
WEIGHTED SUMS OF SOME SECOND-ORDER SEQUENCES

KUNLE ADEGOKE

Abstract. We derive weighted summation identities involving the second-order recurrence
sequence {wn} = {wn(a, b; p, q)} defined by w0 = a, w1 = b; wn = pwn−1 − qwn−2 (n ≥ 2),
where a, b, p, and q are arbitrary complex numbers, with p 6= 0 and q 6= 0.

1. Introduction

Horadam [2] wrote a paper in which he established the basic arithmetical properties of his
generalized Fibonacci sequence {wn} = {wn(a, b; p, q)} defined by

w0 = a, w1 = b; wn = pwn−1 − qwn−2 (n ≥ 2) , (1.1)

where a, b, p, and q are arbitrary complex numbers, with p 6= 0 and q 6= 0. Some well studied
particular cases of {wn} are the sequences {un}, {vn}, {Gn}, {Pn}, and {Jn} given by:

wn(1, p; p, q) = un(p, q) , (1.2)

wn(2, p; p, q) = vn(p, q) , (1.3)

wn(a, b; 1,−1) = Gn(a, b) , (1.4)

wn(0, 1; 2,−1) = Pn , (1.5)

and
wn(0, 1; 1,−2) = Jn . (1.6)

Note that un(1,−1) = Fn+1 and vn(1,−1) = Ln, where Fn = Gn(0, 1) and Ln = Gn(2, 1) are
the classic Fibonacci numbers and Lucas numbers, respectively. Pn and Jn are the Pell numbers
and Jacobsthal numbers, respectively. Note also that un(2,−1) = Pn+1 and un(1,−2) = Jn+1.
The sequence {Gn} was introduced by Horadam [1] in 1961, (under the notation {Hn}).

Extension of the definition of wn to negative subscripts is provided by writing the recurrence
relation as w−n = (pw−n+1 − w−n+2)/q. Horadam [2] showed that:

u−n = −q−n+1un−2 , (1.7)

v−n = qnvn , (1.8)

and

w−n =
aun − bun−1

aun + (b− pa)un−1
wn . (1.9)

Our main goal in this paper is to derive weighted summation identities involving the numbers
wn. For example, we shall derive (Theorem 5) the following weighted binomial sum:

(−qur−1)
k

k∑
j=0

(
k

j

)(
− ur
qur−1

)j
wm−k(r+1)+j = wm ,

which generalizes Horadam’s result [2, equation 3.19]:

(−q)n
n∑
j=0

(
n

j

)(
−p
q

)j
wj = w2n ,
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the latter identity being an evaluation of the former at m = 2n, k = n, r = 1.
As another example, it is known (first identity of Cor. 15, [3]) that

n∑
j=0

(−1)j
(
n

j

)
Fj = −Fn ,

but this can be generalized to:

k∑
j=0

(−1)j
(
k

j

)
Grj

F jr+1

=

(
Fr
Fr+1

)k G0Fk+1 −G1Fk
G0Fk−1 +G1Fk

Gk ,

which is itself a special case of a more general result (see Theorem 6):

k∑
j=0

(−1)j
(
k

j

)
wrj

ujr
=

(
ur−1

ur

)k auk − buk−1

auk + (b− pa)uk−1
wk .

As an example of non-binomial sums derived in this paper, we mention (see Theorem 3):

ur−1

k∑
j=0

wrj
(−qur−2)j

=
wkr+r−1

(−qur−2)k
+ (ap− b)ur−2 ,

of which a special case is

Fr

k∑
j=0

Grj

F jr−1

=
Gkr+r−1

F kr−1

− Fr−1(G1 −G0) .

