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Abstract. We develop convolution formulas linking the Fibonacci, Lucas, Jacobsthal, and
Jacobsthal-Lucas polynomials, and then deduce the corresponding ones for Pell-Jacobsthal
polynomials, and their numeric counterparts. Using the numeric Fibonacci-Jacobsthal hy-
bridity, we show how the corresponding Fibonacci-Jacobsthal-Lucas, Lucas-Jacobsthal, and
Lucas-Jacobsthal-Lucas convolution formulas can be derived. We also construct combinato-
rial models for the Fibonacci-Jacobsthal, Fibonacci-Jacobsthal-Lucas, and Lucas-Jacobsthal-
Lucas convolutions.

1. Introduction

Generalized gibonacci polynomials gn(x) are defined by the second-order recurrence gn+2(x) =
a(x)gn+1(x)+b(x)gn(x), where x is an arbitrary complex variable; a(x), b(x), g0(x), and g1(x)
are arbitrary complex polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When g0(x) = 0 and g1(x) = 1, gn(x) = fn(x), the
nth Fibonacci polynomial ; and when g0(x) = 2 and g1(x) = x, gn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [4, 10].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively. The Pell numbers Pn and Pell-Lucas numbers Qn are given by
Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively [9, 10].

On the other hand, let a(x) = 1 and b(x) = 2x. When g0(x) = 0 and g1(x) = 1, gn(x) =
Jn(x), the nth Jacobsthal polynomial ; and when g0(x) = 2 and g1(x) = 1, gn(x) = jn(x),
the nth Jacobsthal-Lucas polynomial [7, 8]. Correspondingly, Jn = Jn(1) and jn = jn(1) are
the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1/2) = Fn; and
jn(1/2) = Ln.

Extending these definitions to negative integers n, it follows that F−1 = 1 = −F−2 = −L−1

and J−1 = 1/2; we need these values later.
In the interest of brevity and convenience, we omit the argument in the functional notation,

when there is no ambiguity; so gn will mean gn(x).

1.1. Binet-like Formulas. Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal-
Lucas polynomials can also be defined by Binet-like formulas:

fn =
αn − βn

α− β
and ln = αn + βn;

pn =
γn − δn

γ − δ
and qn = γn + δn;

Jn(x) =
un − vn

u− v
and jn(x) = un + vn,

where 2α = x+
√
x2 + 4, 2β = x−

√
x2 + 4, γ = x+

√
x2 + 1, δ = x−

√
x2 + 1, 2u = 1+

√
8x+ 1,

and 2v = 1 −
√
8x+ 1. In the interest of conciseness, we let ∆ = α − β =

√
x2 + 4, and

ω = u− v =
√
8x+ 1.
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Using the Binet-like formulas and the respective recurrences, we can extract a multitude of
identities. For example, fn+1 + fn−1 = ln, ln+1 + ln−1 = ∆2fn, ln + xfn = 2fn+1, Jn+1(x) +
2xJn−1(x) = jn(x), and jn+1(x) + 2xjn−1(x) = ω2Jn(x).

2. Generating Functions

Generating functions also play an important role in the development of identities:

f(t) =

∞
∑

n=0

fnt
n =

t

1− xt− t2
=

1

∆

(

1

1− αt
− 1

1− βt

)

;

l(t) =
∞
∑

n=0

lnt
n =

2− xt

1− xt− t2
=

1

1− αt
+

1

1− βt
;

J(t) =

∞
∑

n=0

Jn(x)t
n =

t

1− t− 2xt2
=

1

ω

(

1

1− ut
− 1

1− vt

)

;

j(t) =
∞
∑

n=0

jn(x)t
n =

2− t

1− t− 2xt2
=

1

1− ut
+

1

1− vt
.

2.1. Applications. One application of generating functions is in finding convolution formu-
las. The following theorem gives one such formula. The proof involves plenty of algebraic
manipulation; so in the interest of brevity, we give only the key steps.

