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Abstract. We present the extended gibonacci polynomial family; and then investigate the
differences of some special gibonacci products of orders 2, 3, and 4, and their polynomial
and numeric implications to the Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-
Lucas, and Chebyshev subfamilies.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials; and n ≥ 0 [5, 6].

Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal-Lucas polynomials, denoted
by fn(x), ln(x), pn(x), qn(x), Jn(x), and jn(x), belong to the gibonacci family {zn(x)}; their
numeric counterparts are denoted by Fn, Ln, Pn, Qn, Jn, and jn, respectively. Vieta and Vieta-
Lucas polynomials Vn and vn, and Chebyshev polynomials Tn(x) and Un(x) also belong to the
same family [5, 6].

1.1. Relationships Among the Subfamilies. By virtue of the relationships in Table 1,
every ginonacci result has a Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev
counterpart, where i =

√
−1 [5, 6].

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)

Vn(x) = Un−1(x/2) vn(x) = 2Tn(x/2).

Table 1: Links Among the Gibonacci Subfamilies
In the interest of brevity, clarity, and convenience, we omit the argument in the functional

notation, when there is no ambiguity; so gn will mean gn(x). Again, for brevity, we let
gn = fn or ln; bn = pn or qn; cn = Jn(x) or jn(x); dn = Vn or vn; and en = Tn or Un; and
correspondingly, we let Gn = Fn or Ln; Bn = Pn or Qn; and Cn = Jn or jn. We also omit a
lot of basic algebra.

Again for brevity and convenience, we let

γ =

{

1, if Gn = Fn,

2, if Gn = Ln;
κ =

{

1, if Bn = Pn,

3, if Bn = Qn;
ν =

{

1, if Cn = Jn,

5, if Cn = jn; and ∆ =
√
x2 + 4.

We can develop an explicit Binet-like formula for gn. To this end, we need the following
result; its proof is straightforward, so we omit it.

Lemma 1.1. Let gn denote the nth gibonacci polynomial. Then gn = afn−2 + bfn−1, where

n ≥ 0. �
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The next theorem gives the promised explicit formula. Its proof follows by the lemma, so
we omit that also.

Theorem 1.2 (Binet-like formula). Let c = c(x) = a+(ax−b)β and d = d(x) = a+(ax−b)α,
where α = α(x) and β = β(x) are the solutions of the equation t2 − xt− 1 = 0. Then,

gn =
cαn − dβn

α− β
.

�

2. Differences of Gibonacci Products of Order 2

A gibonacci product of order m is a product of gibonacci polynomials gn+i of the form
∏

i≥0

g
sj
n+i, where

∑

sj≥1
sj = m. We now briefly study differences of gibonacci products of order

2.
Using Theorem 1.2, we can establish the following differences of gibonacci products of order

2:

gn+hgn+k − gngn+h+k = µ(−1)nfhfk;

gm+kgn−k − gmgn = (−1)n−k+1µfkfm−n+k;

gn+kgn−k − g2n = (−1)n−k+1µf2
k , (2.1)

where µ = µ(x) = a2 + abx− b2; µ equals 1 when gn = fn; and −(x2 + 4) when gn = ln.
In particular, we have

Fn+hFn+k − FnFn+h+k = (−1)nFhFk; (2.2)

Fn+kFn−k − F 2
n = (−1)n+k+1F 2

k ; (2.3)

FmFn+1 − Fm+1Fn = (−1)nFm−n. (2.4)

A. Tagiuri discovered the beautiful formula (2.2) in 1901 [1]. About 60 years later, D. Everman
et al. re-discovered it [2, 8]. E. C. Catalan developed identity (2.3) in 1879 [4]. G. D. Cassini
found identity (2.3) in 1680 with k = 1; R. Simson discovered it independently in 1753 [4].
P. M. d’Ocagne found identity (2.4) [4].

