SOME NEW IDENTITIES FOR DERANGEMENT NUMBERS

ULRICH ABEL

In loving memory of my dear wife, Anke (1967-2018)

Abstract

In this paper, we present several generalizations of identities for derangement numbers by Bhatnagar [2] and by Deutsch and Elizalde [3]. The study is motivated by the recent paper [4].

1. Introduction

Let D_{n} denote the number of permutations of $\{1, \ldots, n\}$ with no fixed points, the so-called derangements. If we define $D_{0}=1$, the two well-known recursive formulas

$$
\begin{equation*}
D_{n+1}=n D_{n}+n D_{n-1}, \quad D_{0}=1, \quad D_{1}=0, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{n}=n D_{n-1}+(-1)^{n}, \quad D_{0}=1, \tag{1.2}
\end{equation*}
$$

are valid for $n \in \mathbb{N}$. From the second formula, one easily derives the closed expression

$$
\begin{equation*}
D_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} . \tag{1.3}
\end{equation*}
$$

More material on this sequence can be found in the On-Line Encyclopedia of Integer Sequences (OEIS) [5, Sequence A000166].

Deutsch and Elizalde [3, Eq. (11)] gave two proofs of the identity

$$
\begin{equation*}
D_{n}=\sum_{j=2}^{n}(j-1)\binom{n}{j} D_{n-j} \tag{1.4}
\end{equation*}
$$

by combinatorial arguments and analytically by using the exponential generating function

$$
\begin{equation*}
D(z)=\sum_{n=0}^{\infty} D_{n} \frac{z^{n}}{n!}=\frac{e^{-z}}{1-z} \quad(|z|<1) \tag{1.5}
\end{equation*}
$$

of the sequence $\left(D_{n}\right)_{n=0}^{\infty}$. Bhatnagar presented families of identities for some sequences including the shifted derangement numbers [1, 2], deriving them using Euler's identity [1, Eq. (2.1)]. Recently, Martinjak and Dajana Stanić [4, Theorem 1] demonstrated for the nice derangement identity

$$
\begin{equation*}
1+\sum_{k=1}^{n} \frac{D_{k}}{k!}=\frac{D_{n+2}}{(n+1)!} \quad(n \in \mathbb{N}) \tag{1.6}
\end{equation*}
$$

[1, Eq. (10.14)] an interesting combinatorial proof.
In what follows, we present a short combinatorial proof of Eq. (1.4) and generalize it in the form

$$
D_{n}=\sum_{j=p}^{n} f_{p}(j)\binom{j-1}{p-1}\binom{n}{j} D_{n-j} \quad(n=p, p+1, \ldots),
$$

THE FIBONACCI QUARTERLY

for arbitrary $p \in \mathbb{N}$. The functions $f_{p}(j)$ will be determined by explicit formulas. Furthermore, we generalize the formula (1.6) by presenting closed expressions of

$$
\sum_{k=0}^{n} \frac{D_{k+r}}{k!} \quad \text { and } \quad \sum_{k=0}^{n} \frac{D_{k}}{(k+r+1)!} \quad(n \in \mathbb{N})
$$

for arbitrary positive integers r.

2. The identity by Deutsch and Elizalde

We start with a combinatorial argument for demonstrating Eq. (1.4). Let $D_{n}(j)$ denote the number of permutations of $\{1, \ldots, n\}$ having exactly j fixed points. Thus, $D_{n}(0)=D_{n}$. Obviously, we have $D_{n}(j)=\binom{n}{j} D_{n-j}$ and $\sum_{j=0}^{n} D_{n}(j)=n!$. Hence,

$$
\begin{aligned}
\sum_{j=1}^{n}(j-1)\binom{n}{j} D_{n-j} & =n \sum_{j=0}^{n-1}\binom{n-1}{j} D_{n-1-j}-\sum_{j=1}^{n}\binom{n}{j} D_{n-j} \\
& =n(n-1)!-\left(n!-D_{n}\right)=D_{n} .
\end{aligned}
$$

The next theorem generalizes the result by Deutsch and Elizalde [3, Eq. (11)] by presenting a recursive formula for D_{n} in terms of $D_{0}, D_{1}, \ldots, D_{n-p}$.
Theorem 2.1. For each positive integer p, the recursive formula

$$
\begin{equation*}
D_{n}=\sum_{j=p}^{n} f_{p}(j)\binom{j-1}{p-1}\binom{n}{j} D_{n-j} \quad(n=p, p+1, \ldots), \tag{2.1}
\end{equation*}
$$

is valid with

$$
f_{p}(j)=j D_{p-1}+(-1)^{p},
$$

for $p \leq j \leq n$.
Remark 1. In the special cases $p=1$ and $p=2$, Theorem 2.1 reduces to formula (1.4) since $f_{1}(j)=j-1$ and $f_{2}(j)=1$. The special case $p=n$, i.e.,

$$
D_{n}=f_{n}(n)=n D_{n-1}+(-1)^{n}
$$

is equivalent to the recursive formula (1.2).
Remark 2. For $p=1,2,3, \ldots$, formula (2.1) can be rewritten in the form

$$
\begin{equation*}
D_{n+p}=\binom{n+p}{p} \sum_{j=0}^{n} \frac{p}{j+p}\binom{n}{j} f_{p}(j+p) D_{n-j} \quad(n=0,1,2, \ldots) \tag{2.2}
\end{equation*}
$$

