
THE SUMS OF THE CONSECUTIVE FIBONACCI NUMBERS

DMITRIY SHTEFAN AND IRINA DOBROVOLSKA

Abstract. In this paper, we study integer numbers d with the following property: the sum
of any d consecutive Fibonacci numbers is divisible by d. We call these d-numbers. We
demonstrate a relation between d-numbers and the Pisano period, specifically, we prove that
the original problem is equivalent to finding all integer numbers d > 1 that are divisible
by their own Pisano period. We derive a general expression for all d-numbers and obtain
convenient recurrent relations that significantly simplify practical calculation. Finally, we
establish an equivalence between d-numbers and the OEIS sequence A072378.

1. Introduction

In this paper, we solve the following problem.

Problem. Find and investigate all integer numbers d > 1 such that the sum of any d con-
secutive Fibonacci numbers is divisible by d, i.e., that satisfy the following relation for any
integer k:

d+k−1∑
i=k

Fi ≡ 0 (mod d). (1.1)

We refer to these numbers as d-numbers hereafter (not to be confused with D numbers [4]).
We prove that condition (1.1) is equivalent to π(d)|d where π(d) denotes the Pisano period

(see the definition below) of the Fibonacci sequence modulo d. Thus, we demonstrate that the
original problem is equivalent to finding all integer numbers d > 1 that are divisible by their
own Pisano period.

To solve the problem, we first derive a general expression (3.4) for the minimal d-number
dk which is divisible by a given integer k > 1. Then, we prove that the set of all dk coincides
with an infinite set of all d-numbers.

The direct use of (3.4), however, may be technically complicated. Hence, we prove theorems
that allow us to significantly simplify the calculations. In particular, we derive the recurrent
expression (3.8) to easily obtain d-numbers dp for all prime numbers p. We further prove that,
once all such dp are known, all other d-numbers can be easily found using (3.11).

We show that all the results, formulas, and theorems, which have been obtained for the Fi-
bonacci numbers, are also applicable for generalized Fibonacci numbers with arbitrary starting
values a and b, and with the usual recurrent formula for Fibonacci numbers.

Finally, we prove that all d-numbers are divisible by 24, and the sequence of quotients
coincides with the sequence of numbers n such that 12n divides F12n [6, A072378].

2. Known Results

To proceed, we will use some known results and definitions.
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The sequence of the Fibonacci numbers Fn satisfies the recurrent relation Fn = Fn−1+Fn−2

with F0 = 0 and F1 = 1 is periodic modulo m for every integer m > 1 [8]. The minimal period
of the Fibonacci sequence modulo m is called the Pisano period of m [7]. More rigorously, the
Pisano period is defined as follows:

Definition 2.1. For any integer m > 1, the least integer n such that (Fn, Fn+1) ≡ (0, 1) (mod m)
is denoted by π(m) and is called the Pisano period of m [2].

Theorem 2.2. (Iteration Theorem)[2]: For each integer m > 1, there exists a least integer ω
such that πω+1(m) = πω(m).

Here ω is called the Fibonacci frequency, and the following notations are used: π2(k) =
π(π(k)) and πn+1(k) = π(πn(k)).

Theorem 2.3. For each m > 1 and n > 1,

π([n,m]) = [π(n), π(m)],

where [n,m] denotes the least common multiple [2].

Theorem 2.4. If m > 2, then π(m) is an even number [8].

Theorem 2.5. If p is prime and a is a positive integer and π(p2) 6= π(p), then π(pa) =
pa−1π(p). Also, if t is the largest integer with π(pt) = π(p), then π(pa) = pa−tπ(p) for a > t
(Theorem 5 in [8]).

Also, we will use the next two corollaries, which follow from Theorem 2.5.

Corollary 2.6. π(pa)|pa−1π(p).

Corollary 2.7. π(pa)|π(pb), if a < b.

Theorem 2.8. If q and p are prime and q|π(p), where p > 5, then q < p (Corollary 3.1 from
Theorem 2.2 in [2]).

