SOME GIBONACCI CONVOLUTIONS WITH DIVIDENDS

THOMAS KOSHY AND MARTIN GRIFFITHS

ABSTRACT. We develop convolution formulas linking the Fibonacci, Lucas, Jacobsthal, and
Jacobsthal-Lucas polynomials, and then deduce the corresponding ones for Pell-Jacobsthal
polynomials, and their numeric counterparts. Using the numeric Fibonacci-Jacobsthal hy-
bridity, we show how the corresponding Fibonacci-Jacobsthal-Lucas, Lucas-Jacobsthal, and
Lucas-Jacobsthal-Lucas convolution formulas can be derived. We also construct combinato-
rial models for the Fibonacci-Jacobsthal, Fibonacci-Jacobsthal-Lucas, and Lucas-Jacobsthal-
Lucas convolutions.

1. INTRODUCTION

Generalized gibonacci polynomials g, (x) are defined by the second-order recurrence g, +2(z) =
a(x)gn+1(x) +b(x)gn(x), where z is an arbitrary complex variable; a(z), b(z), go(z), and g1 (z)
are arbitrary complex polynomials; and n > 0.

Suppose a(z) = z and b(x) = 1. When go(z) = 0 and gi(z) = 1, gn(z) = fn(x), the
nth Fibonacci polynomial; and when go(z) = 2 and g1(z) = z, gn(z) =1 (m) the nth Lucas
polynomial. Clearly, f,(1) = F,,, the nth Fibonacci number; and [,,(1) = L,,, the nth Lucas
number [4, 10].

Pell polynomials py,(x) and Pell-Lucas polynomials g, (x) are defined by p,(z) = f,(2z) and
qn(x) = 1,(2x), respectively. The Pell numbers P, and Pell-Lucas numbers @Q, are given by
Pn = pu(1) = fu(2) and 2Q,, = ga(1) = 1,(2), respectively [9, 10].

On the other hand, let a(z) = 1 and b(z) = 2z. When go(z) = 0 and ¢1(z) = 1, gn(z) =
Jn(z), the nth Jacobsthal polynomial; and when go(z) = 2 and ¢1(z) = 1, gn(z) = jn(x),
the nth Jacobsthal-Lucas polynomial [7, 8]. Correspondingly, J,, = J,,(1) and Jn = Jn(1) are
the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, J,(1/2) = Fn, and
]n(l/ 2) =L

Extending these definitions to negative integers n, it follows that F.1 =1=—F o= —L_4
and J_; = 1/2; we need these values later.

In the interest of brevity and convenience, we omit the argument in the functional notation,
when there is no ambiguity; so g, will mean g, (z).

1.1. Binet-like Formulas. Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal-
Lucas polynomials can also be defined by Binet-like formulas:

fo = E20 and by = anpn
a4

pno= s and g o= "

Jnl@) = S and ju(o) = wto",

where 2a = z+va?2 + 4,28 = v—Val +4,y=x+vVr?2 + 1,0 = o2—Vx? + 1, 2u = 1++/8x + 1,
and 2v = 1 — /8z + 1. In the interest of conciseness, we let A = o — 8 = Vz2 + 4, and
w=u—v=+8x+ 1.
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Using the Binet-like formulas and the respective recurrences, we can extract a multitude of
identities. For example, fpi1 + fa—1 = ln, lnt1 +ln—1 = Azfna In+2fn = 2fnt1, Jny1(w) +
21'Jn—1(x) = jn(x), and jn-i—l(x) + 2xjn—l(x) = wzjn(w)'

2. GENERATING FUNCTIONS

Generating functions also play an important role in the development of identities:

0 ; 1/ 1 1
O = X a" = e = Z(l—at_l—ﬁt>;
o0 _
i) = nZ::Ol"tn - % - 1—1at+1—15t;
<
J(t) = ;)J"(x)tn = #_295# - £<1—1ut_1—1vt>;
i) = g:oj“(:”)tn - ﬁ - 1—1ut+1—1vt'

2.1. Applications. One application of generating functions is in finding convolution formu-
las. The following theorem gives one such formula. The proof involves plenty of algebraic
manipulation; so in the interest of brevity, we give only the key steps.

