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Abstract. Given two noncommuting matrices, A and B, it is well-known that AB and BA
have the same trace. This extends to cyclic permutations of products of A’s and B’s. Thus
if A and B are fixed matrices, then products of two A’s and four B’s can have three possible
traces. For 2 × 2 matrices A and B, we show that there are restrictions on the relative sizes
of these traces. For example, if M1 = AB2AB2, M2 = ABAB3, and M3 = A2B4, then it is
never the case that Tr(M2) > Tr(M3) > Tr(M1), but the other five orderings of the traces
can occur. By utilizing the connection between Lucas sequences and powers of a 2×2 matrix,
a formula is given for the number of orderings of the traces that can occur in products of two
A’s and n B’s.

1. Introduction and Main Results

Given two square matrices A and B, it is well-known [5, 7] that

Tr(AB) = Tr(BA), (1.1)

where Tr(A) is the trace of the matrix A. Consequently, for longer matrix products [7, p.
110]:

Tr(A1A2 · · ·Ak) = Tr(AkA1A2 · · ·Ak−1). (1.2)

Given a matrix written as the product of a collection of matrices, define the necklace of that
matrix to be the set of all products of cyclic permutations of the collection. Thus, the necklace
of ABC is {ABC,CAB,BCA}, the necklace of ABAB is {ABAB,BABA}, and the necklace
of A2B2 is {A2B2, BA2B,B2A2, AB2A}. By (1.2), all products in a necklace have the same
trace.

One might ask how traces of different necklaces compare. The author finds it somewhat
surprising that in general, the trace of ABAB tends to be larger than the trace of A2B2. To be
more rigorous, if A and B are square matrices with independent random variables as entries,
then Table 1 from [2] shows how often Tr(ABAB) > Tr(A2B2) in a simulation with 1,000,000
trials.

The first row in Table 1 suggests that for 2× 2 matrices with independent random normal
variables, Tr(ABAB) > Tr(A2B2) with probability 1√

2
. This was proved in [2]. The exact

probability for larger matrices is unknown.

Some of the results in [2] apply to other necklaces. If A and B are 2 × 2 matrices, then
Tr(AB2AB2) > Tr(A2B4) with probability 1√

2
as well. However, with two A’s and four B’s,

there are three necklaces to consider, denoted by AB2AB2, ABAB3, and A2B4. In simulations,
whereas Tr(AB2AB2) > Tr(A2B4) in 706,206 of 1,000,000 trials (as expected if the proba-
bility is 1√

2
), Tr(AB2AB2) > Tr(ABAB3) in 642,122 trials, and Tr(ABAB3) > Tr(A2B4) in

582,660 trials. Presumably, the exact probabilities for which these inequalities hold could be
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Table 1. The frequency for which Tr(ABAB) > Tr(A2B2) in 1,000,000 trials
for m×m matrices A and B.

m Normal variables Uniform variables
2 707,456 720,660
3 703,004 703,320
4 701,885 700,959
5 702,375 700,259
10 706,124 704,561
20 709,715 710,189
50 714,473 714,627
100 716,805 717,009

calculated as in [2] provided the proper eightfold integrals could be evaluated.

One could also ask about the six possible total orderings of the traces of these necklaces.
Again using independent random normal variables as entries for A and B, in 1,000,000 trials,
and letting M1 = AB2AB2, M2 = ABAB3, and M3 = A2B4, Table 2 resulted.

Table 2. The frequency for orders of necklace traces, 1,000,000 trials total.

Trace combination Number of cases
Tr(M1) > Tr(M2) > Tr(M3) 300,092
Tr(M1) > Tr(M3) > Tr(M2) 123,546
Tr(M2) > Tr(M1) > Tr(M3) 282,568
Tr(M2) > Tr(M3) > Tr(M1) 0
Tr(M3) > Tr(M1) > Tr(M2) 218,484
Tr(M3) > Tr(M2) > Tr(M1) 75,310

Of interest to us here is that the order Tr(M2) > Tr(M3) > Tr(M1) did not occur in the
1,000,000 trials. Exploring further, it was discovered that this is common. As the number of
B’s grew, a smaller and smaller portion of orders occurred in simulations, as shown in Table
3 from [10].
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Table 3. The number of necklace orderings in numerical simulations.