It follows from the Catalan-like identity (2.1) that (gn+kgn−k − g2n)
2 = µ2f4

k ; consequently,

4gn+kg
2
ngn−k + µ2f4

k = (gn+kgn−k + g2n)
2. (2.5)

Thus, 4gn+kg
2
ngn−k + µ2f4

k is a square.
It follows from identity (2.5) that

4Gn+kG
2
nGn−k + ν2G4

k = (Gn+kGn−k +G2
n)

2;

4Bn+kB
2
nBn−k + γ2 B4

k = (Bn+kBn−k +B2
n)

2.

3. Differences of Gibonacci Products of Order 3

With these tools, we now investigate differences of gibonacci products of order 3. The next
theorem gives one such formula.

Theorem 3.1. Let n ≥ 0. Then,

gn+1gn+2gn+6 − g3n+3 = µ(−1)n(x3gn+2 − gn+1). (3.1)
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Proof. By the gibonacci recurrence, we have

gn+6 = (x4 + 3x2 + 1)gn+2 + (x3 + 2x)gn+1;

gn+1gn+2gn+6 = (x4 + 3x2 + 1)g2n+2gn+1 + (x3 + 2x)gn+2g
2
n+1;

g3n+3 = x3g3n+2 + 3x2g2n+2gn+1 + 3xgn+2g
2
n+1 + g3n+1.

Then, by identity (2.1) and some basic algebra, we have

LHS = gn+1gn+2gn+6 − g3n+3

= (x4 + 1)g2n+2gn+1 + (x3 − x)gn+2g
2
n+1 − x3g3n+2 − g3n+1

= x3g2n+2(xgn+1 − gn+2) + gn+2gn+1(gn+2 − xgn+1) + x3gn+2g
2
n+1 − g3n+1

= −x3g2n+2gn + gn+2gn+1gn + x3g2n+1(xgn+1 + gn)− g3n+1

= −x3gn+2

[

g2n+1 + µ(−1)n+1
]

+ gn+1

[

g2n+1 + µ(−1)n+1
]

+ x3gn+2g
2
n+1 − g3n+1

= µ(−1)n(x3gn+2 − gn+1),

as desired. �

It follows by Theorem 3.1 that

gn+1gn+2gn+6 − g3n+3 =

{

(−1)n(x3gn+2 − gn+1), if gn = fn,

(−1)n+1∆2(x3gn+2 − gn+1), if gn = ln;
(3.2)

bn+1bn+2bn+6 − b3n+3 =

{

(−1)n(8x3bn+2 − bn+1), if bn = pn,

(−1)n+1 4(x2 + 1)(8x3bn+2 − bn+1), if bn = qn.

Consequently,

Gn+1Gn+2Gn+6 −G3
n+3 =

{

(−1)nGn, if Gn = Fn,

(−1)n+15Gn, if Gn = Ln;
(3.3)

Bn+1Bn+2Bn+6 −B3
n+3 =

{

(−1)n(8Bn+2 −Bn+1), if Bn = Pn,

(−1)n+12(8Bn+2 −Bn+1), if Bn = Qn.

Melham discovered the formula (3.3) with Gn = Fn [7].
Theorem 3.1 has a byproduct that follows from identity (3.3) that Gn+1Gn+2Gn+6−G3

n+3 =

(−1)nµ(1)Gn, so (Gn+1Gn+2Gn+6 −G3
n+3)

2 = ν2G2
n. This implies

4Gn+1Gn+2G
3
n+3Gn+6 + ν2G2

n = (Gn+1Gn+2Gn+6 +G3
n+3)

2.

Similarly, we have

4Bn+1Bn+2B
3
n+3Bn+6 + 4(8Bn+2 −Bn+1)

2 = (Bn+1Bn+2Bn+6 +B3
n+3)

2;

4Cn+1Cn+2C
3
n+3Cn+6 + κ44n+1(Cn+2 − 4Cn+1)

2 = (Cn+1Cn+2Cn+6 + C3
n+3)

2.

Next, we pursue the implications of Theorem 3.1 to the Jacobsthal family.