Theorem 2.1.
- (A= 22) T (2) = 22(z — 1) Jn(@)] + 22 frg1 — fro — fu-1)

> fednokl(z) = 527 622 1 5 . (2.1)

k=0
Proof. Let S, denote the sum. Then,

1 1 1 1
Awf(t)J(t) = (1 —at 1 —ﬂt) <1 —ut 1 —vt)
1 1 1 1

I—a(l—ut) (—ahi—vt) (=801 —ul) (=801 =0t

N [(a - u>c<¥1 —at)  (a-— u)qfl —ut)] - [(a —v)?l —at) (a -viél —vt)]

B U I} v
N [(ﬁ —u)(1—pt) (B—u)(l— utJ " [(5 —0)(1-pBt) (B-v)(1- th
oaw Bw
S (I—a)(e®—a—2x) (1—pt)(B> B —2x)
ul vA

(1 —ut)(1+zu—u?) - (1—vt) (14 zv—202)
Equating the coefficients of t" from both sides, we get
n+1 n+1 n+1 n+1
AwS, =w [ ——= __7 YN — S
a2 —a—2x B2—-B-22 1+zu—u2 14 zv— 02
S = 23}fn+1 - fn - fn—l + Jn+1($) - 2$2Jn($) - 4$2Jn—1($)
" 213 — 622 + 3 213 — 622 + 3 '
This yields the desired result. O
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In particular, formula (2.1) yields

n
> Fudn—k = Jns1 — Fopa. (2.2)
k=0
The next theorem gives three additional convolution formulas. Their proofs follow similar
steps; again, in the interest of brevity, we omit them.

Theorem 2.2. Let A = (1 —22)j,1(x) —22(x —1)j, (), B = (2% — 52+ 2)Jy2(x) — 2(32 —
4)Jpi1(x), and C = (2% — 52 + 2)jpio(x) — (32 — 4)jni1(x). Then,

= . . A+(4$_1)fn+2_(33+1)fn+1_:Efn.
Z Tin-k(@) = 223 — 622 + 3z ’ (2:3)
k=0
- B+ 2xlyi1 — by — lp_1
_ = ; 2.4
Zlkjn k(:E) 203 — 622 + 3z ) ( )
k=0
Ik gn— = . .
Z K=k () 223 — 622 + 3w (25)
k=0
It follows from Theorem 2.2 that
> Fijnk = jnt1 — Lnt1; (2:6)
k=0
> Lidn k= jns1 — Loy (2.7)
k=0
> Lijn-t = 9Tns1 — 5Fny1. (2.8)
k=0

Griffiths and Bramham discovered formula (2.7) [6] and gave a nice combinatorial interpre-
tation later [5].
Next, we present combinatorial interpretations of formulas (2.2), (2.6), and (2.8).

3. COMBINATORIAL MODELS

The number of n-tilings of a 1 xn board with 1x 1 white tiles and 1 x 2 white tiles (dominoes)
is F41 [2, 5, 11]. Likewise, a circular board with n cells can be tiled with (flexible) square
tiles and (flexible) dominoes in L,, different ways [2, 5, 11]; such a tiling is called an n-bracelet.
An n-bracelet is out-of-phase if a domino occupies cells n and 1; otherwise, it is in-phase.

3.1. A Model for Formula (2.2). A 1xn board can be tiled with white squares, and black
and white dominoes in J,,4; different ways [2, 5, 11]. Consequently, the number of n-tilings
with white squares, and black and white dominoes such that each tiling contains at least one
black domino equals J,,+1 — Fj41, where n > 0. With this tool at hand, we can combinatorially
establish formula (2.2).

The proof hinges on the well known Fubini’s principle [1], named after the Italian math-
ematician Guido Fubini (1879-1943): Counting the elements of a set in two different ways
yields the same result.

Proof. The number of n-tilings 7;, with white squares, and black and white dominoes such
that each tiling contains at least one black domino equals J,+1 — Fj,11. We will now count
such tilings in a different way.
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Suppose the first such black domino B occurs in cells k and k + 1, where 1 < k < n — 1.
Then, B partitions 7;, into subtilings Ty _1, B, and 7T,,_r_1, where T}_1 contains only white
squares and white dominoes, and 7;,,_;_1 may contain white squares, and black and white
dominoes: subtiling Il subtiling.

——— ———

Ty—1 'kl Thn-k-1

There are F}, tilings T;_q and J,_j tilings T;,_r_1, so there are Fj.J,_; such tilings T,, for
every k. Consequently, there are

n—1 n
Z Frdnk = Z FrJn—k
k=1 k=0

n-tilings T,, such that every tiling contains at least one black domino.
This result, coupled with the earlier count, gives the desired result. O

3.2. A Model for Formula (2.6). A circular board with n-cells can be tiled with 1 x 1
white tiles, and 1 x 2 white dominoes, and 1 x 2 black dominoes in j, ways [2, 5]. It can be
tiled with 1 x 1 white tiles, and 1 x 2 white dominoes in L, ways. So there are S = j, — L,
such n-bracelets, each containing at least one black domino.

