
TOWARDS FORMULATING A TAGIURI GENERATING METHOD

CONJECTURE

RUSSELL JAY HENDEL

Abstract. This paper continues the work on the Tagiuri Generating Method (TGM) for pro-
duction of Fibonacci identities, recently introduced at the Caen Fibonacci conference. TGM
starts with a trivial identity in products of Fibonacci numbers, for example, Fn+aFn+bFn+c =
Fn+aFn+bFn+c + Fn+aFn+bFn+c − Fn+aFn+bFn+c. Using the Tagiuri identity, Fn+xFn+y =
FnFn+x+y + (−1)nFxFy , TGM then makes substitutions on two-factor products in the start
identity. TGM is capable of simply generating one-parameter families of identities. These
identities are complex; in general, nothing further can be uniformly said about them. How-
ever, the histograms of the indices occurring in the family of identities have specific and
interesting patterns. The purpose of this paper is to examine a new one-parameter family of
identities that is rich enough to suggest a general conjecture about the histograms of arbitrary
one-parameter families of identities arising from TGM. The one-parameter family studied also
has interest in its own right.

1. Introduction

The Tagiuri Generating Method (TGM) was introduced in [1]. TGM allows generation of
one-parameter families of Fibonacci identities that have interesting properties. The family
of identities presented in [1] was not rich enough, and consequently, did not allow accurate
formulation of a general conjecture.

The purpose of this paper is to present another one-parameter family of Fibonacci identities
with sufficient richness to enable formulation of a general conjecture about TGM. In the next
section, we review the basics of TGM. The definitions and notations presented in [1] are given
with some minor changes whose purpose is to facilitate clarity and focus on generation of
one-parameter families.

2. Review of TGM

The Tagiuri identity states [2, p. 114] that for integral n, x, and y

Fn+xFn+y = FnFn+x+y + (−1)nFxFy. (2.1)

If a given product in an identity has the factor Fn+xFn+y, then we can apply (2.1) by
replacing the left side of (2.1) with the right side of (2.1). In the sequel, we may abuse
language and say that we apply Tagiuri to the indices x and y, or we apply Tagiuri to the
product at the index pair x, y.

For integer q ≥ 0, TGM starts with formation of 2K(q) + 2 identical products,

P (0) = P (1) = · · · = P (2K(q) + 1) =

L(q)
∏

i=1

Fn+ai , (2.2)

with the ai parameters defined over the integers, L(q) a function from non-negative integers
to positive integers, and K(q) a function from non-negative integers to non-negative integers.
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We then define the start identity by

P (0) = P (1)+P (2)+· · ·+P (K(q))+P (K(q)+1)−

(

P (K(q)+2)+· · ·+P (2K(q)+1)

)

, (2.3)

with the parenthetical expression on the right side equaling zero if K(q) = 0.
Clearly, the start identity is true. It follows that all identities derived from the start identity

are also true.

Definition 2.1. The TGM notationally indicated by

〈L(q),K(q), Q1, Q2, . . . , Q2K(q)+1〉, (2.4)

where for each k, 1 ≤ k ≤ 2K(q)+ 1, Qk is of the form (ik,1, jk,1; ik,2, jk,2; . . . ; ik,mk
, jk,mk

),
for some mk, with 1 ≤ mk ≤ L(q)/2, and where for each k, 1 ≤ k ≤ 2K(q) + 1, the sets (ik,p,
jk,p), 1 ≤ p ≤ mk, are pairwise disjoint, refers to the process of applying (2.1) to P (k) in (2.3)
at each index pair {ik,p, jk,p}, 1 ≤ p ≤ mk, in Qk for each k, 1 ≤ k ≤ 2K(q) + 1.

TGM, (2.4), is a method for producing identities; the actual identities produced are called
Tagiuri Generated Identities (TGI).