Another example in this category is (see Theorem 2):

qn−reur−1

k∑
j=0

urj
(wn/wn−r)j

=
wn+kr+1wn−r
(wn/wn−r)k

− wnwn−r+1 ,

giving rise to the following results for the {Gm}, {Pm}, and {Jm} sequences:

(−1)n−r(G0G1 +G2
0 −G2

1)Fr

k∑
j=0

Frj+1

(Gn/Gn−r)j
=
Gn+kr+1Gn−r
(Gn/Gn−r)k

−GnGn−r+1 ,

(−1)n−r−1Pr

k∑
j=0

Prj+1

(Pn/Pn−r)j
=
Pn+kr+1Pn−r
(Pn/Pn−r)k

− PnPn−r+1 ,

and

(−1)n−r−12n−rJr

k∑
j=0

Jrj+1

(Jn/Jn−r)j
=
Jn+kr+1Jn−r
(Jn/Jn−r)k

− JnJn−r+1 .

We require the following identities, derived in [2]:

wm+r = urwm − qur−1wm−1 , (1.10)

vrwm = wm+r + qrwm−r , (1.11)

and

wn−rwm+n+r = wnwm+n + qn−reur−1um+r−1 , (1.12)

where e = pab− qa2 − b2.
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2. Weighted Sums

Lemma 1. Let {Xm} and {Ym} be any two sequences such that Xm and Ym, m ∈ Z, are
connected by a second-order recurrence relation Xm = xXm−α + yYm−β, where x and y are
arbitrary non-vanishing complex functions, not dependent on m, and α and β are integers.
Then,

y
k∑
j=0

Ym−kα−β+αj
xj

=
Xm

xk
− xXm−(k+1)α ,

for k a non-negative integer.

In particular,

y
k∑
j=0

Yαj
xj

=
Xkα+β

xk
− xXβ−α . (2.1)

Proof. The proof shall be by induction on k. Consider the proposition Pk,

Pk :

y k∑
j=0

Ym−kα−β+αj
xj

=
Xm

xk
− xXm−(k+1)α

 ;

with respect to the relation Xm = xXm−α + yYm−β. Clearly, P0 is true. Assume that Pn is
true for a certain positive integer n. We want to prove that Pn ⇒ Pn+1. Now,

Pn :

(
f(n) =

Xm

xn
− xXm−(n+1)α

)
;

where

f(n) = y

n∑
j=0

Ym−nα−β+jα
xj

.

We have

f(n+ 1) = y

n+1∑
j=0

Ym−nα−α−β+jα
xj

= y

n∑
j=−1

Ym−nα−α−β+jα+α
xj+1

=
y

x

n∑
j=−1

Ym−nα−β+jα
xj

=
y

x

xYm−nα−β−α +
n∑
j=0

Ym−nα−β+jα
xj


= yYm−nα−α−β +

1

x

y n∑
j=0

Ym−nα−β+jα
xj


(invoking the induction hypothesis Pn)

= yYm−nα−α−β +
1

x

(
Xm

xn
− xXm−nα−α

)
=

Xm

xn+1
− (Xm−nα−α − yYm−nα−α−β) .

Since Xm−nα−α − yYm−nα−α−β = xXm−nα−α−α, we finally have

f(n+ 1) =
Xm

xn+1
− xXm−(n+2)α .
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Thus,

Pn+1 :

(
f(n+ 1) =

Xm

xn+1
− xXm−(n+1+1)α

)
;

i.e. Pn ⇒ Pn+1 and the induction is complete. �

Note that the identity of Lemma 1 can also be written in the equivalent form:

y
k∑
j=0

xjYm−β−jα = Xm − xk+1Xm−(k+1)α . (2.2)

In particular,

y

k∑
j=0

xjY−jα = Xβ − xk+1Xβ−(k+1)α . (2.3)

Theorem 1. For integer m, non-negative integer k and any integer r for which wr−1 6= 0,
the following identity holds:

k∑
j=0

(
wr

qwr−1

)j
wm+r−k+j =

(
wr

qwr−1

)k
umwr − qum−k−1wr−1 .

In particular,

qr−1
k∑
j=0

(
wr

qwr−1

)j
wj =

(
wr

qwr−1

)k
qr−1uk−rwr + ur−1wr−1 . (2.4)

Proof. Interchange m and r in identity (1.10) and write the resulting identity as

um =
qwr−1

wr
um−1 +

1

wr
wm+r .

