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Abstract. In this paper, we present closed formulas for finite sums of fractions involving
weighted products of generalized Fibonacci numbers. There are two significant features that
characterize the main results. First, the product in the denominator of each summand can
be arbitrarily long. Second, in each summand that we consider, there is a so-called weight
term. The weight term occurs either in the numerator or the denominator of the summand.

1. Introduction

We begin by defining the sequences that we employ throughout this paper. Since the topic
is reciprocal summation, throughout our presentation we place restrictions on the parameters
to avoid zero denominators.

Let a ≥ 0, b ≥ 0, and p ≥ 1 be integers with (a, b) 6= (0, 0). Define the integer sequence
{Wn} by

Wn(a, b, p) = Wn = pWn−1 +Wn−2, W0 = a, W1 = b. (1.1)

Our restrictions on a, b, and p ensure that {Wn} is an integer sequence in which Wn ≥ 0 for
n ≥ 0, thus maintaining the analogy with the Fibonacci sequence.

Define also

Wn(a, b, p) = Wn = Wn−1 +Wn+1,

which bears the same relationship with {Wn} as the Lucas sequence bears with the Fibonacci
sequence. With ∆ = p2 + 4, it follows that

Wn = ∆Wn. (1.2)

We remark that identity (1.2) is required, for instance, if we take Hn = Ln = Fn in S4 or S5
(see Section 2).

In the itemized list that follows, we set the notation for the special cases of {Wn} that we
consider throughout this paper.

• For (a, b, p) = (0, 1, 1), we have {Wn} = {Fn}, and
{
Wn

}
= {Ln}, which are the

Fibonacci and Lucas sequences, respectively;
• For (a, b, p) = (0, 1, 2), we have {Wn} = {Pn}, and

{
Wn

}
= {Qn}, which are the Pell

and Pell-Lucas sequences, respectively;
• For p = 1, we write {Wn(a, b, 1)} = {Hn(a, b)} = {Hn};
• For (a, b) = (0, 1), we write {Wn(p)} = {Un}, and

{
Wn(p)

}
= {Vn}.

The sequences {Hn} and
{
Hn

}
satisfy the same recurrence as {Fn}, and are generalizations

of {Fn} and {Ln}, respectively. The sequence {Un} generalizes both {Fn} and {Pn}, and {Vn}
generalizes both {Ln} and {Qn}.
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Let α and β denote the two distinct real roots of x2 − px − 1 = 0. Set A = b − aβ and
B = b− aα. Then the Binet forms for {Wn} and

{
Wn

}
are, respectively,

Wn =
Aαn −Bβn

α− β
, (1.3)

Wn = Aαn +Bβn. (1.4)

The Binet forms of each sequence defined in the list above can be obtained from (1.3) or (1.4).
Readers of this journal who are interested in summations that involve reciprocals of Fi-

bonacci numbers will be familiar with the two seminal papers of Brousseau, [1] and [2]. In
these two papers, Brousseau’s focus is on summing the reciprocals of certain products of Fi-
bonacci numbers. Although Brousseau’s focus is on infinite summation, his methods (for the
most part) also yield the corresponding finite sums.

In [5], [6], [7], [8], and [9], we continue the theme of reciprocal summation, and consider
finite reciprocal sums of products that involve generalized Fibonacci numbers. Indeed, we
give closed forms, in terms of rational numbers, for these sums. In Section 2 of [5], while not
attempting to give a detailed history of the broad topic of reciprocal summation involving
(generalized) Fibonacci numbers, we cite several references that propelled us along the path
in question.

In the present paper, the denominator of the summand of each finite sum that we consider
contains a product of generalized Fibonacci numbers. However, there are two significant points
of difference from the results in the papers referenced in the two paragraphs immediately above.
Regarding our main results (Section 3) in the present paper,

• the product in the denominator of each summand can be arbitrarily long;
• there is a so-called weight term located in the numerator or the denominator of the

summand.