To compute this sum S in a different way, consider an arbitrary n-bracelet B.

Case 1. Assume B is in-phase. Suppose the first black domino D occurs in cells k and k+1,
where 1 < k < n — 1; see Figure 1. There are F}J,_; such n-bracelets. Consequently, the

n—1 n

total number of in-phase bracelets B equals Z Fd,_p = Z Frd,_k.
k=1 k=1
Figure 1

Case 2. Suppose B is out-of-phase. Assume a white domino W occupies cells n and 1; see

Figure 2. It follows by Case 1 that the number of such n-bracelets, where each contains at
n—2

least one black domino, is Z Frd,_1_o.
k=1

N S2 7
8 @,

Figure 2 Figure 3

On the other hand, suppose a black domino D occupies cells n and 1; see Figure 3. Clearly,
there are J,,_1 such bracelets, with each containing at least one black domino.
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Since Jy42 + 2J, = jn+1, it follows that the total number of n-bracelets S with the desired
property, is given by

n—1 n—2
S=> FpJpp+ Z FrJp_g—2+ Jn-1

k=1 k=1
n—1 n—2

= Z Fyo(Jo—k +2Jp_g—2) — 2F,_1J_1 — Z Frpdn—p—2+ Jna
k=1 k=1
n—1

= Fijnk1—Fo1 = (St = Fact) + Jua
k=1
n—1

=> Fijn—k-1-
k=1

The desired formula now follows by combining the two counts.

3.3. A Model for Formula (2.8). A combinatorial proof of convolution identity (2.8) is
more complicated than it is for (2.2) or (2.6). So, first, we prepare the needed ground work
by gathering several facts.

Proof. A combinatorial argument in [3] involving boards, bracelets, and uncolored squares and
dominoes shows that L, 42 + L, = 5F,11. We can rewrite this identity as

5Fn+1 = Ln+2 + Ln = Ln+2 + (Ln+2 - Ln—i—l) = 2Ln+2 - Ln+1- (31)

Using elements from the set D = {d,...,d,, s} comprising 7 1 x 2 dominoes of different col-
ors (denoted dj to d,) and uncolored 1 x 1 squares (denoted s), it is reasonably straightforward
to extend the aforementioned argument to obtain the following general identity:

My + Mpg2, = (4r + )My, -,

where M, , and m,, , enumerate the tilings of an (n —1)-board and an n-bracelet, respectively,
using elements from D.
When r = 2, we have 25, + jnt+2 = 9Jn+1. By the Jacobsthal recurrence, this yields

9Jn41 = Jn+2 + 2n = Jnt2 + (Jn+2 = Jnt1) = 2n+2 — Jn1-
In [5], it is shown via combinatorial means that
n
Z LkJn—k = jn+1 - Ln+1- (32)
k=0
Next, we establish combinatorially that
jn + Jn - 2Jn—i—l- (33)

To this end, notice that the expression j, — J,+1 gives the number of out-of-phase tilings of an
n-bracelet using white squares, and black and white dominoes, which is equal to 2J,_1. From
the Jacobsthal recurrence, we have J, 11 — J, = 2J,_1. Consequently, j, — Jpt1 = Jptr1 — Jn.
This yields the desired identity.
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Using identities (5.3) through (3.3), we now have
9nt1 = BFpi1 = (2fnt2 — Jnt+1) — (2Lnt2 — Lnt1) = 2 (Jnt2 — Lny2) — (Gnt1 — Lnt1)

n+1 n n n

=2 Z LyJn1-k — Z LyJp_r=2 Z LyJyii—k + Lypy1Jo — Z LyJn—k
k=0 k=0 k=0 k=0
=Y @Lidnik — Lidnt) = O L (2Jng1-k — Jns)
k=0 k=0
= Lijn
k=0
as required. O

4. CONVOLUTIONS REVISITED

Using convolution formula (2.2), we can establish algebraically formulas (2.6), (2.7), and
(2.8). To this end, we need the following identities: Fj11 + F,—1 = Ly, Jnt1 + 2Jp—1 = Jn,
and L,11+ L,—1 = 5F,. We give only the key steps involved in each case.