The TGI are parameterized identities. To make their study easier, [1] applies substitutions
to the TGI, which result in a Tagiuri Generated Identity With Substitutions (TGIWS). [1]
uses the following two substitutions that are sufficient for this paper as well. When L(q) = 2q,
we use

a1 = −q, a2 = −(q − 1), . . . , aq = −1, aq+1 = 1, aq+2 = 2, . . . , a2q = q, (2.5)

whereas when L(q) = 2q + 1, we use

a1 = −q, a2 = −(q − 1), . . . , aq = −1, aq+1 = 0, aq+2 = 1, . . . , a2q+1 = q. (2.6)

Throughout this paper, we use the acronym TGM in two senses. TGM can refer to the
general Tagiuri Generation Method. When preceded by an article (e.g., a TGM), it refers
to an application of Definition 2.1 with specific parameters. Similar comments apply to the
acronyms TGI and TGIWS. Also, throughout the paper, these acronyms will be used to refer
to single identities and families of identities.

Although each TGIWS is simply generated, it is not trivial. It is hard to make general
statements uniformly about all TGIWS. To facilitate the study of TGIWS, [1] defines the
histogram of an identity.

Definition 2.2. The index histogram of a TGIWS is the numerical count of all indices oc-
curring on the right side of that identity with the following conventions: i) all parenthetical
expressions are assumed expanded; ii) like terms are not coalesced; iii) constants and (−1)n

are ignored; iv) numerical coefficients of products are ignored; v) powers are counted with mul-
tiplicity; and vi) factors of the form Fx with x a constant expression (that is, independent of
n) are assumed replaced by their numerical values.

The examples in this and the next section illustrate the notations and conventions.

Example 2.3. Let L(q) = 2q and K(q) = 0. Then, when q = 2 the start identity, (2.3), is

P (0) = P (1),

with

P (0) = P (1) =

4
∏

i=1

Fn+ai ,
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Figure 1. Index histogram for (2.9).

by (2.2). Using (2.4), the TGM is indicated by

〈4, 0, (1, 2; 3, 4)〉.

The interpretation of Definition 2.1 is that we apply Tagiuri (2.1) to the pairs of indices (1, 2)
and (3, 4) in P (1) obtaining the TGI

Fn+aFn+bFn+cFn+d = F 2
nFn+a+bFn+c+d + FaFbFcFd (2.7)

+ (1)nFnFn+a+bFcFd + (−1)nFnFaFbFn+c+d,

where for convenience, a = a1, b = a2, c = a3, and d = a4.
Equation (2.5) reduces to

a1 = a = −2, a2 = b = −1, a3 = c = 1, a4 = d = 2. (2.8)

Making the substitutions indicated by (2.8) to (2.7), we obtain the TGIWS

Fn−2Fn−1Fn+1Fn+2 = Fn−3F
2
nFn+3 − 1 + (−1)nFn(Fn−3 − Fn+3). (2.9)

Expanding the parenthetical expression on the right side of (2.9) and using the conventions
of Definition 2.2, we obtain the index histogram presented in Figure 1.

The support of the histogram of (2.9) has three elements, n− 3, n, and n+ 3 with weights
2, 4, and 2. The key point to focus on in this observation is that there are only two non-zero
weights, 2 and 4.

That the histogram has only two weights is true for a general one-parameter family of
identities to which (2.9) belongs. The next example studies this one-parameter family of
identities.

Example 2.4. We study the one-parameter family of TGIWS obtained from the TGM

〈2q, 0, (1, 2; 3, 4; . . . ; 2q − 1, q)〉, q = 2, 3, . . . , (2.10)
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by applying (2.1) and (2.5). The Main Theorem of [1] is that for any q ≥ 2, the index histogram
of the corresponding TGIWS when restricted to its support excluding the point n, has one value.
If we divide each index count by the total number of indices, counting multiplicity, the resulting
distribution would be a mixture of a uniform distribution and a point mass. A consequence of
this is that for each q ≥ 2, the histogram weights have exactly two non-zero values, with one
weight associated with only one point. The numerical counts of these two values are presented
in [1].