# of B’s Necklaces Possible orders Orders occurring
2 2 2 2
3 2 2 2
4 3 6 5
5 3 6 6
6 4 24 8
7 4 24 12
8 5 120 12
9 5 120 22
10 6 720 17
11 6 720 32

Our main theorem is the following.

Theorem 1.1. Consider products of two A’s and n B’s, where A and B are 2×2 matrices and
n ≥ 3. If φ is Euler’s totient function, then among those matrices for which no two distinct
necklaces have the same trace, there are

3 +
1

2

n−1∑
k=1

φ(k) (1.3)

possible arrangements for the orders of the traces when n is even, and

n−1∑
k=1

φ(k) (1.4)

possible arrangements when n is odd.

For example, when n = 10, the number of allowable orders is 3 + 1
2(1 + 1 + 2 + 2 + 4 + 2 +

6 + 4 + 6) = 17. Now
n∑
k=1

φ(k) =
3n2

π2
+O(n lnn), (1.5)

an estimate from [4, Theorem 330], and the number of necklace orderings is the factorial of⌈
n+1
2

⌉
. Thus, the frequency of possible orders rapidly goes to 0 as n increases. Two distinct

necklaces have the same trace with probability 0 if their entries are selected independently
at random from a normal distribution. One can easily construct A and B for which different
necklaces have the same trace, even when A and B do not commute. For example, if

A =

(
1 −1
1 1

)
, and B =

(
1 −1
1 0

)
,

then Tr(AB2AB2) > Tr(ABAB3) = Tr(A2B4). In this paper, we only consider strict inequal-
ities, so in what follows, we restrict ourselves to matrices whose necklaces have distinct traces.

The proof of Theorem 1.1 follows from properties of Lucas sequences. In the next section,
the required information on Lucas sequences is provided. These properties are related to traces
of necklaces in Section 3. Theorem 1.1 is proved in Section 4, and we give some concluding
remarks in Section 5.
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2. Properties of Lucas Sequences

As usual [8, pp. 41-61], [9, pp. 107-108], Lucas sequences Un = Uk(P,Q) may be defined by
the recurrence U0 = 0, U1 = 1, and Uk = PUk−1−QUk−2 for k ≥ 2. Lucas sequences naturally
enter into this study as follows. Let B be a 2 × 2 matrix with trace P and determinant Q.
Then, by the 2× 2 version of the Cayley-Hamilton theorem,

B2 = PB −QI,

and by an easy induction,

Bk = UkB −QUk−1I. (2.1)

We use the following properties of Lucas sequences.

Lemma 2.1. Viewing Uk(P,Q) as a polynomial in P and Q we have the following.

(a) As a polynomial in P , Uk has degree k− 1. If k is even, then Uk is an odd function in
P ; if k is odd, then it is an even function in P .

(b) As a polynomial in Q, Uk has degree

⌊
k − 1

2

⌋
. Also, Uk has exactly

⌊
k + 1

2

⌋
terms,

one for each allowable power of Q and the coefficient of Ql has the form P k−1−2l(−1)lcl
for some integer cl > 0.

(c) If P 2 ≥ 4Q, then Uk > 0 when k is odd; and PUk > 0 when k > 0 is even.

Proof. The proofs of (a) and (b) are easy inductions. Part (c) follows from the representation
[8, p. 44]

Uk(P,Q) =
1

2k−1

b(k−1)/2c∑
i=0

(
k

2i+ 1

)
P k−2i−1(P 2 − 4Q)i.

�

Of special interest are the cases where Q = ±1. With Q = −1, Uk(x,−1) are usually
referred to as Fibonacci polynomials. When Q = 1, Uk(x, 1) are a scaled version of Chebyshev
polynomials of the second kind, with the actual Chebyshev polynomials being Uk+1(2x, 1).
We require the following facts about Uk(x, 1).

Lemma 2.2. The zeros of Uk(x, 1) have the form x = 2 cos lπk where 1 ≤ l ≤ k − 1. In

particular, for all k ≥ 3, Uk(x, 1) has exactly bk−12 c simple positive zeros and the zeros of
Uk(x, 1) and Uk+1(x, 1) separate each other. That is, between each pair of successive positive
zeros of one polynomial there is exactly one zero of the other.