Proof of Formula (2.6).

n n n n+1 n—1
Z Frjn—k = Z Frdn—p1 +2 Z Fypdn—1 = Z Frdn—p+1+2 Z FypdJp—p—1+ Fy
k=0 k=0 k=0 k=0 k=0
= (Jn+2 - Fn+2) + 2(Jn - Fn) + F, = jn—i—l - Ln-l—ly
as desired. 0
Formula (2.7) follows similarly.
Proof of Formula (2.8).
n n n
> Lok = LiJn-ki1+2Y Lidn g
k=0 k=0 k=0
n—1 n+1
= Z Lyj1Jpn—k +2 Z Ly 1Jn—k
k=—1 k=1

= Z Lyi1dnk+2 Z Li1Jp—g+ Ly +2Jp11 +2J,
k=0 k=0

= (L1 + Lie1) Jui + > (F + Fre2) Juei + Lo + 2Jp41 + 2,
k=0 k=0

n n
=6 Fuui+ ) FioaJui + L+ 2J0i1 + 2

k=0 k=0
n—2
= 6(Jut1 — Fur1) + (Z FioJn——z = Ju + Jn_1> + L+ 2Jn1 +2Jp
k=0

= 8Jn+l - 6Fn+l + (Jn—l - Fn—l) + Jn + Jn—l + (Fn—i-l + Fn—l)
- 8Jn+1 - 5Fn+1 + (Jn + 2Jn_1).
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This gives the desired result. O

We add that by invoking the identity j,42 + 2j, = 9J,+1 and the summation formula (2.7),
we can confirm formula (2.8) in fewer steps.

4.1. Pell Dividends. Since p,, = f,(22) and ¢, = [,,(2x), it follows that Theorems 2.1 and 2.2
yield interesting Pell byproducts. For brevity, we let D = (1 —4x)Jp,11(2x) —4x (22 —1)J, (2x),
E = (1—42)ju+1(22) — 4222 — 1)§,(27), F = (422 — 102 + 2) Jy12(27) — 42(32 — 2)Jp11(22),
and G = (422 — 102 + 2)j,12(27) — 42(32 — 2)j,41(27). Then,

n
D+ 4xpn+1 — Pn — Pn-1
Jn—p(22) = :
kZ_Opk n—(27) 1623 — 2422 + 62’

n
. E+ (8 — 1)ppt2 — 2z + 1)ppi1 — 2zpy,
> p(22) = :
k_op dn-4(22) 1623 — 2422 + 6x ’

n
F +4xqn41 — qn — Gn—1
Jn_1(22) = :
];)Qk n—(22) 1623 — 2422 + 6’

n
. G+ (87 — 1)gnt2 — (22 4+ 1)gnt1 — 22q,
L (27) = .
kz_oq“" k(22) 162° — 2422 + 62

It follows from these hybrid formulas that

; 3J,41(2) — Qn
ZP’fJn—k(z) =2J,(2) — P11 + +1( ; Q +1;
k=0

3jn+1(2) + Qna .

n
> Prjn-k(2) = 2ju(2) = 3Ptz + :
k=0

Z Qk‘]n—k(z) = Jn+2(2) + Jn+1(2) - 2Qn+l + Pn§
k=0

> Qrin-i(2) = jn+2(2) + jns1(2) — 3Qns2 + Pos1.
k=0

Note that 3J,11(2) — Qn+1 and 3j,+1(2) + Q41 are even integers.

5. ADDITIONAL CONVOLUTIONS

The next theorem gives five additional convolution formulas. They can be confirmed using
the property 2J,41(x) = Ju(z) + jn(z), and generating functions (or Binet-like formulas);
again, for the sake of brevity, we omit them.
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Theorem 5.1. Let n be a nonnegative integer. Then,

(2® +4) ]g)fkfn—k = nln — @ fp; (5.1)
f: Uit = (0 + 2)ln, + 2 fo; (5.2)
k=0
(8a + 1) kzio Ti(@) Tk () = njin () — Jn(2);
g% (@) frn—r(x) = (n + 1)Jn(2);

n

S @i (@) = (n + (@) + Ju(2).

k=0

It then follows that

53  FiFn g =nLy — Fy; (5.3)
k=0
> LiLn_ = (n+2)Ly + Fy; (5.4)
k=0

9> " Jin—k = N — Ju; (5.5)
k=0
Z Jrjn—k = (n+1)Jn;
k=0

n
> dkdn-k = (n+ 2)jn + Jn,
k=0

respectively.

It follows from formulas (5.3) and (5.5) that nL, = F, (mod 5) and nj, = J, (mod 9),
respectively.

5.1. Pell Consequences. Clearly, formulas (5.1) and (5.2) have Pell consequences:

n
4(332 + 1) Zpkpn—k = NGn — 2TPp;
k=0

n
> G-k = (n+2)gn + 22y,
k=0

respectively.
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Consequently, we have

n
43 " PpPy . = nQn — Pu;
k=0

k=0
respectively. It then follows that n@, = P, (mod 4).
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