Theorem 2.1.
n
∑

k=0

fkJn−k(x) =
[(1− 2x)Jn+1(x)− 2x(x− 1)Jn(x)] + (2xfn+1 − fn − fn−1)

2x3 − 6x2 + 3x
. (2.1)

Proof. Let Sn denote the sum. Then,

∆ωf(t)J(t) =

(

1

1− αt
− 1

1− βt

)(

1

1− ut
− 1

1− vt

)

=
1

(1− αt)(1− ut)
− 1

(1− αt)(1− vt)
− 1

(1− βt)(1− ut)
+

1

(1− βt)(1− vt)

=

[

α

(α− u)(1− αt)
− u

(α− u)(1− ut)

]

−
[

α

(α− v)(1 − αt)
− v

(α− v)(1− vt)

]

−
[

β

(β − u)(1− βt)
− u

(β − u)(1 − ut)

]

+

[

β

(β − v)(1− βt)
− v

(β − v)(1 − vt)

]

=
αω

(1− αt)(α2 − α− 2x)
− βω

(1− βt)(β2 − β − 2x)

− u∆

(1− ut)(1 + xu− u2)
+

v∆

(1− vt)(1 + xv − v2)
.

Equating the coefficients of tn from both sides, we get

∆ωSn = ω

(

αn+1

α2 − α− 2x
− βn+1

β2 − β − 2x

)

−∆

(

un+1

1 + xu− u2
− vn+1

1 + xv − v2

)

Sn =
2xfn+1 − fn − fn−1

2x3 − 6x2 + 3x
+

Jn+1(x)− 2x2Jn(x)− 4x2Jn−1(x)

2x3 − 6x2 + 3x
.

This yields the desired result. �
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In particular, formula (2.1) yields
n
∑

k=0

FkJn−k = Jn+1 − Fn+1. (2.2)

The next theorem gives three additional convolution formulas. Their proofs follow similar
steps; again, in the interest of brevity, we omit them.

Theorem 2.2. Let A = (1− 2x)jn+1(x)− 2x(x− 1)jn(x), B = (x2− 5x+2)Jn+2(x)−x(3x−
4)Jn+1(x), and C = (x2 − 5x+ 2)jn+2(x)− x(3x− 4)jn+1(x). Then,

n
∑

k=0

fkjn−k(x) =
A+ (4x− 1)fn+2 − (x+ 1)fn+1 − xfn

2x3 − 6x2 + 3x
; (2.3)

n
∑

k=0

lkJn−k(x) =
B + 2xln+1 − ln − ln−1

2x3 − 6x2 + 3x
; (2.4)

n
∑

k=0

lkjn−k(x) =
C + (4x− 1)ln+2 − (x+ 1)ln+1 − xln

2x3 − 6x2 + 3x
. (2.5)

It follows from Theorem 2.2 that
n
∑

k=0

Fkjn−k = jn+1 − Ln+1; (2.6)

n
∑

k=0

LkJn−k = jn+1 − Ln+1; (2.7)

n
∑

k=0

Lkjn−k = 9Jn+1 − 5Fn+1. (2.8)

Griffiths and Bramham discovered formula (2.7) [6] and gave a nice combinatorial interpre-
tation later [5].

Next, we present combinatorial interpretations of formulas (2.2), (2.6), and (2.8).

3. Combinatorial Models

The number of n-tilings of a 1×n board with 1×1 white tiles and 1×2 white tiles (dominoes)
is Fn+1 [2, 5, 11]. Likewise, a circular board with n cells can be tiled with (flexible) square
tiles and (flexible) dominoes in Ln different ways [2, 5, 11]; such a tiling is called an n-bracelet.
An n-bracelet is out-of-phase if a domino occupies cells n and 1; otherwise, it is in-phase.

3.1. A Model for Formula (2.2). A 1×n board can be tiled with white squares, and black
and white dominoes in Jn+1 different ways [2, 5, 11]. Consequently, the number of n-tilings
with white squares, and black and white dominoes such that each tiling contains at least one
black domino equals Jn+1−Fn+1, where n ≥ 0. With this tool at hand, we can combinatorially
establish formula (2.2).