The Fibonacci sequence can be extended to negative indices n using the rearranged recur-
rence formula [5]

Fn−2 = Fn − Fn−1,

which yields the sequence of numbers satisfying the following relation:

Fn = (−1)n+1F−n. (2.1)

3. The Main Results

Now, we solve the problem under consideration.
First, we prove that condition (1.1) is equivalent to π(d)|d, where π(d) denotes the Pisano

period of the Fibonacci sequence modulo d.
Using the definition of the Pisano period, and periodicities properties, we have

π(d)|d⇔ Fn+d ≡ Fn (mod d) (3.1)

for any integer n. Using mathematical induction, it is easy to show that last condition is
equivalent to the following:

k+d∑
i=k+1

Fi ≡
d∑
j=1

Fj (mod d) (3.2)

for any integer k.
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Using (3.1) we obtain (see also Identity I. from [1], p. 66):

d∑
i=1

Fi = Fd+2 − 1 ≡ F2 − 1 ≡ 0 (mod d) (3.3)

Consequently, we proved that the original problem is equivalent to finding all integer num-
bers d > 1 that are divisible by their own Pisano period.

Next, we find the minimal d-number, dk, which is divisible by a given integer number k > 1.
Note, that the set of all dk numbers coincides with the set of all d-numbers. Indeed, the set
of dk numbers is a subset of the set of d-numbers, and every d-number is a dk-number (e.g.,
for k = d).

Before proceeding, we prove the following lemma.

Lemma 3.1. If d-number is divisible by k, then d is divisible by [k, π(k), π2(k), π3(k), . . . , πω(k)],
where ω is the Fibonacci frequency defined in Theorem 2.2.

Proof. Indeed, using Theorem 2.3 we find that π(d) = π([k, d]) = [π(k), π(d)]. Consequently,
d is divisible by π(k). Similarly, we prove the divisibility of d by π2(k), by π3(k), etc. �

The following theorem gives us a closed formula for the numbers dk.

Theorem 3.2. For any given integer k > 1, there exists the minimal d-number dk, which is
divisible by k, satisfies (3.1), and may be calculated using

dk = [k, π(k), π2(k), π3(k), . . . , πω(k)]. (3.4)

Proof. We prove that the number m = [k, π(k), π2(k), π3(k), . . . , πω(k)] is a d-number. For
this, we show that π(m)|m. Indeed, according to Theorem 2.3 and Iteration Theorem 2.2, we
obtain

π(m) = [π(k), π2(k), π3(k), . . . , πω+1(k)] = [π(k), π2(k), π3(k), . . . , πω(k)], (3.5)

so, m is a d-number. And according to Lemma 3.1, we prove that dk, given by (3.4), is indeed
the minimal d-number divisible by k. �

Since condition (3.1) is equivalent to (1.1) and, as mentioned above, the set of all dk coincides
with the set of all d-numbers, Theorem 3.2 solves the original problem, allowing us to find all
d-numbers.

Even though (3.4) formally solves the problem, the use of this expression may be technically
complicated.

Example 3.3. As an example, we calculate dk for k = 1310 using (3.4). Since π(13) = 28
and π(132) = 364 6= π(13), using Theorem 2.5, we find: π(13a) = 13a−1π(13).
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π(1310) = 139π(13) = 139 · 28;

π2(1310) = π(139 · 28) = [π(139), π(28)] = [138 · 28, 48] = 138 · 7 · 16 · 3;

π3(1310) = π(138 · 7 · 16 · 3) = [137 · 7π(13), π(16), π(7), π(3)] = [137 · 28, 24, 16, 8]

= 137 · 7 · 16 · 3;

π4(1310) = π(137 · 7 · 16 · 3) = [136 · 28, 24, 16, 8] = 136 · 7 · 16 · 3;

. . .

π10(1310) = 7 · 16 · 3;

π11(1310) = π(7 · 16 · 3) = [16, 24, 8] = 48;

π2(48) = π(16 · 3) = [π(16), π(3)] = 24;

π(24) = π(8 · 3) = [π(8), π(3)] = 24;

d1310 = [1310, π(1310), π2(1310), π3(1310), . . . , π12(1310)] = 1310 · 336.

