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Abstract. We prove a new formula for hyper-Fibonacci numbers, F
[k]
n , using fissions of

certain polynomials. The result is a concise description of the entries of the matrix of hyper-
Fibonacci numbers.

1. Introduction

Let {Fn} denote the sequence of Fibonacci numbers, defined as usual by F0 = 0, F1 = 1,

and Fn = Fn−1 + Fn−2 for n ≥ 2. The hyper-Fibonacci numbers F
[k]
n were introduced by Dil

and Mező [2] as follows. For k ≥ 0 and n ≥ 0, let F
[0]
n = Fn and F

[k]
0 = 0, and

F [k]
n = F

[k]
n−1 + F [k−1]

n , k, n > 0.

It is natural to arrange these numbers in an infinite matrix having F
[k]
n in row k and column

n, so that F
[k]
n is the sum of the first n + 1 elements (from the 0th to the nth) of row k − 1,

i.e., F
[k]
n =

∑n
i=0 F

[k−1]
i (n ≥ 0, k ≥ 1). A consequence of Proposition 2 in [2] is

F [k]
n =

n∑
j=1

(
k + n− j − 1

k − 1

)
Fj . (1.1)

A different expression for F
[k]
n is known [4]:

F [k]
n = Fn+2k − pk(n), (1.2)

where pk(n) is a polynomial with rational coefficients, given [5] explicitly by

pk(x) =

k−1∑
t=1

 t∑
j=1

(−1)t−j

(k − j)!

[
k − j
k − t

](j−1∑
i=0

(
k

i

)
Fj−i

)xk−t + F2k, (1.3)
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where
[
k−j
k−t
]

denotes an unsigned Stirling number of first kind. The first few polynomials are

p0(x) = 0,

p1(x) = 1,

p2(x) = x+ 3,

p3(x) =
x2 + 7x+ 16

2
,

p4(x) =
x3 + 12x2 + 59x+ 126

6
,

p5(x) =
x4 + 18x3 + 143x2 + 630x+ 1320

24
,

p6(x) =
x5 + 25x4 + 285x3 + 1955x2 + 8294x+ 17280

120
.

Using (1.2), we have

F [1]
n = Fn+2 − 1, F [2]

n = Fn+4 − (n+ 3), F [3]
n = Fn+6 −

n2 + 7n+ 16

2
,

and so on.
For nonnegative k and n, Belbachir and Belkhir proved that

F [k]
n = Fn+2k −

k−1∑
t=0

(
n− 1 + 2k − t

t

)
, (1.4)

which resembles (1.2); see Theorem 10 in [1]. However, in contrast to (1.1) and (1.4), the
representation (1.3) gives an explicit representation of the coefficients of the polynomial pk(x).
Possibly, this sort of representation will also prove useful in studying hyper-Lucas sequences
and others.

2. Main Result: Connection to t-sion of Polynomial Sequences

A surprising connection to fission of two polynomial sequences enables a reformulation of
(1.2) and (1.3). Kimberling [3] defined the notion of fission (and fusion), and later, Kimberling
and Szalay [4] generalized it by introducing the t-sion of two polynomial sequences. First we
state the new result, and then give details.

Theorem 2.1. Let k ≥ 1. Then, pk(x) is the (k−1)th element of the sequence of polynomials

FIS

(
x · FIS

(
(x+ 1)r ,

r∑
i=0

Fi+1x
r−i

)
,

(
x

r

))
. (2.1)

2.1. t-sion of polynomial sequences. This section sets the stage for proving Theorem 2.1
in the next section. Let u ≥ 1 be an integer, and let

ω(x) = ωux
u + ωu−1x

u−1 + · · ·+ ω1x+ ω0 ∈ C[x]

be a polynomial; further let B = (br(x))∞r=0 be an arbitrary sequence of polynomials all in
C[x], and let t be an arbitrary integer. For u+ t ≥ 0, the (B, t)-step of ω(x) is the polynomial
in C[x] defined by

ht(ω(x)) = ωubu+t(x) + ωu−1bu−1+t(x) + · · ·+ ωτ bτ+t(x),
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where

τ =

{
0, if t ≥ 0;
|t|, if t < 0.

(2.2)

If u+ t < 0, then ht(ω(x)) is defined to be the zero polynomial. Now taking another arbitrary
sequence A = (an(x))∞n=0 in C[x], we define the t-sion of A by B, denoted by A ◦t B, as the
sequence C = (cn(x))∞n=0 of polynomials given by

cr(x) = ht(ar(x)).

For t = 1 and t = −1, the sequences P ◦tQ are the fusion and fission of P and Q, respectively,
as defined in [3]. In the present paper, we apply only fission. Note that in the statement of
Theorem 2.1, we have written the fission as FIS(A,B) instead of A ◦(−1) B.