Identify X = u, Y = w, x = qwr−1/wr, y = 1/wr, α = 1, and β = −r, and use these in
Lemma 1. �

The Fibonacci, Lucas, and Pell versions of Theorem 1 are, respectively,

k∑
j=0

(−1)j
(

Fr
Fr−1

)j
Fm+r−k+j = (−1)k

(
Fr
Fr−1

)k
Fm+1Fr + Fm−kFr−1 , (2.5)

k∑
j=0

(−1)j
(

Lr
Lr−1

)j
Lm+r−k+j = (−1)k

(
Lr
Lr−1

)k
Fm+1Lr + Fm−kLr−1 , (2.6)

and
k∑
j=0

(−1)j
(

Pr
Pr−1

)j
Pm+r−k+j = (−1)k

(
Pr
Pr−1

)k
Pm+1Pr + Pm−kPr−1 . (2.7)

In particular, we have

k∑
j=0

(−1)j
(

Fr
Fr−1

)j
Fr+j = (−1)k

(
Fr
Fr−1

)k
Fk+1Fr , (2.8)

k∑
j=0

(−1)j
(

Lr
Lr−1

)j
Lr+j = (−1)k

(
Lr
Lr−1

)k
Fk+1Lr (2.9)
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and
k∑
j=0

(−1)j
(

Pr
Pr−1

)j
Pr+j = (−1)k

(
Pr
Pr−1

)k
Pk+1Pr . (2.10)

Theorem 2. For non-negative integer k, integers m and r and any integer n for which wn 6= 0,
the following identity holds:

qn−reur−1

k∑
j=0

um−(n+1)−kr+rj

(wn/wn−r)j
=

wmwn−r
(wn/wn−r)k

− wnwm−(k+1)r .

In particular,

qn−reur−1

k∑
j=0

urj
(wn/wn−r)j

=
wn+kr+1wn−r
(wn/wn−r)k

− wnwn−r+1 . (2.11)

Proof. Write identity (1.12) as

wm =
wn
wn−r

wm−r + qn−r
eur−1

wn−r
um−n−1 .

Identify x = wn/wn−r, y = qn−reur−1/wn−r, α = r, and β = n + 1, and use these in Lemma
1. �

Results for the {Gm} and {Pm} sequences emanating from identity (2.11) are the following:

(−1)n−r(G0G1 +G2
0 −G2

1)Fr

k∑
j=0

Frj+1

(Gn/Gn−r)j
=
Gn+kr+1Gn−r
(Gn/Gn−r)k

−GnGn−r+1 (2.12)

and

(−1)n−r−1Pr

k∑
j=0

Prj+1

(Pn/Pn−r)j
=
Pn+kr+1Pn−r
(Pn/Pn−r)k

− PnPn−r+1 . (2.13)

Lemma 2. Let {Xm} be any arbitrary sequence, where Xm, m ∈ Z, satisfies a second order
recurrence relation Xm = xXm−α+yXm−β, where x and y are arbitrary non-vanishing complex
functions, not dependent on m, and α and β are integers. Then,

y

k∑
j=0

Xm−kα−β+αj
xj

=
Xm

xk
− xXm−(k+1)α (2.14)

and

x
k∑
j=0

Xm−kβ−α+βj
yj

=
Xm

yk
− yXm−(k+1)β , (2.15)

for k a non-negative integer.

In particular,

y

k∑
j=0

Xαj

xj
=
Xkα+β

xk
− xXβ−α (2.16)

and

x

k∑
j=0

Xβj

yj
=
Xkβ+α

yk
− yXα−β . (2.17)
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Proof. Identity (2.14) is a direct consequence of Lemma 1 with Ym = Xm. Identity (2.15) is
obtained from the symmetry of the recurrence relation by interchanging x and y and α and
β. �

Note that the identities (2.14) and (2.15) can be written in the following equivalent forms:

y

k∑
j=0

xjXm−β−αj = Xm − xk+1Xm−(k+1)α (2.18)

and

x

k∑
j=0

yjXm−α−βj = Xm − yk+1Xm−(k+1)β . (2.19)

In particular,

y
k∑
j=0

xjX−αj = Xβ − xk+1Xβ−(k+1)α (2.20)

and

x

k∑
j=0

yjX−βj = Xα − yk+1Xα−(k+1)β . (2.21)

