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PRIME p, WHERE THE RANK OF APPARITION OF p IS p+1
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ABSTRACT. Pascal’s triangle is known to exhibit fractal behavior modulo prime numbers.
We tackle the analogous notion in the Fibonomial triangle modulo prime p with the rank of
apparition p* = p + 1, proving that these objects form a structure similar to the Sierpinski
Gasket. Within a large triangle of p*p™*! many rows, in the i'" triangle from the top and

the 7% triangle from the left, (Zi;giﬁ:)F is divisible by p if and only if (:)F is divisible

by p. This proves the existence of the recurring triangles of zeroes that are the principal
component of the Sierpinski Gasket. The exact congruence classes follow the relationship

(eimen) . =p (1™ 7 (0) (7)o where 0 <,k < p™p™.

1. INTRODUCTION

Pascal’s triangle is known to exhibit fractal behavior modulo prime numbers. This can be
proven by using Lucas’ Theorem:

Theorem 1.1. Write n and k in base p with digits ng,n1,...,Nm and ko, k1, ..., kmn. Then,

ny no ni Nm

k) P \ko) \ ki km /)’
Consider the Fibonacci numbers as defined by Fy = 0, F} = 1, and F,, = F,,_1 + F,,_o for
n > 2. The Fibonomial triangle is formed using the Fibotorial !r function in place of the
factorial function, where n!p = F,F,,_1F,,_o---F;. Then the Fibonomial coefficient (Z) is

F
defined as mf%ﬁ’ where (8) - is defined to be 1 for n > 0, as with binomial coefficients.
The Fibonomial triangle appears to exhibit a fractal structure, but Lucas’ Theorem does not
directly apply to Fibonomial coefficients [8]. Instead, we prove an analogue of Lucas’ Theorem
for divisibility by a particular class of primes p in section 3 and address exact congruence classes

in section 4.

2. BACKGROUND

We define p* to be the rank of apparition of p in the Fibonacci sequence. The rank of apparition
is the index of the first Fibonacci number divisible by p.

The Fibonacci sequence exhibits a number of interesting properties that will be used through-
out this paper, among them the divisibility property, regular divisibility by a prime, and the
shifting property. The following lemmas can be found in a variety of sources, including [10].

Lemma 2.1. (Lucas [6]) For positive integers n and m, gcd(Fy, Fin) = Fyecammy- If n | m
then ged(n,m) =n, so gcd(F,, Fy,) = F,, and so F, | Fy,.

Lemma 2.2. For positive integer i and prime p, p | Fip-
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The periodic nature of the Fibonacci sequence modulo p follows.

Lemma 2.3. For positive integers n and m, Fyim = FpnFpy1 + Fn—1Fn.

By a result of Sagan and Savage [7], the Fibonomial coefficients have a combinatorial inter-
pretation. It follows that (Z) 5 1s a nonnegative integer.

The Fibonomial coefficients conform to a recurrence relation analogous to the recurrence re-
lation on binomial coefficients:

Lemma 2.4. For positive integers n and k,

n n—1 n—1
=F,_ Fi_ .
<k>F k+1<k_1>F+ g 1< k )F

Like the binomial coefficients, the Fibonomial coefficients possess a number of useful properties,
among them the negation property and the iterative property:

Lemma 2.5. (Gould [2]) For n,k € Z,

<Z>F - <nﬁk>F'

Lemma 2.6. (Gould [2]) For a,b,c € Z,
a b _[a a—c
b)p\c)r \c)p\a—b),

It is commonly known that the Fibonacci sequence modulo an integer is periodic. The period
modulo p is called the Pisano period and is denoted m(p). A related notion is the Pisano
semiperiod, defined as the period of the modulo p Fibonacci sequence up to a sign.

Southwick proved an analogue of Lucas’ theorem in the case p = 5 using a theorem by Hu
and Sun [9, 4]. Southwick requested a proof using only a prior theorem by Knuth and Wilf
[5]. This method is utilized in Section 3.

3. DIVISIBILITY

By a result of Harris [3], when p* = p+ 1, 7(p) | 2p*, and p* is the Pisano semiperiod. We
rely on the notion of the semiperiod and assume for this paper that p is an odd prime and
pr=p+1

For a nonnegative integer z, v,(z) denotes the p-adic valuation of z, i.e. the highest power of
p dividing z.

We use a result of Knuth and Wilf [5], adapted for the Fibonacci sequence.

Theorem 3.1. (Knuth and Wilf) The highest power of an odd prime p that divides the Fi-
bonomial coefficient (Z) 7 18 the number of carries that occur to the left of the radiz point when
k/p* is added to (n —k)/p* in p-ary notation, plus the p-adic valuation v,(Fp+) =1 if a carry
occurs across the radix point.