As an example, choose A = ((x+ 1)r)∞r=0 and B = (
∑r

i=0 Fi+1x
r−i)∞r=0, so that their fission

is C = FIS
(
(x+ 1)r ,

∑r
i=0 Fi+1x

r−i). Then, the fission of x · C and
((
x
r

))∞
r=0

yields (2.1).
This example will be developed in the next section.

Continuing now with sequences A and B of arbitrary polynomials in C[x], for k ≥ 0, we
shall determine a representation for the finite sequence (cr(x))kr=0 of initial terms of C. Put

Dk = max
r=0...k

{deg(ar(x))} − τ,

with τ as in (2.2). Clearly, it suffices to assume that Dk ≥ 0. The nth row (1 ≤ n ≤ k + 1) of

the matrix Ak,t ∈ C(k+1)×(Dk+1) consists of the coefficients of

an−1(x) = an−1,ux
u + an−1,u−1x

u−1 + · · ·+ an−1,1x+ an−1,0,

and their positions from right to left, starting with the coefficient of the term of least degree,
are given by

[0 · · · 0 an−1,u an−1,u−1 · · · an−1,τ+1 an−1,τ ].

(Each entry is zero if u+ t < 0.) Let

D′k = max
j=0...Dk

{deg(bτ+t+j(x))}.

We define the matrix Bk,t ∈ C(Dk+1)×(D′k+1) from the coefficients of the polynomials in B, as
follows: for k ≥ 0, column n, for n ≥ 0, is the (Dk + 1)-dimensional vector

[bn, bn−1, . . . , b0, 0, . . . , 0].

Clearly,

Ak,tBk,t = Ck,t ∈ C(k+1)×(D′k+1).

In case deg(an(x)) = deg(bn(x)) = n, we find for k ≥ τ , excluding trivial cases, that

Dk =

{
k, if t ≥ 0;
k − τ = k + t, if t < 0,

and D′k = k + t.

In particular, t = −1 gives Dk = D′k = k − 1. Moreover, the constant term (and only the
constant term) of the polynomials ar(x) does not appear in Ak,t.

Example 2.2. Assume that t = −1, so that τ = 1. Let k = 4, ar(x) = (x+1)r for r = 0, . . . , 4,
and br(x) =

∑r
i=0 Fi+1x

r−i. Then, Dk = D′k = 3. The matrix product Ak,tBk,t = Ck,t is then
0 0 0 0
0 0 0 1
0 0 1 2
0 1 3 3
1 4 6 4

 ·


1 1 2 3
0 1 1 2
0 0 1 1
0 0 0 1

 =


0 0 0 0
0 0 0 1
0 0 1 3
0 1 4 8
1 5 12 21

 ,
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so that c0(x) = 0, c1(x) = 1, c2(x) = x+3, c3(x) = x2+4x+8, and c4(x) = x3+5x2+12x+21.

2.2. Proof of Theorem 2.1. As in Section 2.1, let

C = FIS

(
(x+ 1)r ,

r∑
i=0

Fi+1x
r−i

)
.

The initial terms cr(x))kr=0 can be represented as follows. Consider the matrix product (2.3),
in which the first matrix has dimensions (k + 1)× k and the second has k × k:

0 . . . 0 0

0 . . . 0
(
1
0

)
0 . . .

(
2
0

) (
2
1

)
... . .

. ...
...(

k
0

)
. . .

(
k
k−2
) (

k
k−1
)


·



F1 F2 . . . Fk−1 Fk

0 F1 . . . Fk−2 Fk−1
...

...
. . .

...
...

0 0 . . . F1 F2

0 0 . . . 0 F1


. (2.3)

The two matrices consist of the coefficients (apart from the constant term) of the polynomials
(x+ 1)r (r = 0, . . . , k), and the coefficients

∑r
i=0 Fi+1x

r−i (r = 0, . . . , k), respectively, and the
product determines the coefficients of the first few polynomials of the fission C. If we multiply
these polynomials by x, the constant terms of the resulting polynomials are zero. Accordingly,
in the matrix representation of the fission, the constant terms of the first polynomial sequences
must be suppressed, so that the required coefficients in C are obtained by multiplying the
product (2.3) by the k × k matrix

[
k−1
k−1
]∗ [

k−1
k−2
]∗

. . .
[
k−1
1

]∗ [
k−1
0

]∗
0

[
k−2
k−2
]∗

. . .
[
k−2
1

]∗ [
k−2
0

]∗
...

...
. . .

...
...

0 0 . . .
[
1
1

]∗ [
1
0

]∗
0 0 . . . 0

[
0
0

]∗


,

where
[
n
k

]∗
= (−1)n−k

n!

[
n
k

]
. The rows of the (k + 1)× k matrix product give the coefficients of

the first few polynomials of the sequence

FIS

(
x · FIS

(
(x+ 1)r ,

r∑
i=0

Fi+1x
r−i

)
,

(
x

r

))
.

More precisely, row j contains the coefficients of cj−1(x) = pj−1(x) (1 ≤ j ≤ k + 1). Carrying
the matrix products out leads immediately to (1.3).
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