Proof. That the zeros are simple and separate each other follows from {Uk(2x, 1)} being a set
of orthogonal polynomials. See [1, Theorem 5.4.1, Theorem 5.4.2], for example. A standard
representation for Chebyshev polynomials [1, p 101] is Uk(2 cos θ, 1) = sin kθ

sin θ , giving the formula
for the zeros. Since Uk has degree k− 1 and is an even or odd function, depending on whether
n is odd or even, the count for the number of positive zeros follows. �

We end this section with one more root separation result.

Lemma 2.3. Suppose that a < b, that a and b are not zeros of any Lucas polynomial Ui(x, 1)
for 2 ≤ i ≤ N , and that there is a zero of Um(x, 1) between a and b for some m ≤ N . Then
there is an index k ≤ N for which there is exactly one zero of Uk(x, 1) between a and b.
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Proof. Suppose a and b are separated by a zero of the Um. Let k be minimal with the property
that there is a zero of Uk separating a and b. If there were two or more zeros between a and b,
then by the interlacing property, Uk−1 would also have a zero between a and b, contradicting
the minimality of k. �

3. Lucas Sequences and Necklace Traces

In this section, A and B will always denote 2 × 2 matrices. Moreover, we let P = Tr(B)
and Q = det(B), and define the Lucas sequence {Uk(P,Q)} as in the previous section. The
main result of this section is the following.

Theorem 3.1. Let A and B be 2× 2 matrices and let T = Tr (ABAB −A2B2). If j ≥ i ≥ k
then

Tr (ABiABj)− Tr (ABi−kABj+k) = Qi−kUk Uj−i+k T. (3.1)

This theorem allows us to convert a question about trace orders to the positivity of a
collection of products on the right side of (3.1).

Proof. The result follows via a number of applications of (2.1). We have

ABiABj −ABi−kABj+k = (ABiABi−k −ABi−kABi)Bj−i+k

= Uj−i+k (ABiABi+1−k −ABi−kABi+1)

−QUj−i+k−1 (ABiABi−k −ABi−kABi).

Since Tr(ABiABi−k) = Tr(ABi−kABi), we have

Tr(ABiABj −ABi−kABj+k) = Uj−i+k Tr(ABiABi+1−k −ABi−kABi+1).

We now use Bk = UkB −QUk−1I to obtain

ABiABi+1−k −ABi−kABi+1 = ABi−kBkABi+1−k −ABi−kABi+1−kBk

= Uk (ABi+1−kABi+1−k −ABi−kABi+2−k).

Letting i− k = l, we are left to evaluate

ABl+1ABl+1 −ABlABl+2.

We have

ABl+1ABl+1 −ABlABl+2 = PABlABl+1 −QABl−1ABl+1

− PABlABl+1 +QABlABl

= Q(ABlABl −ABl−1ABl+1).

A simple induction now gives

ABl+1ABl+1 −ABlABl+2 = Ql(ABAB −A2B2),

and the proof follows. �

For necklaces with two A’s and n B’s; if l = bn/2c, then there are l + 1 necklaces. If we
list the products in a necklace in lexicographic order, then the first element of the necklace
will have the form ABkABn−k with 0 ≤ k ≤ l. We will use such matrices to represent their
necklaces in what follows. A natural way to order necklaces is by how far the A’s are apart in
the product (viewed cyclically). With this ordering, for n even, these necklaces are represented
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by ABlABl, ABl−1ABl+1, . . ., A2Bn. We associate the kth necklace, ABl+1−kABl−1+k, with
the number k. When n is odd, the kth necklace is ABl+1−kABl+k for 1 ≤ k ≤ l + 1.

Given two matrices A and B, define the permutation π = π(A,B) = 〈π1, π2, . . . , πl+1〉 so
that necklaces π1, . . . , πl+1 have their traces in decreasing order. For example, if n = 6 then
there are four necklaces, represented by AB3AB3, AB2AB4, ABAB5, A2B6. We associate 1
with the first necklace, 2 with the second, etc. Since AB3AB3, AB2AB4, ABAB5, A2B6 have
traces 32, 24, 28, 30, respectively, we have

π

((
1 −1
1 1

)
,

(
−1 −2
1 0

))
= 〈1, 4, 3, 2〉.