The proof hinges on the well known Fubini’s principle [1], named after the Italian math-
ematician Guido Fubini (1879–1943): Counting the elements of a set in two different ways
yields the same result.
Proof. The number of n-tilings Tn with white squares, and black and white dominoes such
that each tiling contains at least one black domino equals Jn+1 − Fn+1. We will now count
such tilings in a different way.
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Suppose the first such black domino B occurs in cells k and k + 1, where 1 ≤ k ≤ n − 1.
Then, B partitions Tn into subtilings Tk−1, B, and Tn−k−1, where Tk−1 contains only white
squares and white dominoes, and Tn−k−1 may contain white squares, and black and white
dominoes: subtiling

︸ ︷︷ ︸

Tk−1

subtiling
︸ ︷︷ ︸

Tn−k−1

.

k k+1

There are Fk tilings Tk−1 and Jn−k tilings Tn−k−1, so there are FkJn−k such tilings Tn for
every k. Consequently, there are

n−1
∑

k=1

FkJn−k =
n
∑

k=0

FkJn−k

n-tilings Tn such that every tiling contains at least one black domino.
This result, coupled with the earlier count, gives the desired result. �

3.2. A Model for Formula (2.6). A circular board with n-cells can be tiled with 1 × 1
white tiles, and 1 × 2 white dominoes, and 1 × 2 black dominoes in jn ways [2, 5]. It can be
tiled with 1× 1 white tiles, and 1 × 2 white dominoes in Ln ways. So there are S = jn − Ln

such n-bracelets, each containing at least one black domino.
To compute this sum S in a different way, consider an arbitrary n-bracelet B.
Case 1. Assume B is in-phase. Suppose the first black domino D occurs in cells k and k+1,

where 1 ≤ k ≤ n − 1; see Figure 1. There are FkJn−k such n-bracelets. Consequently, the

total number of in-phase bracelets B equals

n−1
∑

k=1

FkJn−k =

n
∑

k=1

FkJn−k.

1 n

PP
k

D k+1

✑✑

Figure 1

Case 2. Suppose B is out-of-phase. Assume a white domino W occupies cells n and 1; see
Figure 2. It follows by Case 1 that the number of such n-bracelets, where each contains at

least one black domino, is
n−2
∑

k=1

FkJn−k−2.

W❏❏
1

✡✡
n

PP
k

D k+1

✑✑

Figure 2

D❏❏
1

✡✡
n

Figure 3

On the other hand, suppose a black domino D occupies cells n and 1; see Figure 3. Clearly,
there are Jn−1 such bracelets, with each containing at least one black domino.
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Since Jn+2 + 2Jn = jn+1, it follows that the total number of n-bracelets S with the desired
property, is given by

S =
n−1
∑

k=1

FkJn−k +
n−2
∑

k=1

FkJn−k−2 + Jn−1

=
n−1
∑

k=1

Fk(Jn−k + 2Jn−k−2)− 2Fn−1J−1 −
n−2
∑

k=1

FkJn−k−2 + Jn−1

=

n−1
∑

k=1

Fkjn−k−1 − Fn−1 − (Jn−1 − Fn−1) + Jn−1

=

n−1
∑

k=1

Fkjn−k−1.

The desired formula now follows by combining the two counts.

3.3. A Model for Formula (2.8). A combinatorial proof of convolution identity (2.8) is
more complicated than it is for (2.2) or (2.6). So, first, we prepare the needed ground work
by gathering several facts.

Proof. A combinatorial argument in [3] involving boards, bracelets, and uncolored squares and
dominoes shows that Ln+2 + Ln = 5Fn+1. We can rewrite this identity as

5Fn+1 = Ln+2 + Ln = Ln+2 + (Ln+2 − Ln+1) = 2Ln+2 − Ln+1. (3.1)

Using elements from the set D = {d1, . . . , dr, s} comprising r 1×2 dominoes of different col-
ors (denoted d1 to dr) and uncolored 1×1 squares (denoted s), it is reasonably straightforward
to extend the aforementioned argument to obtain the following general identity:

rmn,r +mn+2,r = (4r + 1)Mn,r,

where Mn,r and mn,r enumerate the tilings of an (n−1)-board and an n-bracelet, respectively,
using elements from D.