We see that, in this case, ω = 12. Consequently, we must calculate 13 Pisano periods to obtain
d1310. Usually, for integers of the form k = pn, where p is a prime number, one needs to do
more than n+ 1 such operations, thus making the calculation even longer.

Hence, we prove several theorems to simplify the calculation of d-numbers.

Theorem 3.4. For any given integer k > 1, the minimal d-number dk, which is divisible by
k, may be calculated as

dk = [k, dπ(k)]. (3.6)

Proof. Substituting k = π(k) in (3.4), we find

dπ(k) = [π(k), π2(k), π3(k), . . . , πω(k)]. (3.7)

Then, using Theorem 2.3 with (3.4) and (3.7), we obtain the proof of the theorem. �

As will be shown below, for calculating dk, it is convenient to first calculate dp for some
prime numbers p ≤ k. Therefore, (3.6) formally allows us to obtain d-numbers dp:

dp = [p, dπ(p)]. (3.8)

However, π(p) is not necessarily a prime number. For example, π(7) = 16. Moreover, we
know from Theorem 2.4 that if m > 2, then π(m) is an even number. The following theorems
allow us to find dk for a composite number, too. First, we prove Theorems 3.5 and 3.6.

Theorem 3.5. Suppose the d-number dm is divisible by an integer m > 1 and d-number dn
is divisible by an integer n > 1. Then, [dm, dn] is the minimal d-number that is divisible by
[m,n].

Proof. Since π(dm)|dm and π(dn)|dn then π(dm)|[dm, dn] and π(dn)|[dm, dn]. Hence, one has
[π(dm), π(dn)]|[dm, dn] and, using Theorem 2.3, we find that π([dm, dn])|[dm, dn], i.e., [dm, dn]
is a d-number.

Further, it follows from Lemma 3.1, that if a d-number is divisible by an integer k > 1, then
this d is also divisible by dk, where dk is defined in Theorem 3.2. Consequently, the minimal
d-number, which is divisible by [m,n], must be divisible by dm and dn, which is [dm, dn]. �
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Theorem 3.6. For a prime number p,

dpn = [pn, dp]. (3.9)

Proof. From Lemma 3.1, we find that if k|d, then dk|d. Then, because p|dpn , we obtain dp|dpn .
Since, by definition, pn|dpn . Then,

dpn ≥ [pn, dp]. (3.10)

Now, we prove that the number [pn, dp] is a d-number. Indeed, using Theorem 2.3 we obtain:
π([pn, dp]) = [π(pn), π(dp)] = [pn−aπ(p), π(dp)] where, according to Theorem 2.5, integer a
satisfies an inequality 0 < a ≤ n. Next, for p equal to 2, 3, or 5 we have: π(2) = 3, π(3) = 8,
and π(5) = 20. For p > 5 we shall use Theorem 2.8: If q and p are prime, and q|π(p), where
p > 5, then q < p, i.e., pn−aπ(p) = [pn−a, π(p)] for p 6= 5, and pn−aπ(p) = [pn−a+1, π(p)]
for p = 5. Consequently, π([pn, dp]) = [pn−b, π(p), π(dp)], where 0 ≤ b ≤ n. Then, since

π(dp)|dp by the definition of d-numbers, π(p)|dp according to Theorem 3.2 and pn−b|pn, we
have π([pn, dp])|[pn, dp]. Then, using (3.10), we obtain (3.9). �

Now, using Theorems 3.4, 3.5, and 3.6, we can prove Theorems 3.7 and 3.8. The expressions
derived in these theorems are recurrent, hence, convenient for computer calculations.