Define a function on permutations, π, by

Si,j(π) =

{
1, if i appears to the left of j in π;

−1, otherwise.

For example, S1,3(〈1, 4, 3, 2〉) = 1 and S2,3(〈1, 4, 3, 2〉) = −1. Note that Si,j(π) = −Sj,i(π).

Corollary 3.2. If i < j and π = π(A,B), then with the notation above,

Si,j(π) =

{
sgn(Ql−j+1Uj−i Ui+j−2 T ), when n is even;

sgn(Ql−j+1Uj−i Ui+j−1 T ), when n is odd.
(3.2)

Proof. By (3.1), we have

Tr (ABl+1−iABl−1+i)− Tr (ABl+1−jABl−1+j) = Ql−j+1Uj−i Ui+j−2 T,

Tr (ABl+1−iABl+i)− Tr (ABl+1−jABl+j) = Ql−j+1Uj−i Ui+j−1 T.

�

Corollary 3.3. If n is even and Q and T are positive, then the necklace containing ABlABl

has the largest trace.

Proof. The matrix ABlABl is represented by 1 and

S1,j = sgn(Ql−j+1U2
j−1 T ) = 1,

when Q and T are positive. �

Finally for this section, we mention the following result.

Lemma 3.4. If A and B are 2 × 2 matrices and Tr(ABAB) < Tr(A2B2), then P 2 ≥ 4Q,
where P is the trace of B and Q is the determinant of B. Consequently, Uk(P,Q) > 0 for odd
k and PUk(P,Q) > 0 for even k.

Proof. In Lemma 3.6 of [2], it is shown that Tr(ABAB) > Tr(A2B2) when either A or B has
complex eigenvalues. Thus, for Tr(ABAB) < Tr(A2B2), B must have real eigenvalues; call
them λ1 and λ2. Now P = λ1 + λ2 and Q = λ1λ2, so P 2 − 4Q = (λ1 − λ2)2 ≥ 0. By Lemma
2.1 (c), the positivity of the Uk follows. �
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4. A Proof of Theorem 1.1

We show that the expressions in (1.3) and (1.4) give upper bounds for the numbers of
possible trace orders, and that these bounds are achieved. For the upper bound, we use
Corollary 3.2 and Lemma 3.4 to give information on permutations of necklace trace orders.
We need information on the sign of Qm−kUkUn−m+kT . We break up the investigation into
three cases: Q < 0, Q > 0 but T < 0, and both Q > 0 and T > 0. We investigate these cases
in order.

Lemma 4.1. If Q < 0, then there are exactly two possible permutations of trace orders.

Proof. If Q < 0, then P 2 > 4Q; so by Lemma 2.1(c), Uk > 0 for odd k and PUk is positive for
even k. Let π = π(A,B). By Corollary 3.2, if i < j, then Si,j(π) = sgn((−1)l−j+1TUj−iUj+i−ε),
where ε = 1 if n is odd and ε = 2 otherwise. This means that

Si,j(π) =

{
sgn((−1)l−j+1 T ), when n is even;

sgn((−1)l−j+1 TP ), when n is odd.

For any given B, the sign of T and the sign of PT are fixed. That is, the relevant sign is the
same for every permutation. Consequently, there are two possible permutations corresponding
to whether T (or PT ) is positive or negative. �

We can state explicitly what these permutations are. Since l− j + 1 does not depend on i,
but only on the parity of j, once we know S1,2(π), we know π. If S1,2(π) = 1, then all even
numbers follow all odd numbers. Also, Si,i+2j(π) will be 1 if i is even and −1 if i is odd. This
means that π starts with the largest odd number and descends through the odds to 1, followed
by the even numbers in increasing order. If n = 9 for example, then there are five necklaces
and this permutation would be 〈5, 3, 1, 2, 4〉. On the other hand, if S1,2(π) = −1, we have the
reverse of this permutation, 〈4, 2, 1, 3, 5〉. These two permutations must occur since they will
be produced by the matrices

A1 =

(
1 1
1 1

)
, A2 =

(
1 −1
1 1

)
, and B =

(
2 0
0 −1

)
.

To see this, we note that

Tr(A1BA1B −A2
1B

2) = −9,

Tr(A2BA2B −A2
2B

2) = 9.