To motivate our presentation, we now give examples of sums that illustrate these two points.
These examples are instances of our main results, which we give in Section 3. For integers
n ≥ 2 and j ≥ 1, we have

n−1∑
i=1

Li−1L
i
j+1

Fi · · ·Fi+j
=

1

Fj

(
Ln
j+1

Fn · · ·Fn+j−1
− Lj+1

F1 · · ·Fj

)
, (1.5)

n−1∑
i=1

Li−17
i

FiFi+1Fi+2Fi+3
=

7

2

(
7n−1

FnFn+1Fn+2
− 1

2

)
. (1.6)

In (1.5), which we obtain from (3.7) by putting Hn = Fn and k = 1, the product in the
denominator of the summand has j + 1 Fibonacci factors, and so can be arbitrarily long. The
weight term is Li

j+1. For j = 3, (1.5) reduces to (1.6), and the weight term is 7i.
To succinctly present our next example, which contains a run of squared terms in the

denominator of the summand, we employ some familiar notations. Throughout this paper, we
take i as the dummy variable, so that, for instance, [Fki]

n
m means Fkn − Fkm.

For integers n ≥ 2 and j ≥ 1, we have

n−1∑
i=1

P4i+2j

P 2
2i · · ·P 2

2(i+j)

= − 1

P2j

[
1

P 2
2i · · ·P 2

2(i+j−1)

]n
1

, (1.7)

n−1∑
i=1

Q2i+2

P 2
2iP2i+2P 2

2i+4

=
1

12

(
1

576
− 1

P 2
2nP

2
2n+2

)
. (1.8)
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We obtain (1.7) from (6.3) by setting Wn = Pn and k = 2. The denominator of the summand
in (1.7) has j + 1 squared factors, and thus can be arbitrarily long. For j = 2, (1.7) reduces
to (1.8). The weight term in (1.7) and (1.8) is unity. We include several more instances of our
main results in Section 5 and Section 6.

When conducting the research for this paper, we began by searching for results that hold
for the sequences {Hn} and

{
Hn

}
. From these results, we then determined those that also

hold for the more general sequences {Wn} and
{
Wn

}
. Accordingly, we present each of our

main results in terms of the most general sequence(s) for which it is valid.
In Section 2, we define the 14 finite sums that are the focus of this paper. In Section 3, we

state our main results, which are the closed forms for the 14 sums defined in Section 2. In
Section 4, we give a sample proof, and in Section 5, we give several special cases of our main
results. We conclude with Section 6, where we present the closed forms for a limited number
of sums in which the denominator of the summand contains squared factors.

2. The Finite Sums

In each of the finite sums that we define below, the upper limit of summation is a positive
integer n ≥ 2. Furthermore, j ≥ 1 and k ≥ 1 are assumed to be integers. We now define
the 14 finite sums whose closed forms we give in the next section. The first three finite sums
involve sequences generated by the recurrence given in (1.1). These finite sums are

S1(n, j, k) =

n−1∑
i=1

Wki+1U
i
jk−1

Wki · · ·Wk(i+j)
, jk 6= 1,

S2(n, j, k) =
n−1∑
i=1

Wki−1U
i
jk+1

Wki · · ·Wk(i+j)
, jk 6= −1,

S3(n, j, k) =
n−1∑
i=1

Wk(i−j)V
i
jk

Wki · · ·Wk(i+j)
.

Next, we define four finite sums that involve sequences generated by the recurrence given
in (1.1) in which p = 1. These finite sums are

S4(n, j, k) =

n−1∑
i=1

Hki−1L
i
jk+1

Hki · · ·Hk(i+j)
,

S5(n, j, k) =

n−1∑
i=1

(−1)iHki+1L
i
jk−1

Hki · · ·Hk(i+j)
,

S6(n, j, k) =
n−1∑
i=1

Hki−2F
i
jk+2

Hki · · ·Hk(i+j)
, jk 6= −2,

S7(n, j, k) =

n−1∑
i=1

(−1)iHki+2F
i
jk−2

Hki · · ·Hk(i+j)
, jk 6= 2.