Theorem 3.7. The d-number dk for arbitrary integer k > 2 with the prime factorization
k = Πm

i=1q
ai
i (hereafter all ai > 0) can be calculated according to the following recurrent

expression:

dk = [k, dq1 , dq2 , . . . , dqm ]. (3.11)

Proof. From Theorems 3.5 and 3.6, we obtain:

dk = [dqa11
, dqa22

, . . . , dqamm ] = [k, dq1 , dq2 , . . . , dqm ] (3.12)

�

Theorem 3.8. All dpn, for the nth prime number pn (n > 3), can be calculated using the
following recurrent expression:

dpn = [pn, π(pn), dq1 , dq2 , . . . , dqm ], (3.13)

where π(pn) = Πm
i=1q

ai
i is the prime factorization of π(pn).

Proof. Substituting k = π(pn) in (3.12), we find that

dπ(pn) = [dqa11
, dqa22

, . . . , dqamm ] = [π(pn), dq1 , dq2 , . . . , dqm ], (3.14)

where π(pn) = Πm
i=1q

ai
i .

Next, using Theorem 3.4 and (3.14), we obtain (3.13). �

According to Theorem 2.8, π(p) is not divisible by a prime q ≥ p for any prime p > 5.
Consequently, expression (3.13) is recurrent indeed, since, for calculating dpn , where pn is the
nth prime number and n > 3, one only needs to know dqi , where qi < pn. Therefore, after
calculating d2 = 24, d3 = 24, and d5 = 120, all other dp can be found using recurrent expression
(3.13).

As an example, we calculate d2 from (3.4): since Fibonacci frequency ω in this case equals
3, and π(2) = 3, π2(2) = 8, π3(2) = 24, we find that d2 = [2, π(2), π2(2), π3(2)] = 24. Analo-
gously, one easily obtains d3 = 24 and d5 = 120. Then, to obtain d7, we use expression(3.13):
d7 = [7, π(7), d2] = [7, 16, 24] = 336, where we used that π(7) = 16 and d2 = 24.
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Example 3.9. Next, we use Theorems 3.7 and 3.8 to calculate dk for k = 1310.
Since π(13) = 28 = 22 · 7, using (3.11), we find:

d1310 = [1310, d13] = 1310 · 7 · 16 · 3 = 1310 · 336.

We calculated d13 using (3.13):

d13 = [13, π(13), d2, d7] = [13, 4 · 7, 8 · 3, 7 · 16 · 3] = 13 · 7 · 16 · 3 = 13 · 336 = 4368.

We see that using Theorems 3.7 and 3.8 significantly simplifies the calculations compared with
the direct use of (3.4), see Example 3.3.

Proposition 3.10 allows us to easily generate new d-numbers from known d-numbers. Its
proof is straightforward from Theorem 3.7.

Proposition 3.10. If the prime factorization of d-number m has the form m = Πn
i=1q

ai
i , then

the number M with prime factorization M = Πn
i=1q

bi
i , where bi ≥ ai, is a d-number.

To summarize, we showed that Theorem 3.2 allows us to calculate all minimal d-numbers
dk that are divisible by a given integer k. Since the set of all dk coincides with the set of
all d-numbers, the proof of Theorem 3.2 solves the original problem. However, even though
Eq. (3.4) formally solves the problem, it can be technically complicated to use it. Hence,
to simplify the calculation, we derived the recurrent expressions (3.11) and (3.13). Finally,
Proposition 3.10 allows us to easily generate d-numbers from already known d-numbers.

The d-numbers have a number of interesting properties.
1. From the definition of dk, we easily obtain:

ddk = dk, (3.15)

because the minimal d-number that is divisible by dk is dk.
2. Note, that the right sides of expressions

π(dk) = [π(k), π2(k), π3(k), . . . , πω(k)], (3.16)

and (3.7) are equal. Hence, we obtain from (3.16) and (3.7)

π(dk) = dπ(k). (3.17)

Theorem 3.11. The number m with the prime factorization m = Πn
i=1q

ai
i , where integers

ai > 0, is a d-number if and only if m is divisible by [π(q1);π(q2); . . . ;π(qn)].