In these examples, P = 1 and Q = −2 < 0. Since T = Tr(ABAB − A2B2), by the proof
of Lemma 4.1, S1,2(π) = sgn((−1)l−1T ), and both sign patterns will occur. One thing is
left to establish: that all necklaces have different traces. For this, noting that T and Q are
nonzero, by Theorem 3.1, two traces can only be the same when Uj−iUj+i−k = 0. In this case,
Um = Um−1 + 2Um−2 implies that no Um is zero if m > 0.

Lemma 4.2. If Q > 0 but T < 0, then there is one possible permutation when n is even, and
two permutations if n is odd.

Proof. By Lemma 3.4, we again have P 2 > 4Q, but now we know the sign of T . Thus, for
i < j we have

Si,j(π) =

{
−sgn(Ql−j+1) = −1, when n is even;

−sgn(Ql−j+1 P ) = −sgn(P ), when n is odd.
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For an even n, the permutation must be π = 〈l + 1, l, . . . , 2, 1〉. When n is odd, there are two
possible permutations, one for each sign of P . The first is the same as the above, the other is
π = 〈1, 2, . . . , l, l + 1〉. �

These cases are realized in the examples

A =

(
1 1
1 1

)
, B1 =

(
2 0
0 1

)
, and B2 =

(
−2 0
0 −1

)
.

This leaves us with the following case.

Theorem 4.3. Consider the set

M = {a > 0 | Uk(a, 1) = 0 for some k with 3 ≤ k ≤ n− 1},

the set of distinct positive zeros of U3, . . ., Un−1, and suppose M has size m. The number of
permutations of trace orders in the case where Q > 0 and T > 0 is{

1 +m, when n is even;

2(1 +m), when n is odd.

Proof. The Q-parameter in Un(P,Q) may be scaled away by multiplying B by 1√
Q

. This will

have no effect on the orders of the traces of the necklaces. Thus, we need only consider the
Lucas sequence Uk(x, 1). Since T > 0,

Si,j(π) =

{
sgn(Uj−iUi+j−2), when n is even;

sgn(Uj−iUi+j−1), when n is odd;
(4.1)

for all 1 ≤ i < j ≤ l + 1. Note that the maximum value of the subscript i + j − 2 is
l + (l + 1) − 2 = 2l − 1 = n − 1 when n is even, and the maximum value of i + j − 1 is
l + (l + 1)− 1 = 2l = n− 1 when n is odd as well. Thus, when examining Si,j(π), only Lucas
polynomials up to Un−1 are required. We focus on Si,i+1 and Si,i+2. When n is even, these
have the form sgn(U1(x, 1)U2i−1(x, 1)) = sgn(U2i−1), and sgn(U2(x, 1)U2i(x, 1)) = sgn(xU2i),
respectively. When n is odd, the important quantities are sgn(U2i) and sgn(xU2i+1). Given
an x /∈M , the conditions of (4.1) will determine a permutation, call it π(x).

Suppose we order the set of positive zeros 0 < x1 < x2 < · · · < xm. These zeros partition
the half line (0,∞) into m + 1 regions. If x and y belong to the same region, say xi < x
and y < xi+1, then π(x) = π(y) since signs of Uk(x, 1) and Uk(y, 1) will match for all k.
Thus, there can be no more than m+ 1 permutations associated with the regions between the
elements of M . When n is even, all the products of the U ’s will be even polynomials, leaving
us with at most these m + 1 permutations. When n is odd, the products of the U ’s will be
odd polynomials. Thus π(−x) will be the reverse of π(x), doubling the possible number of
permutations. If

A =

(
1 −1
1 1

)
, and B =

(
x −1
1 0

)
,

then P = x, Q = 1, T = x2 > 0, so for every region between the zeros of the Uk, there is a
matrix B with an x-value in that region, with its associated permutation.
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For example, suppose that n = 6. Then,

M = {a > 0 | U3(a, 1) = 0, U4(a, 1) = 0 or U5(a, 1) = 0}
= {a > 0 | a2 − 1 = 0, a3 − 2a = 0 or a4 − 3a2 + 1 = 0}

=

{
1

2
(
√

5− 1), 1,
√

2,
1

2
(
√

5 + 1)

}
.