Such a result motivates asking about characteristics of index-histograms of other one-
parameter families of TGIWS. A simplistic approach might suggest that each index-histogram
has one value except for c points, where c is a constant that does not depend on the pa-
rameter q. This however, is not true. The goal of this paper is to study a one-parameter
family of TGIWS whose histogram characteristics seem to capture the general situation. The
description of this one-parameter family is the subject of the next section.

3. The One-Parameter Family Studied in This Paper

This paper studies the one-parameter family of TGIWS obtained from the TGM

〈2q + 1, q, (1, 2), (2, 3), (3, 4), . . . , (2q, 2q + 1), (2q + 1, 1)〉, q = 1, 2, 3, . . . , (3.1)

by applying (2.1) and (2.6). The examples clarify the notation and setup.

Example 3.1. Let L(q) = 2q + 1 and K(q) = q. When q = 1, the start identity, (2.3), is

P (0) = P (1) + P (2)− P (3),

with the four identical products defined by (2.2),

P (0) = · · · = P (3) =

3
∏

i=1

Fn+ai .

Applying (2.1) to the start identity yields the TGI

Fn+a1Fn+a2Fn+a3 = FnFn+a1+a2Fn+a3 + (−1)nFa1Fa2Fn+a3+

FnFn+a2+a3Fn+a1 + (−1)nFa2Fa3Fn+a1 − FnFn+a3+a1Fn+a2 − (−1)nFa3Fa1Fn+a2 .

Applying (2.6) yields the following TGIWS,

Fn−1FnFn+1 = Fn−1FnFn+1 + Fn−1FnFn+1 − (−1)nFn − F 3
n . (3.2)

Simplifying equation (3.2) by canceling Fn from both sides of the equation and collecting
like terms, reduces to the Cassini identity [2, p. 74]. This should not surprise us because the
Tagiuri identity is the two-parameter generalization of the Catalan identity [2, p. 83], which
is the one-parameter generalization of the Cassini identity.

The appropriate tables, graphs, and theorem connected with this one-parameter family of
TGIWS are presented in the next section.

4. Histograms, Tables, and the Main Theorem

Table 1 presents the numerical counts underlying the histograms for the TGIWS arising
from application of (2.1) and (2.6) to (3.1) for 1 ≤ q ≤ 5. Figures 2 and 3 display the
associated connected graphs for q = 5 and q = 25.

The interpretation of Table 1 should be clear. For example, when q = 1, the TGIWS
obtained from (3.1) by applying (2.1) and (2.6) is (3.2), whose right side has six occurrences
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Index n n± 1 n± 2 n± 3 n± 4 n± 5 n± 6 n± 7 n± 8 n± 9
q = 1 6 2
q = 2 12 6 4 1
q = 3 18 10 8 9 0 1
q = 4 24 14 12 13 12 1 0 1
q = 5 30 18 16 17 16 17 0 1 0 0

...
...

...
...

...
...

...
...

...
...

...
q 6q 4q − 2 4q − 4 4q − 3 4q − 4 4q − 3 . . . 0 1 0 1

Table 1. Tabular presentation of the underlying numerical counts for the
index-histograms of the TGIWS family arising from application of (2.1) and
(2.6) to (3.1) for q = 1, . . . , 5. Note, 1) the formulas in the row beginning q and
the column labeled n ± j apply to the row beginning q = k only when j ≤ k;
2) the tail of alternating zeroes and ones starts at index n ± (q + 1) and ends
at index n± (2q − 1), as described below in Theorem 4.1(e).

Figure 2. Index-histogram for the TGIWS arising from application of (2.1)
and (2.6) to (3.1) with q = 5.

of Fn and two occurrences each of Fn+1 and Fn−1, consistent with the row beginning q = 1 in
the table.

Table 1 exhibits certain patterns that are summarized in the row beginning q. This motivates
the following theorem, which is the main theorem of this paper. The five cases of the theorem
will be proven in a later section of the paper.