3.1. Jacobsthal Implications. By virtue of the relationships Jn(x) = x(n−1)/2fn(1/
√
x) and

jn(x) = xn/2ln(1/
√
x), Theorem 3.1 has Jacobsthal consequences. To see them, first replace

x with u = 1/
√
x in identity (3.1). We then get

gn+1gn+2gn+6 − g3n+3 = (−1)nµ

(

1

x
√
x
gn+2 − gn+1

)

, (3.4)

where gn = gn(u) and µ = µ(u).
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Suppose gn = fn. Then, (3.4) yields

fn+1fn+2fn+6 − f3
n+3 = (−1)nµ

(

fn+2 − fn+1

)

,

where fn = fn(u). Multiplying this equation with x(3n+6)/2 results in the Jacobsthal identity

Jn+1(x)Jn+2(x)Jn+6(x)− J3
n+3(x) = (−1)nxn+1

[

Jn+2(x)− x2Jn+1(x)
]

.

Similarly, when gn = ln, we get

jn+1(x)jn+2(x)jn+6(x)− j3n+3(x) = (−1)n+1(4x+ 1)xn+1
[

jn+2(x)− x2jn+1(x)
]

.

Combining the two cases, we have

cn+1cn+2cn+6 − c3n+3 =

{

−(−x)n+1
(

cn+2 − x2cn+1

)

, if cn = Jn(x),

(4x+ 1)(−x)n+1
(

cn+2 − x2cn+1

)

, if cn = jn(x).

Consequently,

Cn+1Cn+2Cn+6 − C3
n+3 =

{

−(−2)n+1 (Cn+2 − 4Cn+1) , if Cn = Jn,

9(−2)n+1 (Cn+2 − 4Cn+1) , if Cn = jn.

The next theorem gives a companion formula for a difference of gibonacci products of order
3.

Theorem 3.2. Let n ≥ 0. Then,

gngn+4gn+5 − g3n+3 = µ(−1)n+1(x3gn+4 + gn+5).

Proof. By the gibonacci recurrence, we have gn = (x2 + 1)gn+4 − (x3 + 2x)gn+3. Then,

gngn+4gn+5 = (x2 + 1)g2n+4gn+5 − (x3 + 2x)gn+3gn+4gn+5.

We also have

g3n+3 = (gn+5 − xgn+4)
3

= g3n+5 − 3xgn+4g
2
n+5 + 3x2g2n+4gn+5 − x3g3n+4

= (gn+5 − xgn+4)(gn+5 − 2xgn+4)gn+5 + x2g2n+4gn+5 − x3g3n+4

= gn+3(gn+5 − 2xgn+4)gn+5 + x2g2n+4gn+5 − x3g3n+4.

Consequently,

gngn+4gn+5 − g3n+3 = g2n+4gn+5 − x3gn+3gn+4gn+5 − gn+3g
2
n+5 + x3g3n+4

= (g2n+4 − gn+3gn+5)(x
3gn+4 + gn+5)

= (−1)n+1µ(x3gn+4 + gn+5),

as claimed. �

It follows by Theorem 3.2 that

gngn+4gn+5 − g3n+3 =

{

(−1)n+1(x3gn+4 + gn+5), if gn = fn,

(−1)n+1µ(x3gn+4 + gn+5), if gn = ln;

bnbn+4bn+5 − b3n+3 =

{

(−1)n+1(8x3bn+4 + bn+5), if bn = pn,

(−1)n4(x2 + 1)(8x3bn+4 + bn+5), if bn = qn;
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Consequently, we have

GnGn+4Gn+5 −G3
n+3 =

{

(−1)n+1Gn+6, if Gn = Fn,

(−1)n5Gn+6, if Gn = Ln;
(3.5)

BnBn+4Bn+5 −B3
n+3 =

{

(−1)n+1(8Bn+4 +Bn+5), if Bn = Pn,

(−1)n2(8Bn+4 +Bn+5), if Bn = Qn.

S. Fairgrieve and H. W. Gould discovered the delightful identity (3.5) when Gn = Fn [3].
Next, we study the consequences of Theorem 3.2 to the Jacobsthal subfamily.

3.2. Jacobsthal Consequences. Replacing x with u = 1/
√
x in (3.2), we get

gngn+4gn+5 − g3n+3 = µ(−1)n+1

(

1

x
√
x
gn+4 + gn+5

)

.