If we were to select x = 1.25, then U1(x) > 0, U2(x) > 0, U3(x) > 0, U4(x) < 0, and
U5(x) < 0, meaning 1 is to the left of 2 and 3, 2 is left of 3 but right of 4, and 3 is right of
4. This information did not tell us how 1 and 4 relate, but it turns out π(1.25) = 〈1, 4, 2, 3〉.
Selecting an x from each of the five possible regions, we have

π(.5) = 〈1, 3, 4, 2〉, π(.8) = 〈1, 4, 3, 2〉, π(1.25) = 〈1, 4, 2, 3〉,

π(1.5) = 〈1, 2, 4, 3〉, and π(2) = 〈1, 2, 3, 4〉.
Finally, we must show that all resulting permutations are distinct. Knowing Si,i+1 and Si,i+2

for all i is not enough to specify π(x), but it is enough information to show π(x) 6= π(y), if
x and y come from different regions. To see this, suppose that x and y are separated by a
zero for one of the Ui. By Lemma 2.3, x and y are separated by a single zero of Uk for some
k ≤ n− 1. Then sgn(Uk(x, 1)) = −sgn(Uk(y, 1)). This means that depending on the parity of
k, there will be an i with either Si,i+1 or Si,i+2 differing from π(x) to π(y). In the case where
n is odd, we must also show that for positive x and y, π(x) 6= π(−y). Since S1,2 = sgn(x),
when x is positive, 1 will be to the left of 2 but for negative x, 1 is to the right of 2, so these
permutations are all distinct. �

If there are at least three necklaces, then the necklaces arising from the cases where Q < 0
and Q > 0, T < 0 are distinct from each other. When n ≥ 4 is even, these permutations are
also distinct from those with Q > 0, T > 0, since the first three permutations will not start
with 1 but those with Q > 0 and T > 0 will. Thus, for even n ≥ 4 we have m+4 permutations.

If n = 3, a simple check shows that both orders 〈1, 2〉 and 〈2, 1〉 occur. When n ≥ 5, the four
permutations associated with Q < 0 and Q > 0, T < 0 also occur among the permutations
of Theorem 4.3. If x1 is the smallest element of M , and 0 < x < x1 then π(x) and π(−x)
are the permutations that arise in Lemma 4.1. This is because an easy calculation shows
Si,j = (−1)j , which does not depend on i, and the discussion following Lemma 4.2 applies
to this case. Similarly, the two permutations from Lemma 4.2 are π(x) and π(−x) where
x > xm, the largest of the zeros in M . In this case, Uk(x, 1) > 0 for all k, so π(x) is the
identity permutation and π(−x) is its reverse, as in Lemma 4.2. Consequently, when n is odd,
the only permutations we have are those arising from Theorem 4.3. Consequently, we have a
count on the number of permutations. It is{

4 +m, when n is even;

2 + 2m, when n is odd.

The proof of Theorem 1.1 follows from the observation that for M as in Theorem 4.3, |M | =
1

2

n−1∑
k=3

φ(k) = −1 +
1

2

n−1∑
k=1

φ(k). This, in turn, follows from

M =

{
2 cos

kπ

m
| 1 ≤ k ≤ 1

2
(m− 1), 3 ≤ m ≤ n− 1

}
.
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That is, given that M contains the zeros for Uk(x, 1), with 3 ≤ k < m, the contribution of

the zeros of Um to M will consist of those numbers 2 cos jπm , with j prime to m. There are
1
2φ(m) of these, by periodicity and that we seek only positive zeros. This concludes the proof
of Theorem 1.1.

5. Comments

Products of A’s and B’s with at least three A’s and three B’s are more complicated for two
reasons. First, for products of 2 × 2 matrices A and B, there is another trace symmetry in
addition to cyclic permutations: If a product is written in reverse order, it has the same trace,
as proved in [6] or [3]. That is,

Tr(AABBAB) = Tr(BABBAA)

for all 2 × 2 matrices A and B. If a product consists of just two A’s, then the reverse of a
product is in the same necklace, but for larger numbers of A’s, as in the example, this need
not be the case. This makes ordering the necklaces more challenging.

A second issue is that with at least three A’s and three B’s, the matrices interact more than
just through the trace of ABAB −A2B2. For example,

Tr(ABABAB −A2BAB2) = Tr(AB)Tr(ABAB −A2B2).