Theorem 4.1. Let q be a positive integer. Let L(q) = 2q + 1 and K(q) = q. Consider, the
family of TGIWS obtained from (3.1) by applying (2.1) and (2.6).
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Figure 3. Index-histogram for the TGIWS arising from application of (2.1)
and (2.6) to (3.1) with q = 25.

a) For all q ≥ 1, the weight (that is, number of occurrences) of index n is 6q;

b) For all q ≥ 1, the weight of indices n− 1 and n+ 1 are each 4q − 2;

c) For all q ≥ 2, if e is even with 2 ≤ |e| ≤ q, then the weight of index n+ e is 4q − 4;

d) For all q ≥ 3, if o is odd with 3 ≤ |o| ≤ q, then the weight of index n+ o is 4q − 3;

e) For q ≥ 2, if O is odd with q + 1 ≤ |O| ≤ 2q − 1, then the weight of index n+O is 1.

Corollary 4.2. For given q ≥ 1, the total number of indices, counting multiplicity, occurring
in the TGIWS obtained from (3.1) by applying (2.1) and (2.6), is 8q2 + 2.

Proof. The cases q = 1, 2 can be verified manually using Table 1. For the rest of the proof,
we assume q ≥ 3.

The proof depends on the parity of q. We first assume q is even.
By the main theorem, there are five cases to consider.

• There is one index of the form n, and that index has weight 6q.
• There are two indices of the form n± 1, each with weight 4q − 2.
• There are q indices of the form n + e with e even and with 2 ≤ |e| ≤ q, each with
weight 4q − 4.

• There are q − 2 indices of the form n + o with o odd and with 3 ≤ |o| ≤ q, each with
weight 4q − 3.

• There are q indices of the form n+O with O odd and with q+1 ≤ |O| ≤ 2q − 1, each
with weight 1.

It immediately follows that the total number of indices equals 6q × 1 + (4q − 2) × 2 + (4q −
4) × q + (4q − 3)× (q − 2) + 1× q = 8q2 + 2, as was to be shown.
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The proof for the q is odd case is similar to the q is even case and hence is omitted. �

5. The Conjecture

The purpose of this section is to formulate a conjecture covering any one-parameter family
of identities generated by a TGM and substitutions similar to (2.5) and (2.6).

The conjecture stated in [1], based on the one-parameter family of TGIWS obtained from
TGM (2.10) with application of (2.1) and (2.5), is that the index-histogram of each TGIWS
when restricted to its support, possibly excluding c points, where c is a constant not depending
on q, has one value.

A glance at Figures 2 and 3 shows that this conjecture does not hold for the one-parameter
family of TGIWS studied in this paper, obtained from TGM (3.1) with application of (2.1) and
(2.6). More precisely, Theorem 4.1 shows that when q is even, there are q indices with weight
1, q indices with weight 4q− 4, and q− 2 indices with weight 4q− 3. Similar observations hold
for the q is odd case. Consequently, the assertion that the index-histogram of each member of
the family of TGIWS, when restricted to its support, has one value except for c points, where
c does not depend on q, is false.

To obtain a broader perspective, we can compare Theorem 4.1 of this paper with the Main
Theorem of [1].

• The Main Theorem of [1] studies the one-parameter family of TGIWS generated by
(2.10) with substitution (2.5). The Main Theorem asserts that for each member of
this family, depending on the parity of the parameter q, the only weights that occur
in index-histograms are q2q−1, 2q−1, (q + 1)2q−1, and 0. Thus, each member of this
family has at most four weights occurring in its index-histogram.

• Theorem 4.1 of this paper studies the one-parameter family of TGIWS generated by
applying (2.1) and (2.6) to (3.1). Theorem 4.1 shows that the only weights occurring
in the index-histograms are 6q, 4q− 2, 4q− 4, 4q − 3, 1, and 0. Thus, each member of
this family has at most six weights occurring in its index-histogram.