Suppose gn = fn. Multiplying the resulting equation with x(3n+6)/2 gives

Jn(x)Jn+4(x)Jn+5(x)− J3
n+3(x) = −(−x)n[Jn+4(x) + xJn+5(x)].

Similarly, when gn = ln, we get

jn(x)jn+4(x)jn+5(x)− j3n+3(x) = (−x)n(4x+ 1)[jn+4(x) + xjn+5(x)].

Thus, we have

cncn+4cn+5 − c3n+3 =

{

−(−x)n(cn+4 + xcn+5), if cn = Jn(x),

(4x+ 1)(−x)n(cn+4 + xcn+5), if cn = jn(x);

CnCn+4Cn+5 − C3
n+3 =

{

−(−2)n(Cn+4 + 2Cn+5), if Cn = Jn,

9(−2)n(Cn+4 + 2Cn+5), if Cn = jn.

3.3. Additional Consequences. Theorem 3.2 has additional consequences. It follows from
identity (3.2) that
GnGn+4Gn+5 −G3

n+3 = (−1)n+1µ(1)Gn+6; so (GnGn+4Gn+5 −G3
n+3)

2 = ν2G2
n+6.

Consequently,

4GnG
3
n+3Gn+4Gn+5 + ν2G2

n+6 = (GnGn+4Gn+5 +G3
n+3)

2.

Likewise,

4BnB
3
n+3Bn+4Bn+5 + γ2(8Bn+4 +Bn+5)

2 = (BnBn+4Bn+5 +B3
n+3)

2;

4CnC
3
n+3Cn+4Cn+5 + 4nν4(Cn+4 + 2Cn+5)

2 = (CnCn+4Cn+5 + C3
n+3)

2.

The next theorem presents another difference of gibonacci products of order 3.

Theorem 3.3. Let n ≥ 0. Then,

gng
2
n+3 − g3n+2 = µ(−1)n+1(x2gn+2 − gn). (3.6)

Proof. By the gibonacci recurrence, we have

gng
2
n+3 = gn(xgn+2 + gn+1)

2

= x2gng
2
n+2 + 2xgngn+1gn+2 + gng

2
n+1.
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But,

2xgngn+1gn+2 = (gn+2 − xgn+1)(gn+2 − gn)gn+2 + gn(gn+2 − gn)gn+2

= g3n+2 − xgn+1gn+2(gn+2 − gn)− g2ngn+2

= g3n+2 − x2g2n+1gn+2 − g2ngn+2.

Therefore,

gng
2
n+3 − g3n+2 = x2gng

2
n+2 − x2g2n+1gn+2 − g2ngn+2 + gng

2
n+1

= (gngn+2 − g2n+1)(x
2gn+2 − gn)

= (−1)n+1µ(x2gn+2 − gn),

as desired. �

As can be predicted, this theorem also has Pell and Jacobsthal ramifications:

gng
2
n+3 − g3n+2 =

{

(−1)n+1(x2gn+2 − gn), if gn = fn,

(−1)n ∆2(x2gn+2 − gn), if gn = ln;
(3.7)

bnb
2
n+3 − b3n+2 =

{

(−1)n+1(4x2bn+2 − bn), if bn = pn,

(−1)n 4(x2 + 1)(4x2bn+2 − bn), if bn = qn;

cnc
2
n+3 − c3n+2 =

{

−(−x)n(cn+2 − x2cn), if cn = Jn(x),

(−x)n(4x+ 1)(cn+2 − x2cn), if cn = jn(x);

the Jacobsthal identities can be established as before.
Their numeric counterparts are:

GnG
2
n+3 −G3

n+2 =

{

(−1)n+1Gn+1, if Gn = Fn,

(−1)n 5Gn+1, if Gn = Ln;
(3.8)

BnB
2
n+3 −B3

n+2 =

{

(−1)n+1(4Bn+2 −Bn), if Bn = Pn,

(−1)n 2(4Bn+2 −Bn), if Bn = Qn;

CnC
2
n+3 − C3

n+2 =

{

−2n, if Cn = Jn,

−27 · 2n, if Cn = jn,

where we have used Jn+2 − 4Jn = (−1)n and jn+2 − 4jn = 3(−1)n+1.
Fairgrieve and Gould also found the identity (3.8) when Gn = Fn [3].
It also follows from identity (3.8) that GnG

2
n+3 −G3

n+2 = (−1)n+1µ(1)Gn+1. This implies

4GnG
3
n+2G

2
n+3 + ν2G2

n+1 = (GnG
2
n+3 +G3

n+2)
2.