In each of the next two groups of finite sums that we define, the weight term is located in the
denominator of the summand. The three finite sums that follow involve sequences generated
by the recurrence given in (1.1). These finite sums are
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S8(n, j, k) =
n−1∑
i=1

(−1)jkiWk(i+j)−1

U i
jk−1Wki · · ·Wk(i+j)

, jk 6= 1,

S9(n, j, k) =
n−1∑
i=1

(−1)jkiWk(i+j)+1

U i
jk+1Wki · · ·Wk(i+j)

, jk 6= −1,

S10(n, j, k) =
n−1∑
i=1

(−1)jkiWk(i+2j)

V i
jkWki · · ·Wk(i+j)

.

Finally, the four finite sums that follow involve sequences generated by the recurrence given
in (1.1) in which p = 1.

S11(n, j, k) =
n−1∑
i=1

(−1)(jk+1)iHk(i+j)−1

Li
jk−1Hki · · ·Hk(i+j)

,

S12(n, j, k) =
n−1∑
i=1

(−1)jkiHk(i+j)+1

Li
jk+1Hki · · ·Hk(i+j)

,

S13(n, j, k) =
n−1∑
i=1

(−1)(jk+1)iHk(i+j)−2

F i
jk−2Hki · · ·Hk(i+j)

, jk 6= 2,

S14(n, j, k) =
n−1∑
i=1

(−1)jkiHk(i+j)+2

F i
jk+2Hki · · ·Hk(i+j)

, jk 6= −2.

In the next section, we state our main results, which are the closed forms for the 14 sums
defined above.

3. The Closed Forms

We begin this section with Lemma 3.1, and follow this with Theorem 3.2, which gives the
closed forms for S1, S2, and S3.

Lemma 3.1. Let n, j, and k be integers. Then

Wk(n+j) − Ujk−1Wkn = UjkWkn+1, (3.1)

Wk(n+j) − Ujk+1Wkn = UjkWkn−1, (3.2)

Wk(n+j) − VjkWkn = (−1)jk+1Wk(n−j). (3.3)

For a method of proof that applies to each result in Lemma 3.1, see Section 4.
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Theorem 3.2. Suppose j ≥ 1 and k ≥ 1 are integers. Then, with the constraints on j and k
in the definitions of S1, S2, and S3, we have

S1(n, j, k) = − 1

Ujk

[
U i
jk−1

Wki · · ·Wk(i+j−1)

]n
1

, (3.4)

S2(n, j, k) = − 1

Ujk

[
U i
jk+1

Wki · · ·Wk(i+j−1)

]n
1

, (3.5)

S3(n, j, k) = (−1)jk

[
V i
jk

Wki · · ·Wk(i+j−1)

]n
1

. (3.6)

Lemma 3.1 contains key identities that we require for the proof of Theorem 3.2. More
precisely, we require (3.1), (3.2), and (3.3) for the proofs of (3.4), (3.5), and (3.6), respectively.

Before proceeding, we make some remarks regarding identities (3.1), (3.2), and (3.3). Each
is a so-called Product Difference Fibonacci Identity (PDFI) of order 2, a description introduced
by Fairgrieve and Gould [3]. To see the motivation for this terminology, write (3.1) as

UjkWkn+1 − (−Ujk−1Wkn) = Wk(n+j).

Here we have a difference of products, involving terms from generalized Fibonacci sequences,
that yields a succinct right side. Perhaps the most celebrated PDFI of order 2 is Simson’s
identity

Fn−1Fn+1 − F 2
n = (−1)n.

For a comprehensive commentary on PDFIs, we refer the interested reader to [4].
We now state Lemma 3.3, which contains (in order) the four PDFIs that we require for the

proof of the four results in Theorem 3.4.