Notice, that 4 and 6 are constants, that is, they do not depend on the parameter q. This
motivates the following conjecture.

Conjecture 5.1. For each one-parameter family of TGIWS, arising from a TGI with a sub-
stitution like (2.5) or (2.6), there is a constant c, independent of q, such that the number of
distinct weights in the index-histogram of any member of that TGIWS, is bounded by c.

It seems reasonable that this conjecture is true for all one-parameter families of TGIWS or
for a large portion of them. It also seems reasonable that the techniques in this paper and [1]
can be used to develop a proof in the near future.

6. Proof of the Main Theorem

In this section, we prove the Main Theorem. We first review the setup. We begin with the
start identity, (2.3), which has 2q + 1 summands, each a product of the form (2.2). To each
of the 2q + 1 products we first apply to the related pair of indices listed in (3.1) the Tagiuri
identity (2.1); after all applications of Tagiuri are made, we apply the substitutions (2.6).
Then, following the requirements of Definition 2.2, we count, for each x, the total number of
occurrences of Fn+x. The resulting collection of indices and counts gives us the histogram for
the identity.

Note that for each x ∈ {−q,−(q − 1), . . . , q}, there is exactly one pair (x, y) in (3.1). As
we prove each of the five assertions of the Main Theorem, it suffices to consider for each x,
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−q ≤ x ≤ q, the effect on index count of applying (2.1) and (2.6). To facilitate this counting,
we first consider the following four cases of application of (2.6) and (2.1) to (3.1); these four
cases cover each x in {−q, . . . , q} exactly once.

Applying (2.1) and (2.6) with x = aq = −1 and y = aq+1 = 0 yields,

2q+1
∏

i=1

Fn+ai = P1, with P1 =

q
∏

i=−q

Fn+i. (6.1)

Applying (2.1) and (2.6) with x = aq+1 = 0 and y = aq+2 = 1, yields

2q+1
∏

i=1

Fn+ai = P2, with P2 =

q
∏

i=−q

Fn+i. (6.2)

Applying (2.1) and (2.6) with x = a2q+1 = q and y = a1 = −q, yields

2q+1
∏

i=1

Fn+ai = T3P3, with T3 =

(

F 2
n + (−1)nFqF−q

)

and P3 =

q−1
∏

−(q−1)

Fn+i. (6.3)

Note, since q ≥ 1, Fq and F−q in (6.3) are non-zero integers.
Applying (2.1) and (2.6) with any x,−q ≤ x ≤ q, such that

x /∈ {aq = −1, aq+1 = 0, a2q+1 = q} yields

2q+1
∏

i=1

Fn+ai = T4P4, with T4 =

(

FnFn+2x+1 + (−1)nFxFx+1

)

and P4 =
∏

−q≤i≤q
i/∈{x,x+1}

Fn+i. (6.4)

The letters T and P in (6.3)–(6.4) refer to the two-summand parenthetical expression and
product, respectively. Similarly, in (6.1)–(6.2), P refers to the product.

In the sequel, an expression of the form “there are s occurrences of Fz in TiPi, i ∈ {3, 4}”
will, by convention, refer to the number of occurrences of Fz after parenthetical expansion of
TiPi into a sum of two products.

In (6.4), since x 6= q, it follows from (3.1) that n+y = n+x+1. Since x /∈ {−1, 0}, it follows
that Fx and Fx+1 are non-zero integers. The reason for considering (6.1) and (6.2) separately
from (6.3) and (6.4) is because in (6.1) and (6.2), either Fx = 0 or Fx+1 = 0, so that the
application of (2.1) produces one product, P1 or P2, whereas contrastively, the application of
(2.1) in (6.3) and (6.4) produces, T3P3 or T4P4, which each consists of a sum of two products.