Theorem 3. For non-negative integer k and any integer m, the following identities hold:

qukrur−1

k∑
j=0

wm−kr−r−1+rj

ujr
= uk+1

r wm−kr−r − wm, r ∈ Z, r 6= −1 , (2.22)

ur−1

k∑
j=0

wm−kr−r+1+rj

(−qur−2)j
=

wm
(−qur−2)k

+ qur−2wm−(k+1)r, r ∈ Z, r 6= 1 , (2.23)

and
k∑
j=0

wm−k+r+j
(qur−1/ur)j

=
urwm

(qur−1/ur)k
− qur−1wm−k−1, r ∈ Z, r 6= 0 . (2.24)

In particular,

qukrur−1

k∑
j=0

wrj

ujr
= buk+1

r − wkr+r+1 , (2.25)

ur−1

k∑
j=0

wrj
(−qur−2)j

=
wkr+r−1

(−qur−2)k
+ (ap− b)ur−2 , (2.26)

and
k∑
j=0

wj
(qur−1/ur)j

=
urwk−r

(qur−1/ur)k
− 1

qr
aur+1 − bur

aur+1 + (b− pa)ur
ur−1wr+1 . (2.27)

Proof. To prove identities (2.22) and (2.23), write the relation (1.10) as wm = urwm−r −
qur−1wm−r−1, identify X = w, x = ur, y = −qur−1, α = r, and β = r + 1, and use these
in Lemma 2. Similarly, identity (2.24) is proved by writing the relation (1.10) as wm =
(1/ur)wm+r + (qur−1/ur)wm−1, identifying X = w, x = 1/ur, y = qur−1/ur, α = −r, and
β = 1 and using these in Lemma 2. �
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Explicit examples from identity (2.27) include

k∑
j=0

(−1)j
Gj

(Fr/Fr+1)j
= (−1)k

Fr+1

(Fr/Fr+1)k
Gk−r − (−1)r

Fr+2G0 − Fr+1G1

Fr+2G0 + Fr+1(G1 −G0)
FrGr+1 ,

(2.28)
k∑
j=0

(−1)j
Pj

(Pr/Pr+1)j
= (−1)k

Pr+1Pk−r
(Pr/Pr+1)k

+ (−1)rPrPr+1 , (2.29)

and
k∑
j=0

(−1)j

2j
Jj

(Jr/Jr+1)j
=

(−1)k

2k
Jr+1Jk−r

(Jr/Jr+1)k
+

(−1)r

2r
JrJr+1 . (2.30)

Theorem 4. For non-negative integer k and all integers r and m, the following identities
hold:

k∑
j=0

wm−kr+r+rj
(qr/vr)j

=
vrwm

(qr/vr)k
− qrwm−(k+1)r , (2.31)

vkr q
r

k∑
j=0

wm−r+rj

vjr
= vk+1

r wm − wm+(k+1)r , (2.32)

vr

k∑
j=0

wm−2kr−r+2rj

(−qr)j
=

wm
(−qr)k

+ qrwm−(k+1)2r , (2.33)

vr

k∑
j=0

wm+r+2rj

qrj
=
wm+2r(k+1)

qkr
− qrwm , (2.34)

and
k∑
j=0

(
−vr
qr

)j
wm+2r+rj = qrwm + vr

(
−vr
qr

)k
wm+(k+1)r . (2.35)

In particular,

k∑
j=0

wrj
(qr/vr)j

=
vrwkr−r
(qr/vr)k

− 1

qr
au2r − bu2r−1

au2r + (b− pa)u2r−1
w2r , (2.36)

vkr q
r

k∑
j=0

wrj

vjr
= vk+1

r wr − w(k+2)r , (2.37)

vr

k∑
j=0

w2rj

(−qr)j
=
w(2k+1)r

(−qr)k
+

aur − bur−1

aur + (b− pa)ur−1
wr , (2.38)

vr

k∑
j=0

w2rj

qrj
=
w2rk+r

qkr
− aur − bur−1

aur + (b− pa)ur−1
wr , (2.39)