Lemma 3.3. Let n, j, and k be integers. Then

Hk(n+j) − Ljk+1Hkn = −FjkHkn−1,

Hk(n+j) + Ljk−1Hkn = FjkHkn+1,

Hk(n+j) − Fjk+2Hkn = −FjkHkn−2,

Hk(n+j) + Fjk−2Hkn = FjkHkn+2.

Theorem 3.4. Suppose j ≥ 1 and k ≥ 1 are integers. Then, with the constraints on j and k
in the definitions of S4, S5, S6, and S7, we have

S4(n, j, k) =
1

Fjk

[
Li
jk+1

Hki · · ·Hk(i+j−1)

]n
1

, (3.7)

S5(n, j, k) =
1

Fjk

[
(−1)i−1Li

jk−1

Hki · · ·Hk(i+j−1)

]n
1

, (3.8)

S6(n, j, k) =
1

Fjk

[
F i
jk+2

Hki · · ·Hk(i+j−1)

]n
1

, (3.9)

S7(n, j, k) =
1

Fjk

[
(−1)i−1F i

jk−2

Hki · · ·Hk(i+j−1)

]n
1

. (3.10)

Next, we state Lemma 3.5, which contains the PDFIs that we require for the proof of the
results in Theorem 3.6.
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Lemma 3.5. Let n, j, and k be integers. Then

Ujk−1Wk(n+j) + (−1)jk+1Wkn = UjkWk(n+j)−1,

Ujk+1Wk(n+j) + (−1)jk+1Wkn = UjkWk(n+j)+1,

VjkWk(n+j) + (−1)jk+1Wkn = Wk(n+2j).

Theorem 3.6. Suppose j ≥ 1 and k ≥ 1 are integers. Then, with the constraints on j and k
in the definitions of S8, S9, and S10, we have

S8(n, j, k) =
1

Ujk

[
(−1)jki+1

U i−1
jk−1Wki · · ·Wk(i+j−1)

]n
1

, (3.11)

S9(n, j, k) =
1

Ujk

[
(−1)jki+1

U i−1
jk+1Wki · · ·Wk(i+j−1)

]n
1

, (3.12)

S10(n, j, k) =

[
(−1)jki+1

V i−1
jk Wki · · ·Wk(i+j−1)

]n
1

. (3.13)

Finally, for this section, we state Lemma 3.7, which contains the PDFIs that we require for
the proof of the results in Theorem 3.8.

Lemma 3.7. Let n, j, and k be integers. Then

Ljk−1Hk(n+j) + (−1)jkHkn = FjkHk(n+j)−1,

Ljk+1Hk(n+j) + (−1)jk+1Hkn = FjkHk(n+j)+1,

Fjk−2Hk(n+j) + (−1)jkHkn = FjkHk(n+j)−2,

Fjk+2Hk(n+j) + (−1)jk+1Hkn = FjkHk(n+j)+2.

Theorem 3.8. Suppose j ≥ 1 and k ≥ 1 are integers. Then, with the constraints on j and k
in the definitions of S11, S12, S13, and S14, we have

S11(n, j, k) =
1

Fjk

[
(−1)(jk+1)i+1

Li−1
jk−1Hki · · ·Hk(i+j−1)

]n
1

, (3.14)

S12(n, j, k) =
1

Fjk

[
(−1)jki+1

Li−1
jk+1Hki · · ·Hk(i+j−1)

]n
1

, (3.15)

S13(n, j, k) =
1

Fjk

[
(−1)(jk+1)i+1

F i−1
jk−2Hki · · ·Hk(i+j−1)

]n
1

, (3.16)

S14(n, j, k) =
1

Fjk

[
(−1)jki+1

F i−1
jk+2Hki · · ·Hk(i+j−1)

]n
1

. (3.17)

4. A Sample Proof

To illustrate a method of proof that applies to each of (3.4)–(3.17), we prove (3.12) in which
n ≥ 2, j ≥ 1, k ≥ 1, and jk 6= −1. We begin by proving the PDFI that we require for the
proof of (3.12).