Finally, to avoid vacuous cases, we assume throughout the proof that q ≥ 3. There is no
harm in this restriction because the cases q = 1 and q = 2 can be managed manually. Table
1 contains these cases and, as can be seen, they exhibit the same patterns as the cases q ≥ 3,
except that in case q = 1, there are no indices with weights 1, 4q− 3, or 4q − 4, and similarly,
in case q = 2, there are no indices with weight 4q − 3.

Proof of (a). As outlined in the introduction of this section, we let x take on the 2q+1 values,
−q ≤ x ≤ q, and after determining which of the four cases connected with (6.1)-(6.4) it belongs
to, we count the number of occurrences of Fn in the corresponding product on the right side.

• When x = −1 and y = 0, P1 in (6.1) has one occurrence of Fn.
• When x = 0 and y = 1, P2 in (6.2) has one occurrence of Fn.
• When x = q and y = −q, T3P3 in (6.3) has four occurrences of Fn. To see this,
note that P3 has two occurrences of Fn. Therefore, F

2
nP3 has three occurrences of Fn,

whereas (−1)nFqF−qP3 has one occurrence of Fn.
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• Fix an x /∈ {−1, 0, q}. Then T4P4 has three occurrences of Fn. To see this, note that
P4 in (6.4) has one occurrence of Fn. Therefore, FnFn+2x+1P4 has two occurrences of
F 2
n , and similarly, (−1)nFxFx+1P4 has one occurrence of Fn. Since we excluded three

possibilities of x from {−q,−(q − 1), . . . , 0, 1, . . . , q}, it follows there are 2q + 1− 3 =
2q − 2 possible x /∈ {−1, 0, q}. Therefore, there is a total of 3 × (2q − 2) = 6q − 6
occurrences of Fn.

Aggregating the contributions arising from (6.1)–(6.4), we have a total contribution of 1 +
1+4+6q−6 = 6q distinct occurrences of Fn over all summands. This proves assertion (a). �

Proof of (b). There are two cases to consider, x = 1 and x = −1. We prove the case x = 1.
The proof of the case x = −1 is almost identical and hence omitted.

As outlined in the introduction of this section, we let x take on the 2q+1 values, −q ≤ x ≤ q,
and we consider the contribution of the four cases arising from (6.1)–(6.4).

• When x = −1 and y = 0, P1 in (6.1) has one occurrence of Fn+1.
• When x = 0 and y = 1, P2 in (6.2) has one occurrence of Fn+1.
• When x = q and y = −q, T3P3 in (6.3) contributes two occurrences of Fn+1, since P3

has one occurrence of Fn+1 and therefore, T3P3 has two occurrences of Fn+1.
• Equation (6.4) excludes consideration of the cases x ∈ {0,−1, q}, because they have
already been dealt with in (6.1)–(6.3). We also must exclude the case x = 1, since
P4 does not contain indices in the set {n + x, n + x + 1}. Accordingly, fix an x /∈
{−1, 0, 1, q}. T4P4 in (6.4) has two occurrences of Fn+1. Since we excluded from
{−q,−(q − 1), . . . , 0, 1, . . . , q} the four cases of x ∈ {−1, 0, 1, q}, it follows that there
are 2q+1−4 = 2q−3 possible x /∈ {−1, 0, 1, q}. Thus, the total number of occurrences
of index n+ 1 is 2× (2q − 3) = 4q − 6.

Aggregating the contributions of all four cases, we have a total contribution of 1 + 1 + 2 +
4q−6 = 4q−2 distinct occurrences of Fn+1 over all summands. This proves assertion (b). �

Proof of (c). Fix even e with 2 ≤ |e| ≤ q. As outlined in the introduction of this section, we let
x take on the 2q+1 values, −q ≤ x ≤ q, and after determining which of the four cases, (6.1)–
(6.4), it is connected with, count the number of occurrences of Fn+e in the corresponding
product on the right side of (6.1)–(6.4). Although the result is the same, the counting is
different for the following three cases, (c1) 2 ≤ |e| ≤ q − 1, (c2) e = q, and (c3) e = −q. Note,
that if q is not even, we need not consider cases (c2) and (c3).