Similarly,

4BnB
3
n+2B

2
n+3 + γ2(4Bn+2 −Bn)

2 = (BnB
2
n+3 +B3

n+2)
2;

4CnC
3
n+2C

2
n+3 + κ6 4n = (CnC

2
n+3 + C3

n+2)
2.

Fairgrieve and Gould also discovered that F 2
nFn+3 − F 3

n+1 = (−1)n+1Fn+2 [3]. The next
theorem extends this identity to the gibonacci family. Its proof is also short and neat.

Theorem 3.4. Let n ≥ 0. Then,

g2ngn+3 − g3n+1 = µ(−1)n+1(gn+3 − x2gn+1). (3.9)
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Proof. By the gibonacci recurrence, we have

g2ngn+3 − g3n+1 = (gn+2 − xgn+1)
2gn+3 − gn+1(gn+3 − xgn+2)

2

= g2n+2gn+3 + x2g2n+1gn+3 − gn+1g
2
n+3 − x2gn+1g

2
n+2

= (gn+1gn+3 − g2n+2)(x
2gn+1 − gn+3)

= (−1)n+1µ(gn+3 − x2gn+1).
�

It follows from identity (3.9) that

g2ngn+3 − g3n+1 =

{

(−1)n+1(gn+3 − x2gn+1), if gn = fn,

(−1)n∆2(gn+3 − x2gn+1), if gn = ln;

b2nbn+3 − b3n+1 =

{

(−1)n+1(bn+3 − 4x2bn+1), if bn = pn,

(−1)n 4(x2 + 1)(bn+3 − 4x2bn+1), if bn = qn;

c2ncn+3 − c3n+1 =

{

(−x)n−1(cn+3 − cn+1), if cn = Jn(x),

−(4x+ 1)(−x)n−1(cn+3 − cn+1), if cn = jn(x).

In particular, we have

G2
nGn+3 −G3

n+1 =

{

(−1)n+1Gn+2, if Gn = Fn,

(−1)n 5Gn+2, if Gn = Ln;

B2
nBn+3 −B3

n+1 =

{

(−1)n+1(Bn+3 − 4Bn+1), if Bn = Pn,

(−1)n 2(Bn+3 − 4Bn+1), if Bn = Qn;

C2
nCn+3 −C3

n+1 =

{

−(−4)n, if Cn = Jn,

27(−4)n, if Cn = jn,

where we have used the Jacobsthal properties that Jn+3 − Jn+1 = 2n+1 and jn+3 − jn+1 =
3 · 2n+1.

3.4. Additional Consequences. It follows from the above numeric identities that

4G2
nG

3
n+1Gn+3 + ν2G2

n+2 = (G2
nGn+3 +G3

n+1)
2;

4B2
nB

3
n+1Bn+3 + γ2(Bn+3 − 4Bn+1)

2 = (B2
nBn+3 +B3

n+1)
2;

4C2
nC

3
n+1Cn+3 + κ6 16n = (C2

nCn+3 + C3
n+1)

2.

Next, we investigate differences of gibonacci products of order 4.

4. Differences of Gibonacci Products of Order 4

The next theorem highlights an interesting difference of two gibonacci products of order 4.
It is a straightforward application of the Catalan-like identity (2.2).