We do not have an analog for Theorem 3.1 when there are more than two A’s. However, we
at least have the following weak version.

Theorem 5.1. Suppose that M1 and M2 are each products of m A’s and n B’s where A and
B are 2× 2 matrices. Then

Tr(M1 −M2) = cTr(ABAB −A2B2),

where c is a polynomial in the entries of A and B.

Proof. We may induct on m+ n, the number of matrices in the two products. If m+ n ≤ 4,
the trace is zero when m is 0, 1, 3, or 4, and for m = 2, the result is true by Theorem 3.1. For
larger m+ n, we first note that by cyclic permutation we may write

M1 = Aa1Bb1Aa2Bb2 · · ·AajBbj ,

M2 = Ac1Bd1Ac2Bd2 · · ·AckBdk ,

where each of the exponents is a positive integer, a1 + · · · + aj = m = c1 + · · · + ck, and
b1 + · · · + bj = n = d1 + · · · + dk. Moreover, we may take a1 to be the largest of the a’s and
c1 to be the largest of the c’s. If a1 ≥ 2 and c1 ≥ 2, we may use A2 = Tr(A)A− det(A)I and
induct. Similarly, if one of the b’s and one of the d’s is at least 2, we may induct. If no A has
an exponent larger than 1, then j = k, and the only way to prevent some exponent of B to
be at least 2 is to have M1 = M2. Thus, we may assume that some c, say c1, is at least 2, and
a1 = a2 = · · · = aj = 1. In this case, j = m ≤ n and k < m. Consequently, the largest b and
largest d will both be at least 2, unless m = n and M1 = (AB)m. Since m + n > 4, m ≥ 3.
Let M3 = A(AB)m−1B = A2(BA)m−2B2 and consider

Tr(M1 −M2) = Tr(M1 −M3) + Tr(M3 −M2).
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By the previous discussion, Tr(M3 −M2) = c1Tr(ABAB −A2B2), since each matrix contains
A2. Since m− 1 ≥ 2 we may use (AB)2 = Tr(AB)AB − det(AB)I to write

Tr(M1 −M3) = Tr(AB)((AB)m−1 −A(AB)m−2B)

− det(AB)((AB)m−2 −A(AB)m−3B),

and the inductive hypothesis gives Tr(M1−M3) = c2Tr(ABAB−A2B2), from which the proof
follows. �

We note that the polynomial c in this proof can be thought of as a polynomial in the five
variables Tr(A), Tr(B), Tr(AB), det(A), det(B), rather than the eight entries of A and B.

We only briefly investigated cases with a higher number of A’s. When there are three A’s
or four A’s we obtained the following table.

Table 4. The number of necklace orderings in numerical simulations.

# of A’s # of B’s Necklaces Possible orders Orders occurring
3 3 3 6 6
3 4 4 24 24
3 5 5 120 52
3 6 7 5040 175
3 7 8 40,320 246
4 4 8 40,320 616

We have not verified that the entries in the fifth column are the true numbers of possible
orders. However, it is not too difficult to show that certain orders do not occur. For example,
when there are three A’s and five B’s, if one labels the necklaces via 1 ↔ ABAB2AB2,
2 ↔ ABABAB3, 3 ↔ A2B2AB3, 4 ↔ A2BAB4, 5 ↔ A3B5, then we may construct a table
of polynomials as in the previous section and use this to show, for example, that the trace
order 〈1, 2, 3, 4, 5〉 does not occur. Let a = Tr(A), b = Tr(AB), x = Tr(B), y = det(B),
z = Tr(ABAB −A2B2). Then

1 is left of 2 → byz > 0, and 1 is left of 4 → bx2z > 0.

These require that bz > 0 and y > 0. Next,

2 is left of 4 → b(x2 − y)z > 0, 3 is left of 5 → ax(x2 − y)z > 0, and

4 is left of 3 → axyz < 0,

and multiplying these three inequalities together, we have a2x2(x2 − y)2z2(byz) < 0, contra-
dicting byz > 0.

Finally, it might be expected that restrictions on trace orders will occur with matrices of
any size. We briefly investigated this for 3 × 3 and 4 × 4 matrices but the extra degrees of
freedom in larger matrices mean that a large number of necklaces must be involved before
such restrictions occur, making such restrictions hard to find numerically.
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