We first consider case (c1), 2 ≤ |e| ≤ q − 1.

• When x = −1 and y = 0, P1 in (6.1) has one occurrence of Fn+e.
• When x = 0 and y = 1, P2 in (6.1) has one occurrence of Fn+e.
• When x = q and y = −q, T3P3 of (6.3) contributes two occurrences of Fn+e. To see
this, note that P3 has one occurrence of Fn+e and therefore, T3P3 has two occurrences
of Fn+e.

• Equation (6.4) requires us to exclude considerations of x satisfying x ∈ {−1, 0, q}. We
must also exclude x ∈ {e − 1, e}, since the product on the right side of (6.4) does not
contain indices in the set {n+x, n+x+1}. Accordingly, fix an x /∈ {−1, 0, e− 1, e, q}.
T4P4 in (6.4) has two occurrences of Fn+e. Since we have excluded five cases of x, we
have contributions from 2q+1−5 = 2q−4 cases of x. It follows that the total number
of occurrences of index n+ e is 2× (2q − 4) = 4q − 8.

Aggregating the contributions of all four cases, we have a total contribution of 1 + 1 + 2 +
4q − 8 = 4q − 4 distinct occurrences of Fn+e over all summands. This proves assertion (c) for
the case (c1).
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We next consider the case (c2), e = q with e even.

• When x = −1 and y = 0, P1 in (6.1) has one occurrence of Fn+e.
• When x = 0 and y = 1, P2 in (6.2) has one occurrence of Fn+e.
• When x = q and y = −q, P3 in (6.3) contributes no occurrences of Fn+e = Fn+q.
• Equation (6.4) requires us to exclude considerations of x satisfying x ∈ {−1, 0, q}. We
must also exclude x ∈ {e− 1 = q− 1, e = q}, since P4 in (6.4) does not contain indices
in the set {n+x, n+x+1}. Accordingly, fix an x /∈ {−1, 0, q, q−1}. T4P4 in (6.4) has
two occurrences of Fn+e. Since we have excluded four cases of x, we have contributions
from 2q + 1− 4 = 2q − 3 cases of x. It follows that the total number of occurrences of
index n+ e is 2× (2q − 3) = 4q − 6.

Aggregating the contributions of all four cases, we have a total contribution of 1 + 1 + 0 +
4q − 6 = 4q − 4 distinct occurrences of Fn+e over all summands. This proves assertion (c) for
the case (c2).

The case (c3), x = −q, is treated similarly and hence is omitted. This completes the proof
of assertion (c). �

Proof of (d). Fix odd o with 3 ≤ |o| ≤ q. As outlined in the introduction of this section, we
let x take on the 2q+1 values, −q ≤ x ≤ q, and we consider the contribution of the four cases
arising from (6.1)–(6.4).

Note that the proof of assertion (d) is similar to the proof of assertion (c) except that there
is an additional occurrence of n+o from (6.4) arising when 2x+1 = o. We again must consider
three cases, (d1) 3 ≤ |o| ≤ q − 1, (d2) o = q, and (d3) o = −q. Note, that if q is not odd, we
need not consider cases (d2) and (d3).

We first consider case (d1).

• When x = −1 and y = 0, P1 in(6.1) has one occurrence of Fn+o.
• When x = 0 and y = 1, P2 in (6.2) has one occurrence of Fn+o.
• When x = q and y = −q, T3P3 in (6.3) contributes two occurrences of Fn+o. To see
this, note that P3 has one occurrence of Fn+o and therefore, T3P3 has two occurrences
of Fn+o.

• Equation (6.4) requires us to exclude x satisfying x ∈ {−1, 0, q}. We must also exclude
x ∈ {o− 1, o}, since the product on the right side of (6.4) does not contain indices in
the set {n+ x, n+ x+ 1}. Thus, when dealing with (6.4), we must exclude five cases
of x, namely, those satisfying x ∈ {−1, 0, q, o − 1, o}. We now consider two cases of
x /∈ {−1, 0, q, o − 1, o}.

