for the exact congruence classes of the Fibonomial
triangle modulo p. For a visual representation of the relation using p = 7, see Figure 1.

Theorem 4.6. For 0 < n < p∗pm, 0 ≤ k < p∗pm, 0 ≤ i, j < p, 0 ≤ m,(
n+ ip∗pm

k + jp∗pm

)
F

≡p (−1)ik−nj
(
i

j

)(
n

k

)
F

.
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Figure 1. Exact congruence classes modulo 7.

Proof. We proceed by induction.

First let n = k = 0. Then the statement follows directly from Lemma 4.5.

When n = 0, k > 0, by Theorem 3.3, since p|
(
0
k

)
F

,(
ip∗pm

k + jp∗pm

)
F

≡p 0 ≡p (−1)ik−0j
(
i

j

)(
0

k

)
.

Let n > 0, k ≥ 0. We assume(
n− 1 + ip∗pm

k + jp∗pm

)
F

≡p (−1)ik−(n−1)j
(
i

j

)(
n− 1

k

)
F

for all k.

Using the recurrence relation for Fibonomial coefficients,

(
n+ ip∗pm

k + jp∗pm

)
F

≡p Fn+(i−j)p∗pm−k+1

(
n− 1 + ip∗pm

k − 1 + jp∗pm

)
F

+ Fk−1+jp∗pm

(
n− 1 + ip∗pm

k + jp∗pm

)
F

≡p (−1)i−jFn−k+1(−1)i(k−1)−(n−1)j
(
i

j

)(
n− 1

k − 1

)
F

+ (−1)jFk−1(−1)i(k)−(n−1)j
(
i

j

)(
n− 1

k

)
F

≡p (−1)ik−nj
(
i

j

)[
Fn−k+1

(
n− 1

k − 1

)
F

+ Fk−1

(
n− 1

k

)
F

]
≡p (−1)ik−nj

(
i

j

)(
n

k

)
F

.
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This completes the proof.

�

5. Further Directions

In Theorem 4.6, note that

ik − nj = det

(
i n
j k

)
.

This may be a coincidence but, alternatively, it might indicate the existence of a more general
relation for different types of primes.

Theorem 4.6 can be generalized to other primes by proving variants of the prerequisite lemmas.
For example, in the case p = 5, 5∗ = 5, and Fn+5 ≡5 3Fn [9, 8].

However, for some primes, problems arise. In the case p = 11, p∗ = 10. In this case, one would
need a base other than base Fp∗ , because the divisibility theorem cannot be proven in base
Fp∗ [8]. The form of such a base remains to be investigated.
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