and

qr
k∑
j=0

(
−vr
qr

)j
wrj =

au2r − bu2r−1

au2r + (b− pa)u2r−1
w2r + qrvr

(
−vr
qr

)k
wkr−r . (2.40)
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Proof. To prove identities (2.31) and (2.32), write identity (1.11) as wm = (1/vr)wm+r +
(qr/vr)wm−r. Identify X = w, x = 1/vr, y = qr/vr, α = −r, and β = r, and use these in
Lemma 2, identities (2.15) and (2.18). Likewise, to prove identity (2.34), write identity (1.11)
as qrwm = wm+2r − vrwm+r. Identify X = w, x = 1/qr, y = −vr/qr, α = −2r, and β = −r,
and use these in Lemma 2, identity (2.18). �

Lemma 3. Let {Xm} be any arbitrary sequence. Let Xm, m ∈ Z, satisfy a second order recur-
rence relation Xm = xXm−α + yXm−β, where x and y are non-vanishing complex functions,
not dependent on m, and α and β are integers. Then,

k∑
j=0

(
k

j

)(
x

y

)j
Xm−kβ+(β−α)j =

Xm

yk
,

for k a non-negative integer.

In particular,
k∑
j=0

(
k

j

)(
x

y

)j
X(β−α)j =

Xkβ

yk
. (2.41)

Proof. We apply mathematical induction on k. Obviously, the lemma is true for k = 0. We
assume that it is true for k = n a positive integer. The induction hypothesis is

Pn :

(
f(n) =

Xm

yn

)
;

where

f(n) =
n∑
j=0

(
k

j

)(
x

y

)j
Xm−nβ+(β−α)j .

We want to prove that Pn ⇒ Pn+1. We proceed,

f(n+ 1) =
n+1∑
j=0

(
n+ 1

j

)(
x

y

)j
Xm−nβ−β+(β−α)j

(since

(
n+ 1

j

)
=

(
n

j

)
+

(
n

j − 1

)
)

=

n+1∑
j=0

(
n

j

)(
x

y

)j
Xm−nβ−β+(β−α)j +

n+1∑
j=0

(
n

j − 1

)(
x

y

)j
Xm−nβ−β+(β−α)j

=
n+1∑
j=0

(
n

j

)(
x

y

)j
Xm−nβ−β+(β−α)j +

n+1∑
j=1

(
n

j − 1

)(
x

y

)j
Xm−nβ−β+(β−α)j

=
n∑
j=0

(
n

j

)(
x

y

)j
Xm−nβ−β+(β−α)j +

x

y

n∑
j=0

(
n

j

)(
x

y

)j
Xm−nβ−β+(β−α)(j+1)

=
n∑
j=0

(
n

j

)(
x

y

)j (
Xm−nβ−β+(β−α)j +

x

y
Xm−nβ−β+(β−α)(j+1)

)

=
1

y

n∑
j=0

(
n

j

)(
x

y

)j (
xXm−nβ−β+(β−α)(j+1) + yXm−nβ−β+(β−α)j

)

AUGUST 2018 259



THE FIBONACCI QUARTERLY

(since xXm−nβ−β+(β−α)(j+1) + yXm−nβ−β+(β−α)j = Xm−nβ+(β−α)j)

=
1

y

n∑
j=0

(
n

j

)(
x

y

)j
Xm−nβ+(β−α)j

=
1

y

Xm

yn
(by the induction hypothesis) .

Thus,

f(n+ 1) =
Xm

yn+1
,

so that

Pn+1 :

(
f(n+ 1) =

Xm

yn+1

)
;

i.e. Pn ⇒ Pn+1 and the induction is complete. �

Note that the identity of Lemma 3 can also be written as

k∑
j=0

(
k

j

)(y
x

)j
Xm−kα+(α−β)j =

Xm

xk
, (2.42)

with the particular case
k∑
j=0

(
k

j

)(y
x

)j
X(α−β)j =

Xkα

xk
. (2.43)

Theorem 5. For non-negative integer k and any integer m, the following identities hold:

(−qur−1)
k

k∑
j=0

(
k

j

)(
− ur
qur−1

)j
wm−k(r+1)+j = wm, r ∈ Z, r 6= 0 , (2.44)

k∑
j=0

(
k

j

)
wm−k+rj
(qur−2)j

=

(
ur−1

qur−2

)k
wm, r ∈ Z, r 6= 1, (2.45)

and
k∑
j=0

(−1)j
(
k

j

)
wm+k+rj

ujr
=

(
qur−1

ur

)k
wm, r ∈ Z, r 6= −1 . (2.46)

In particular,

(−qur−1)
k

k∑
j=0

(
k

j

)(
− ur
qur−1

)j
wj = wk(r+1) , (2.47)

k∑
j=0

(
k

j

)
wrj

(qur−2)j
=

(
ur−1

qur−2

)k
wk , (2.48)

and
k∑
j=0

(−1)j
(
k

j

)
wrj

ujr
=

(
ur−1

ur

)k auk − buk−1

auk + (b− pa)uk−1
wk . (2.49)
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Proof. To prove identity (2.44), use, in Lemma 3, the x, y, α, and β found in the proof of
identities (2.22) and (2.23) of Theorem 3. To prove identity (2.45), use in Lemma 3, the x,
y, α, and β found in the proof of identity (2.24) of Theorem 3. To prove identity (2.46),
write the relation (1.10) as wm = −(1/(qur−1))wm+r+1 + (ur/(qur−1))wm+1. Identify X = w,
x = −(1/(qur−1)), y = (ur/(qur−1)), α = −1− r, and β = −1, and use these in Lemma 3. �

We have the following specific examples from identity (2.48):

k∑
j=0

(−1)j
(
k

j

)
Grj

F jr−1

= (−1)k
(

Fr
Fr−1

)k
Gk , (2.50)

k∑
j=0

(−1)j
(
k

j

)
Prj

P jr−1

= (−1)k
(

Pr
Pr−1

)k
Pk , (2.51)

and
k∑
j=0

(−1)j

2j

(
k

j

)
Jrj

J jr−1

=
(−1)k

2k

(
Jr
Jr−1

)k
Jk . (2.52)

Note that identity (2.44) is a generalization of identity (48) of Vajda [4], the latter being the
evaluation of the former at r = 1 and q = −1.

Theorem 6. For non-negative integer k and all integers m and r, the following identities
hold:

k∑
j=0

(
k

j

)
wm−kr+2rj

qrj
=

(
vr
qr

)k
wm , (2.53)

k∑
j=0

(
k

j

)(
−vr
qr

)j
wm−2kr+rj =

wm
(−qr)k

, (2.54)

and
k∑
j=0

(−1)j
(
k

j

)
wm+kr+rj

vjr
= (−1)k

qrkwm
vkr

. (2.55)

In particular,
k∑
j=0

(
k

j

)
w2rj

qrj
=

(
vr
qr

)k
wrk , (2.56)

k∑
j=0

(
k

j

)(
−vr
qr

)j
wrj =

w2kr

(−qr)k
, (2.57)

and
k∑
j=0

(−1)j
(
k

j

)
wrj

vjr
= (−1)k

(
aukr − bukr−1

aukr + (b− pa)ukr−1

)
wkr
vkr

. (2.58)

Proof. To prove identity (2.53), use, in Lemma 3, the x, y, α, and β found in the proof of
identities (2.31) and (2.32) of Theorem 4. To prove identity (2.54), write identity (1.11) as
wm = vrwm−r − qrwm−2r. Identify X = w, x = vr, y = −qr, α = r, and β = 2r, and use these
in Lemma 3. To prove identity (2.55), use, in Lemma 3, the x, y, α, and β found in the proof
of identity (2.34) of Theorem 4. �
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Setting p = 1 = −q in identity (2.53), we have

k∑
j=0

(−1)rj
(
k

j

)
Gm−kr+2rj = (−1)rkLkrGm . (2.59)

Identity (2.58) at p = 1 = −q gives

k∑
j=0

(−1)j
(
k

j

)
Grj

Ljr
= (−1)k

Fkr+1G0 − FkrG1

Fkr+1G0 + Fkr(G1 −G0)

Gkr
Lkr

. (2.60)
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