• We first deal with the case x = x0, where x0 is the unique solution to the equation
2x + 1 = o, with −q ≤ x ≤ q, and with x /∈ {−1, 0, q, o − 1, o}. Since o is odd with
3 ≤ |o| ≤ q, such a unique solution always exists. When x = x0, T4P4 in (6.4) has
three occurrences of Fn+o, since Fn+2x0+1P4 = Fn+oP4 has a factor of F 2

n+o, whereas
(−1)nFx0

Fx0+1P4 has a factor of Fn+o.
• Next, consider x /∈ {−1, 0, q, o − 1, o, x0}. T4P4 in (6.4) has two occurrences of Fn+o.
Since we have excluded six cases of x, we have contributions from 2q + 1− 6 = 2q − 5
cases of x. These 2q − 5 cases contribute 2× (2q − 5) = 4q − 10 cases of index n+ o.

Aggregating the contributions of all five cases, we have a total contribution of 1 + 1 + 2 +
3 + 4q − 10 = 4q − 3 distinct occurrences of Fn+o over all summands. This proves assertion
(d) for the case (d1).

The proofs for the cases (d2) and (d3) are similar. We prove case (d3) and omit case (d2).
We consider case (d3) with o = −q and q odd.
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• When x = −1 and y = 0, P1 in (6.1) has one occurrence of Fn+o.
• When x = 0 and y = 1, P2 in (6.1) has one occurrence of Fn+o.
• When x = q and y = −q, T3P3 in (6.3) contributes no occurrences of Fn+o.
• Equation (6.4) requires us to exclude x satisfying x ∈ {−1, 0, q}. We must also exclude
x ∈ {o− 1, o}, since the product on the right side of (6.4) does not contain indices in
the set {n+ x, n+ x+ 1}. Thus, when dealing with (6.4), we must exclude four cases
of x, namely, those satisfying x ∈ {o = −q,−1, 0, q}. We now consider two cases of
x /∈ {o = −q,−1, 0, q}.

• We first deal with the case x = x0, where x0 is the unique solution to the equation
2x + 1 = o = −q, with −q ≤ x ≤ q, and with x /∈ {o = −q,−1, 0, q}. Since o is odd
with 3 ≤ |o| ≤ q, such a unique solution always exists. When x = x0, T4P4 in (6.4) has
three occurrences of Fn+o, since Fn+2x0+1P4 = Fn+oP4 has a factor of F 2

n+o, whereas
(−1)nFx0

Fx0+1P4 has one factor of Fn+o.
• Next, consider x /∈ {−q,−1, 0, q, x0}. T4P4 in (6.4) has two occurrences of Fn+o. Since
we have excluded five cases of x, we have contributions from 2q +1− 5 = 2q − 4 cases
of x. These 2q − 4 cases contribute 2× (2q − 4) = 4q − 8 cases of index n+ o.

Aggregating the contributions of all five cases, we have a total contribution of 1 + 1 + 0 +
3+ 4q − 8 = 4q− 3 distinct occurrences of Fn+o over all summands. This proves assertion (d)
for the case (d3). This completes the proof of assertion (d). �

Proof of (e). Since −q ≤ i ≤ q and −q ≤ x ≤ q, it follows that only the cases described in
(6.4) can contribute an index of the form n + O with |O| > q. Clearly, for each odd O with
q + 1 ≤ O ≤ 2q − 1, there is a unique x with 1 ≤ x ≤ q − 1 such that 2x + 1 = O. A similar
argument applies for each odd O with −(2q−1) ≤ O ≤ −(q+1). This proves assertion (e). �

This completes the proof of the Main Theorem.

7. Conclusion

This paper has proven the Main Theorem, completely describing the index-histogram arising
from (3.1). This paper also offered a general conjecture about index-histograms arising from
TGM. We believe this is a good open problem that can be solved in the near future.
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