Proof. In Lemma 3.5, the relevant PDFI that we require for the proof of (3.12) is

Ujk+1Wk(n+j) + (−1)jk+1Wkn = UjkWk(n+j)+1. (4.1)
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Transposing the product on the right side of (4.1) to the left side, substituting the Binet forms
throughout, then expanding and factoring, we obtain

(1 + αβ)(αβ)jkWkn. (4.2)

Since αβ = −1, (4.1) follows from (4.2).
Denote the right side of (3.12) by r(n, j, k). Then after some elementary algebra, we see

that

r(n+ 1, j, k)− r(n, j, k) =
(−1)jkn

(
Ujk+1Wk(n+j) + (−1)jk+1Wkn

)
UjkU

n
jk+1Wkn · · ·Wk(n+j)

=
(−1)jknWk(n+j)+1

Un
jk+1Wkn · · ·Wk(n+j)

, by (4.1)

= S9(n+ 1, j, k)− S9(n, j, k).

(4.3)

Next, after performing manipulations similar to those immediately above, we see that

r(2, j, k) =
1

Ujk

(
(−1)jkUjk+1Wk(1+j) −Wk

Ujk+1Wk · · ·Wk(1+j)

)

=
(−1)jk

Ujk

(
Ujk+1Wk(1+j) + (−1)jk+1Wk

Ujk+1Wk · · ·Wk(1+j)

)

=
(−1)jkWk(1+j)+1

Ujk+1Wk · · ·Wk(1+j)
,by (4.1)

= S9(2, j, k).

(4.4)

Together, (4.3) and (4.4) prove (3.12). �

5. Some Special Cases of Our Main Results

In this section, we take a selection of our main results from Section 3, and write down
special cases of them. In (3.4) and (3.6), let k = 1, and take Wn = Pn. Then (3.4) and (3.6)
become, respectively,

n−1∑
i=1

Pi+1P
i
j−1

Pi · · ·Pi+j
= − 1

Pj

[
P i
j−1

Pi · · ·Pi+j−1

]n
1

, (5.1)

n−1∑
i=1

Pi−jQ
i
j

Pi · · ·Pi+j
= (−1)j

[
Qi

j

Pi · · ·Pi+j−1

]n
1

. (5.2)

With j = 2, (5.1) and (5.2) yield, respectively,

n−1∑
i=1

1

PiPi+2
=

1

2

(
1

2
− 1

PnPn+1

)
,

n−1∑
i=1

Pi−26
i

PiPi+1Pi+2
=

6n

PnPn+1
− 3.
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Next, consider (3.7) and (3.8) with Hn = Fn, and take k = 2. Then (3.7) and (3.8) become,
respectively,

n−1∑
i=1

L2i−1L
i
2j+1

F2i · · ·F2(i+j)
=

1

F2j

[
Li
2j+1

F2i · · ·F2(i+j−1)

]n
1

, (5.3)

n−1∑
i=1

(−1)iL2i+1L
i
2j−1

F2i · · ·F2(i+j)
=

1

F2j

[
(−1)i−1Li

2j−1

F2i · · ·F2(i+j−1)

]n
1

. (5.4)

With j = 1, (5.3) and (5.4) yield, respectively,

n−1∑
i=1

L2i−12
2i

F2iF2(i+1)
= 4

(
22n−2

F2n
− 1

)
,

n−1∑
i=1

(−1)iL2i+1

F2iF2(i+1)
=

(−1)n−1

F2n
− 1.

Finally for this section, consider (3.13), and take Hn = Fn. With k = 3, (3.13) then becomes

n−1∑
i=1

F3(i+2j)

Li
3jF3i · · ·F3(i+j)

=

[
−1

Li−1
3j F3i · · ·F3(i+j−1)

]n
1

, j even, (5.5)

n−1∑
i=1

(−1)iF3(i+2j)

Li
3jF3i · · ·F3(i+j)

=

[
(−1)i+1

Li−1
3j F3i · · ·F3(i+j−1)

]n
1

, j odd. (5.6)

With j = 2 in (5.5), and with j = 3 in (5.6), we have, respectively,

n−1∑
i=1

F3(i+4)

18iF3iF3(i+1)F3(i+2)
=

1

16
− 1

18n−1F3nF3(n+1)
,

n−1∑
i=1

(−1)iF3(i+6)

76iF3iF3(i+1)F3(i+2)F3(i+3)
=

(−1)n−1

76n−1F3nF3(n+1)F3(n+2)
− 1

544
.