When r = 2, we have 2jn + jn+2 = 9Jn+1. By the Jacobsthal recurrence, this yields

9Jn+1 = jn+2 + 2jn = jn+2 + (jn+2 − jn+1) = 2jn+2 − jn+1.

In [5], it is shown via combinatorial means that

n
∑

k=0

LkJn−k = jn+1 − Ln+1. (3.2)

Next, we establish combinatorially that

jn + Jn = 2Jn+1. (3.3)

To this end, notice that the expression jn−Jn+1 gives the number of out-of-phase tilings of an
n-bracelet using white squares, and black and white dominoes, which is equal to 2Jn−1. From
the Jacobsthal recurrence, we have Jn+1 − Jn = 2Jn−1. Consequently, jn − Jn+1 = Jn+1 − Jn.
This yields the desired identity.
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Using identities (5.3) through (3.3), we now have

9Jn+1 − 5Fn+1 = (2jn+2 − jn+1)− (2Ln+2 − Ln+1) = 2 (jn+2 − Ln+2)− (jn+1 − Ln+1)

= 2
n+1
∑

k=0

LkJn+1−k −
n
∑

k=0

LkJn−k = 2
n
∑

k=0

LkJn+1−k + Ln+1J0 −
n
∑

k=0

LkJn−k

=
n
∑

k=0

(2LkJn+1−k − LkJn−k) =
n
∑

k=0

Lk (2Jn+1−k − Jn−k)

=
n
∑

k=0

Lkjn−k,

as required. �

4. Convolutions Revisited

Using convolution formula (2.2), we can establish algebraically formulas (2.6), (2.7), and
(2.8). To this end, we need the following identities: Fn+1 + Fn−1 = Ln, Jn+1 + 2Jn−1 = jn,
and Ln+1 + Ln−1 = 5Fn. We give only the key steps involved in each case.

Proof of Formula (2.6).

n
∑

k=0

Fkjn−k =

n
∑

k=0

FkJn−k+1 + 2

n
∑

k=0

FkJn−k−1 =

n+1
∑

k=0

FkJn−k+1 + 2

n−1
∑

k=0

FkJn−k−1 + Fn

= (Jn+2 − Fn+2) + 2(Jn − Fn) + Fn = jn+1 − Ln+1,

as desired. �

Formula (2.7) follows similarly.

Proof of Formula (2.8).
n
∑

k=0

Lkjn−k =
n
∑

k=0

LkJn−k+1 + 2
n
∑

k=0

LkJn−k−1

=

n−1
∑

k=−1

Lk+1Jn−k + 2

n+1
∑

k=1

Lk−1Jn−k

=

n
∑

k=0

Lk+1Jn−k + 2

n
∑

k=0

Lk−1Jn−k + Ln + 2Jn+1 + 2Jn

=
n
∑

k=0

(Lk+1 + Lk−1)Jn−k +
n
∑

k=0

(Fk + Fk−2)Jn−k + Ln + 2Jn+1 + 2Jn

= 6
n
∑

k=0

FkJn−k +
n
∑

k=0

Fk−2Jn−k + Ln + 2Jn+1 + 2Jn

= 6(Jn+1 − Fn+1) +

(

n−2
∑

k=0

FkJn−k−2 − Jn + Jn−1

)

+ Ln + 2Jn+1 + 2Jn

= 8Jn+1 − 6Fn+1 + (Jn−1 − Fn−1) + Jn + Jn−1 + (Fn+1 + Fn−1)

= 8Jn+1 − 5Fn+1 + (Jn + 2Jn−1).
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This gives the desired result. �

We add that by invoking the identity jn+2+2jn = 9Jn+1 and the summation formula (2.7),
we can confirm formula (2.8) in fewer steps.