Proof. First, for qi equal to 2, 3, or 5 we have: π(2) = 3, π(3) = 8, and π(5) = 20. In all these
cases, π(qi) is not divisible by q2i . For qi > 5 we use Theorem 2.8: If q and p are prime, and
q|π(p), where p > 5, then q < p, i.e., π(qi) is not divisible by qi for qi > 5. Then, since qaii |m
we find that if π(qi)|m then qai−1

i π(qi)|m. Further, using Corollary 2.6 from Theorem 2.5,
we find that π(qaii )|m. The proof follows from Theorem 2.3. The inverse statement follows
directly from Theorems 2.3 and 2.5. �

Theorem 3.12. All d-numbers are divisible by 24.

Proof. First, we directly verify that d 6= 2. Then, using Theorem 2.4, we find that π(d) is even.
Next, it is clear that 2|π(d)|d. Using Lemma 3.1, we obtain [2, π(2), π2(2), π3(2)]|d. Finally,
taking into account that π(2) = 3, π2(2) = 8, π3(2) = 24, and that the Fibonacci frequency ω
in this case equals 3, we find that 24|d. �
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Note that all d-numbers that can be calculated using theorems and propositions of this
Section also satisfy (1.1) for the generalized Fibonacci numbers [3] (p.109), with two arbitrary
starting integer values a and b. Indeed, let G0 = a, G1 = b, and Gn+1 = Gn + Gn−1. Then
one can derive that Gn+1 = bFn + aFn−1. Let m be a d-number, i.e., it satisfies (1.1). Then,∑m+k−1

n=k Gn = a
∑m+k−2

i=k−1 Fi + b
∑m+k−1

j=k Fj . Thus, m divides
∑m+k−1

n=k Gn.

4. The Connection Between d-numbers and Another Known Sequence

Now, we prove that the set of all d-numbers divided by 24 coincides with the sequence of
numbers n such that 12n divides F12n [6]. Namely, we prove the equivalency:

n = d/24⇔ 12n|F12n.

Proof. The following lemma is useful to prove the necessity.

Lemma 4.1. If 3n|F3n, then 6n|F3n.

Proof. Let n = 2kz, where z is an odd number. Then, using Theorem 2.5 and π(2) = 3 and
π(4) = 6, i.e., π(2) 6= π(22), we find that F2k3z = Fπ(2k+1)z. Thus, using the definition of the

Pisano period and its properties, we obtain 2k+1|Fπ(2k+1)z ⇒ 2k+1|F2k3z. �

Necessity.

Since 12n|F12n, from Lemma 4.1 we have 24n|F12n. Further, using (2.1), we find that 24n|F−12n.
Next, using the definition of the Fibonacci numbers, 24n|F12n, and (2.1), we obtain F12n+1 =
F12n−1+F12n ≡ F−12n+1(mod24n). Finally, since (F−12n, F−12n+1) ≡ (F12n, F12n+1)(mod24n),
24n is a period of the Fibonacci sequence modulo 24n, i.e., 24n is a d-number.

Sufficiency.

Using (2.1), we obtain F12n = −F−12n, or, equivalently, F12n + F−12n = 0. Since 24n is
a period, we find F12n − F−12n ≡ 0 (mod 24n). Consequently, 2F12n ≡ 0 (mod 24n), so
F12n ≡ 0 (mod 12n). �

5. Summary

In this paper, we calculated and investigated all integers d > 1, such that the sum of any d
consecutive Fibonacci numbers is divisible by d. We call these numbers d-numbers.

We demonstrated a relation between d-numbers and the Pisano period, namely, we proved
that all d-numbers are multiple of their own Pisano period.

We obtained a closed formula (3.4) for calculating all minimal d-numbers, dk, which are
divisible by a given integer k, and proved that the set of all dk coincides with the set of
all d-numbers. Further, we obtained convenient recurrent relations (3.11) and (3.13), which
significantly simplify practical calculations. Proposition 3.10 allows us to easily generate new
d-numbers from the already known d-numbers. We found some interesting properties of the
d-numbers. We proved results in Section 3 that are applicable to the generalized Fibonacci
numbers with two arbitrary starting integer values a and b.

Finally, we proved that a set of all d-numbers divided by 24 coincides with the sequence of
numbers n such that 12n divides F12n [6].
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