6. Where There Are Squared Factors in the Denominator of the Summand

Results analogous to those presented above, where the denominator of the summand con-
tains squared factors, seem to be rare. We have discovered nine such results, which we present
below. The interested reader may wish to supply the proofs for some (or all) of these results.
For each of the six results in (6.1) and (6.2), the denominator of the summand is bounded
in length. However, for each of the three results in (6.3) and (6.4), the summand contains
arbitrarily long products in its denominator.

The three results in (6.1) hold for the special sequence {Hn}.
n−1∑
i=1

Hi−1Hi+2

H2
i H

2
i+1

= −
[

1

H2
i

]n
1

,

n−1∑
i=1

22iHi−2H i+1

H2
i H

2
i+1

=

[
22i

H2
i

]n
1

,

n−1∑
i=1

Hi+3H i

22iH2
i H

2
i+1

= −
[

1

22i−2H2
i

]n
1

.

(6.1)
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The three results in (6.2) also hold for the special sequence {Hn}.
n−1∑
i=1

1

H2
i Hi+1Hi+2H2

i+3

= −1

4

[
1

H2
i H

2
i+1H

2
i+2

]n
1

,

n−1∑
i=1

32iHi−1H i+1

H2
i H

2
i+1H

2
i+2H

2
i+3

= −1

4

[
32i

H2
i H

2
i+1H

2
i+2

]n
1

,

n−1∑
i=1

Hi+4H i+2

32iH2
i H

2
i+1H

2
i+2H

2
i+3

= −1

4

[
1

32i−2H2
i H

2
i+1H

2
i+2

]n
1

.

(6.2)

The setting for the next sum is the more general sequence {Wn}, where jk is even.

n−1∑
i=1

Wk(2i+j)/2W k(2i+j)/2

W 2
ki · · ·W 2

k(i+j)

= − 1

Ujk

[
1

W 2
ki · · ·W 2

k(i+j−1)

]n
1

, jk even. (6.3)

In (1.1), take (a, b, p) = (0, 1, 2), and let (j, k) = (2, 1). Then (6.3) becomes

n−1∑
i=1

Qi+1

P 2
i Pi+1P 2

i+2

=
1

2

(
1

4
− 1

P 2
nP

2
n+1

)
.

The two sums that follow are alternating, and contain only the parameter j. The most
general setting for these sums are the sequences {Un} and {Vn}.

n−1∑
i=1

(−1)iU2i+2j−1

U2
i · · ·U2

i+2j−1

=
1

U2j−1

[
(−1)i−1

U2
i · · ·U2

i+2j−2

]n
1

,

n−1∑
i=1

(−1)iU2i+2j−1

V 2
i · · ·V 2

i+2j−1

=
1

∆U2j−1

[
(−1)i−1

V 2
i · · ·V 2

i+2j−2

]n
1

.

(6.4)

Staying with the Pell and Pell-Lucas sequences, and taking j = 2, we see that the two sums
in (6.4) become, respectively,

n−1∑
i=1

(−1)iP2i+3

P 2
i P

2
i+1P

2
i+2P

2
i+3

=
1

5

(
(−1)n−1

P 2
nP

2
n+1P

2
n+2

− 1

100

)
,

n−1∑
i=1

(−1)iP2i+3

Q2
iQ

2
i+1Q

2
i+2Q

2
i+3

=
1

40

(
(−1)n−1

Q2
nQ

2
n+1Q

2
n+2

− 1

28224

)
.
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