Theorem 4.1. Let n ≥ 0. Then,

gn+2gn+1gn−1gn−2 − g4n = µ[(1− x2)(−1)ng2n − µx2]. (4.1)
Proof. We have

LHS = (gn+2gn−2)(gn+1gn−1)− g4n

= [g2n − µ(−1)nx2][g2n + µ(−1)n]− g4n

= [µ(−1)n − µ(−1)nx2]g2n − µ2x2

= µ(1− x2)(−1)ng2n − µ2x2.
�
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It follows Theorem 4.1 that

gn+2gn+1gn−1gn−2 − g4n =

{

(−1)n(1− x2)g2n − x2, if gn = fn,

∆2
[

(−1)n(x2 − 1)g2n −∆2 x2
]

, if gn = ln;
(4.2)

bn+2bn+1bn−1bn−2 − b4n =

{

(−1)n(1− 4x2)b2n − 4x2, if bn = pn,

4(x2 + 1)[(−1)n(4x2 − 1)b2n − 16x2(x2 + 1)], if bn = qn.
(4.3)

Next, we pursue the Jacobsthal implications of Theorem 4.1.

4.1. Jacobsthal Implications. Letting u = 1/
√
x, equation (4.1) becomes

gn+2gn+1gn−1gn−2 − g4n =
µ

x

[

(x− 1)(−1)ng2n − µ
]

,

where gn = gn(u) and µ = µ(u).
Suppose gn = fn, where fn = fn(u). Multiplying the resulting equation with x2n−2, we get

Jn+2(x)Jn+1(x)Jn−1(x)Jn−2(x)− J4
n(x) = xn−2

[

(−1)n(x− 1)J2
n(x)− xn−1

]

.

On the other hand, suppose gn = ln. This time, multiply the corresponding equation with
x2n; this yields

jn+2(x)jn+1(x)jn−1(x)jn−2(x)− j4n(x) = xn−2(4x+ 1)
[

(−1)n(1− x)j2n(x)− (4x+ 1)xn−1
]

.

Combining the two cases, we have

cn+2cn+1cn−1cn−2 − c4n =

{

xn−2
[

(−1)n(x− 1)c2n − xn−1
]

, if cn = Jn(x),

xn−2(4x+ 1)
[

(−1)n(1− x)c2n − (4x+ 1)xn−1
]

, if cn = jn(x).

(4.4)

4.2. Additional Byproducts. It follows from the polynomial identities (4.2), (4.3), and (4.4)
that

Gn+2Gn+1Gn−1Gn−2 −G4
n = −ν2; (4.5)

Bn+2Bn+1Bn−1Bn−2 −B4
n =

{

3(−1)n+1B2
n − 4, if Bn = Pn,

2[3(−1)nB2
n − 8], if Bn = Qn;

Cn+2Cn+1Cn−1Cn−2 − C4
n =

{

2n−2
[

(−1)nC2
n − 2n−1

]

, if Cn = Jn,

9 · 2n−2
[

(−1)n+1C2
n − 9 · 2n−1

]

, if Cn = jn,

respectively.
Identity (4.5) with Gn = Fn is the Gelin-Cesàro identity, stated by E. Gelin, but proved by

E. Cesàro (1859–1906) [1, 3].
It follows from identity (4.5) that (Gn+2Gn+1Gn−1Gn−2 −G4

n)
2 = ν4. Consequently,

4Gn+2Gn+1G
4
nGn−1Gn−2 + ν4 = (Gn+2Gn+1Gn−1Gn−2 +G4

n)
2.

Similarly, we have

(Bn+2Bn+1Bn−1Bn−2 +B4
n)

2 =

{

4Bn+2Bn+1B
4
nBn−1Bn−2 + [4 + 3(−1)nB2

n]
2, if Bn = Pn,

4Bn+2Bn+1B
4
nBn−1Bn−2 + 4[8 − 3(−1)nB2

n]
2, if Bn = Qn;

(Cn+2Cn+1Cn−1Cn−2 + C4
n)

2 =

{

4Cn+2Cn+1C
4
nCn−1Cn−2 +A, if Cn = Jn,

4Cn+2Cn+1C
4
nCn−1Cn−2 +B, if Cn = jn,

where A = 4n−2[(−1)nC2
n − 2n−1]2 and B = 81 · 4n−2[(−1)nC2

n + 9 · 2n−1]2.
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5. Vieta and Chebyshev Implications

Finally, it follows by the relationships in Table 1 that Theorems 3.1 through 4.1 have
implications to the Vieta and Chebyshev subfamilies also. In the interest of brevity, we leave
the work for interested gibonacci enthusiasts.
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