We require that p not be a Wall-Sun-Sun prime for v,(F,+) =1 to hold.

Since we are interested in divisibility, we only require that the p-adic valuation is at least one,
so it suffices to show that a carry occurs.
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As in [1] and [8], we consider the base Fpx = (1,p*, p*p, p*p?,...). So n = ng+n1p* +nap*p+
o P = (ng,n,no, ... ,nm)fp*. In this base, division by p* results in a number
(n1,n2,n3,...,Mm)p, with fractional part Z—S only, which simplifies the counting of the carries.

Generalizing Southwick’s proof in [8], we prove the following:

Theorem 3.2. Given that p* = p+ 1 and integers n, k > 0,

1), =), (), (),

Visually this corresponds to the recurring triangles of zeroes in the Fibonomial triangle mod
p. This is illustrated in Figure 1.

Proof. By Theorem 3.1, p | (Z) - if and only if a carry occurs in the addition of (I%) and ("p—:k)
in base p. The first carry occurs across the radix point or to the left of the radix point. Let

q:n*k:(QO’QM--me)]—'p*

(1) First consider the conditions necessary for the carry across the radix point.
If ng > ko, then g9 = ng — ko, ko + (o) = np < p*. In this case, there will be no
carry.
Alternatively, if kg > ng, then a borrow occurs, so ¢o = ng — ko + p*. The addition
of % and % produces:

ko + ng — ko + p* _no+p* > 1

p* -
Thus a carry occurs across the radix point if and only if kg > ng.

(2) If a carry across the radix point does not occur, then let the first carry occur in the
(j + 1)** digit, that is, in the addition of k; with ¢; (note that the (j + 1) digit of n
in base JFp« is n;p*p’ ~1). The division by p* moves the digits to the right by one, so
the carry occurs at the j* digit in base p.

If nj > kj, then kj + q¢; = k;j + (nj — kj) < p since we assume there was no previous
carry.
If k; > n;, the subtraction n; — k; results in a borrow, so ¢; = n; — k; + p, and so
k:j—l—qj:kj+(nj—kj+p):nj+p2p.
This case is the only case in which a carry occurs.
Therefore if a carry occurs in the j** position, then n; < kj, and so p | (Zj )F since

(Zj) =0, and so p | (ZS)F (Zi)F e (Z::)F Using the above result and Theorem 3.1, we
conclude that if p | (Z)F then p | (ZS)F(Z;)F e (Z:)F
For the reverse direction, we note that all these steps and Theorem 3.1 are reversible.

Note that for n < k the statement follows trivially.
Therefore, p | (z)F <pl (ZS)F(ZDF (ZZZ)F O

Corollary 3.3. Given 0 <m and 0 < n, k < p*p™, for alli,j € Z such that 0 < j <1 < p,
n—+ip*p™ n
k+jp*p™) p k) p
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Proof. By Theorem 3.2, since p { (;)F,

(), =1 (o) (), (), = (), () (), ),

<:>p|< .
F

k+jpp™
O
4. EXACT NONZERO CONGRUENCE CLASSES
We begin with a number of necessary Lemmas.
Lemma 4.1. If §, &, g € Z, with ¢ =, a’ and g =, V' #,0, then § =, a' (b))~
Proof. Since ¢ # 0, we can multiply the fraction § by %Z Since the resulting fraction is an
integer, it can be reduced modulo p to a’(b')~!. Note that (b')~! exists because p is prime and
v #, 0. O
Lemma 4.2. For 0 <n < p*p"™, Fyippm =p —Fp.
Proof. Since p* = %ﬁ(p) is the semiperiod, Fy4px =p —F).
Then, since (p™ — 1) is even and 7(p) = 2p*, Fy4p+ =p —F), implies Fy,pepm =) —F),.
O
Lemma 4.3. Fori > 0,
Fip*Pm — Z(_l)i—l
Fpepm

Proof. We prove this by induction.
First, let ¢+ = 1. Then, the statement follows trivially.
Now, assume the inductive hypothesis:
Fip*p’" i—1 -
— =, (=1)"""4.
e A
Consider
Fatiprpn _ Fyrpmiprpm .

We apply the shifting property of the Fibonacci sequence to obtain:

Fp*p'rnJrip*pm . Fp*p'mFZ‘p*pm+1 + Fp*pmleip*pm
Then we simplify by canceling like terms on the left and applying the induction hypothesis on
the right:

Fiprpm i1 + Fpepm_1(—1)771(1) =p (—1)" + (=1)/(i) =, (-1 + 1),
O

116 VOLUME 56, NUMBER 2



FIBONOMIAL TRIANGLE

Lemma 4.4. Fori > 0,
™\ .
pom ) =) i.