4.1. Pell Dividends. Since pn = fn(2x) and qn = ln(2x), it follows that Theorems 2.1 and 2.2
yield interesting Pell byproducts. For brevity, we let D = (1−4x)Jn+1(2x)−4x(2x−1)Jn(2x),
E = (1− 4x)jn+1(2x)− 4x(2x− 1)jn(2x), F = (4x2 − 10x+2)Jn+2(2x)− 4x(3x− 2)Jn+1(2x),
and G = (4x2 − 10x+ 2)jn+2(2x)− 4x(3x− 2)jn+1(2x). Then,

n
∑

k=0

pkJn−k(2x) =
D + 4xpn+1 − pn − pn−1

16x3 − 24x2 + 6x
;

n
∑

k=0

pkjn−k(2x) =
E + (8x− 1)pn+2 − (2x+ 1)pn+1 − 2xpn

16x3 − 24x2 + 6x
;

n
∑

k=0

qkJn−k(2x) =
F + 4xqn+1 − qn − qn−1

16x3 − 24x2 + 6x
;

n
∑

k=0

qkjn−k(2x) =
G+ (8x− 1)qn+2 − (2x+ 1)qn+1 − 2xqn

16x3 − 24x2 + 6x
.

It follows from these hybrid formulas that

n
∑

k=0

PkJn−k(2) = 2Jn(2)− Pn+1 +
3Jn+1(2)−Qn+1

2
;

n
∑

k=0

Pkjn−k(2) = 2jn(2)− 3Pn+2 +
3jn+1(2) +Qn+1

2
;

n
∑

k=0

QkJn−k(2) = Jn+2(2) + Jn+1(2)− 2Qn+1 + Pn;

n
∑

k=0

Qkjn−k(2) = jn+2(2) + jn+1(2)− 3Qn+2 + Pn+1.

Note that 3Jn+1(2) −Qn+1 and 3jn+1(2) +Qn+1 are even integers.

5. Additional Convolutions

The next theorem gives five additional convolution formulas. They can be confirmed using
the property 2Jn+1(x) = Jn(x) + jn(x), and generating functions (or Binet-like formulas);
again, for the sake of brevity, we omit them.
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Theorem 5.1. Let n be a nonnegative integer. Then,

(x2 + 4)
n
∑

k=0

fkfn−k = nln − xfn; (5.1)

n
∑

k=0

lkln−k = (n+ 2)ln + xfn; (5.2)

(8x+ 1)
n
∑

k=0

Jk(x)Jn−k(x) = njn(x)− Jn(x);

n
∑

k=0

Jk(x)jn−k(x) = (n+ 1)Jn(x);

n
∑

k=0

jk(x)jn−k(x) = (n+ 2)jn(x) + Jn(x).

It then follows that

5

n
∑

k=0

FkFn−k = nLn − Fn; (5.3)

n
∑

k=0

LkLn−k = (n+ 2)Ln + Fn; (5.4)

9

n
∑

k=0

JkJn−k = njn − Jn; (5.5)

n
∑

k=0

Jkjn−k = (n+ 1)Jn;

n
∑

k=0

jkjn−k = (n+ 2)jn + Jn,

respectively.
It follows from formulas (5.3) and (5.5) that nLn ≡ Fn (mod 5) and njn ≡ Jn (mod 9),

respectively.

5.1. Pell Consequences. Clearly, formulas (5.1) and (5.2) have Pell consequences:

4(x2 + 1)
n
∑

k=0

pkpn−k = nqn − 2xpn;

n
∑

k=0

qkqn−k = (n+ 2)qn + 2xpn,

respectively.
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Consequently, we have

4
n
∑

k=0

PkPn−k = nQn − Pn;

2
n
∑

k=0

QkQn−k = (n+ 2)Qn + Pn,

respectively. It then follows that nQn ≡ Pn (mod 4).
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