Proof. By definition of the Fibonomial coefficient,

<ip*pm> = Eiprpm Fiprpm—1 - Flimyprpm Fli—yprpm—1- - 11
prp (F(i—l)p*PmF(i—l)p*pm—l o B Fypepm Fpepm_y -+ -
Canceling like terms gives

Fipepm Eipepm — 'Fip*pm—(p*pm—l)

Fp*mep*pmfl By

The terms in the above expression take three forms, which we represent separately for clarity.
Note that all reduction modulo p happens term-wise, and thus the result is an integer.

(1) We first consider terms of the form Fjp«,m_,, where p* { a. For each of these terms,
we identify a corresponding term in the denominator:

Fip*pm—a

Fp*pm_a ’
Altogether, these terms take the form
*pm_1

-

a=1 Fp p" a
p*ta

We apply Lemma 4.2 to the top so that we can cancel the top and bottom. Since there
are p*p™ — 1 — (p™ — 1) = p™*! many such terms, the result after applying Lemma

4.2 to each is (—1)=DE™™) = (~1)i71 because p™*! is odd, as p is assumed to be
an odd prime.
(2) Next we consider terms of the form Fjpm_g),»:

p"—1
I Flipm—aype
a=1 F(pm,a)p*
By Lemma 4.1 and Lemma 4.3,

Pl F(ipm—a)p* Fi* pret pm_l 1p —a— 1( pm_l (i—1)p™ ( a)
H F( 1 =p H p —a— 1( _a =p H .

a=1 — (@m—a)p* Fo«

Note that in the modular group we use division notation to represent multiplication
by an inverse.
Since p™ is odd and p™ — 1 is even,

p"ﬁl (_1)(1'(_1);;(—61) =, (_1)(i—1)(pm—l) = 1
a=1

(3) The only remaining term is the quotient % =, i(—1)""!, by Lemma 4.3.
p*p
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From the three cases above,
prpm

it p™ ' i )
(pp ) =, Z(—1)2( D =1
F

Lemma 4.5. FO7 () < 7/,'] < p,

Proof. We prove this using induction. For a base case, let ¢ = 0. Then if j =0,

(0, 0)
(), 0= )

Now assume (;?; g:i) = (;) Then we apply Lemmas 2.5 and 2.6.
*

If j > 0, then

PP
We let a = (i+ 1)p*p™, b= (i+1—j)p*p™, and ¢ = p*p™, thus yielding the following:

<(z’+1)p*pm> ((z‘+1—j)p*pm> _ ((i+1)p*pm> (ip*pm>
irpm ) g prp™ P pp™ F\IPP") g

Applying the induction hypothesis and Lemma 4.4 gives

<(z‘ + 1)p*pm>F(Z. )=, (4 1) <Z>

Jp*p™ J

We then multiply both sides by (i +1 — j)~! to obtain

(o) i)

((i+1)p*pm) _ (H—l)
™ ) T\ )

Equivalently,

as desired.
O

We now proceed with our main theorem for the exact congruence classes of the Fibonomial
triangle modulo p. For a visual representation of the relation using p = 7, see Figure 1.

Theorem 4.6. For 0 <n < p*p™, 0 <k <p*p™, 0<14,5 <p,0<m,

<n+z’p*pm> _ (_1)ik—nj(i) <n>
k+ jp*p™ F P J k F

118 VOLUME 56, NUMBER 2
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2 } original block (}) .

i is the vertical shift {

j is the horizontal shift

FIGURE 1. Exact congruence classes modulo 7.

Proof. We proceed by induction.
First let n = k = 0. Then the statement follows directly from Lemma 4.5.
When n =0, £ > 0, by Theorem 3.3, since p[(g)F,

ip*p™ oA ik—0j (T (0
| 0= (—1)i0 ( ) ( )
<k + Jp*pm> r o7 1) i) \k

Let n > 0, kK > 0. We assume
<” -1+ ip*Pm) =, (—1)k=(=1j <2> <” - 1)
. m =p .
k+jp*p™ ) J ko Jr
for all k.

Using the recurrence relation for Fibonomial coefficients,

niprt _ n—Ll4ipp™\ L n—14p*p™
R Ty I e VS B e A N o L

= (1) B (-1 D700 @ <Z - DF
senmary () (1),
)
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This completes the proof.

5. FURTHER DIRECTIONS

In Theorem 4.6, note that

zk—n]—det<j k:)

This may be a coincidence but, alternatively, it might indicate the existence of a more general
relation for different types of primes.

Theorem 4.6 can be generalized to other primes by proving variants of the prerequisite lemmas.
For example, in the case p = 5, 5* =5, and F,,15 =5 3F, [9, 8.

However, for some primes, problems arise. In the case p = 11, p* = 10. In this case, one would
need a base other than base F,«, because the divisibility theorem cannot be proven in base
Fp+ [8]. The form of such a base remains to be investigated.
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