This follows by elementary manipulations and application of the binomial identity

$$
\binom{j+p-1}{p-1}\binom{n+p}{j+p}=\frac{p}{j+p}\binom{n+p}{p}\binom{n}{j} .
$$

We emphasize that the proof given below is not merely a verification of the formula in Theorem 2.1, but it yields the explicit formula for $f_{p}(j)$.
Proof of Theorem 2.1. Let p be a positive integer. The representation

$$
D_{n}=\sum_{j=p}^{n} f_{p}(j)\binom{j-1}{p-1}\binom{n}{j} D_{n-j} \quad(n=p, p+1, \ldots),
$$

is equivalent to

$$
\begin{equation*}
D(z)=\sum_{n=0}^{p-1} D_{n} \frac{z^{n}}{n!}+\sum_{n=p}^{\infty} \sum_{j=p}^{n} f_{p}(j)\binom{j-1}{p-1}\binom{n}{j} D_{n-j} \frac{z^{n}}{n!}, \tag{2.3}
\end{equation*}
$$

where $D(z)=(1-z)^{-1} e^{-z}$ is the exponential generating function (1.5) of the sequence $\left(D_{n}\right)_{n=0}^{\infty}$. The double sum is equal to

$$
\sum_{j=p}^{\infty}\binom{j-1}{p-1} \frac{f_{p}(j)}{j!} \sum_{n=j}^{\infty} D_{n-j} \frac{z^{n}}{(n-j)!}=F_{p}(z) D(z)
$$

where

$$
\begin{equation*}
F_{p}(z)=\sum_{j=p}^{\infty}\binom{j-1}{p-1} f_{p}(j) \frac{z^{j}}{j!} \tag{2.4}
\end{equation*}
$$

Therefore, (2.3) is equivalent to

$$
\begin{equation*}
F_{p}(z)=(1-z) e^{z} \sum_{n=p}^{\infty} D_{n} \frac{z^{n}}{n!} \tag{2.5}
\end{equation*}
$$

Binomial convolution yields

$$
e^{z} \sum_{n=p}^{\infty} D_{n} \frac{z^{n}}{n!}=\sum_{n=p}^{\infty} \frac{z^{n}}{n!} \sum_{j=p}^{n}\binom{n}{j} D_{j} .
$$

Using

$$
\sum_{j=p}^{n}\binom{n}{j} D_{j}=\sum_{j=p}^{n} D_{n}(n-j)=n!-\sum_{j=0}^{p-1}\binom{n}{j} D_{j}
$$

we arrive at

$$
\begin{aligned}
F_{p}(z) & =(1-z) \sum_{n=p}^{\infty} \frac{z^{n}}{n!}\left(n!-\sum_{j=0}^{p-1}\binom{n}{j} D_{j}\right) \\
& =z^{p}-\sum_{n=p}^{\infty} \frac{z^{n}}{n!} \sum_{j=0}^{p-1}\binom{n}{j} D_{j}+\sum_{n=p+1}^{\infty} \frac{n z^{n}}{n!} \sum_{j=0}^{p-1}\binom{n-1}{j} D_{j} .
\end{aligned}
$$

Since $\sum_{j=0}^{p-1}\binom{p}{j} D_{j}=p!-D_{p}$, we obtain

$$
F_{p}(z)=D_{p} \frac{z^{p}}{p!}+\sum_{n=p+1}^{\infty} \frac{z^{n}}{n!} \sum_{j=0}^{p-1}(n-j-1)\binom{n}{j} D_{j} .
$$

Comparison with Eq. (2.4) yields, for $n \geq p+1$,

$$
\begin{aligned}
f_{p}(n) & =\sum_{j=0}^{p-1}(n-j-1)\binom{n}{j} D_{j}=\sum_{i=0}^{p-1} \frac{(-1)^{i}}{i!} \sum_{j=i}^{p-1}\left((j+1)!\binom{n}{j+1}-j!\binom{n}{j}\right) \\
& =\sum_{i=0}^{p-1} \frac{(-1)^{i}}{i!}\left(p!\binom{n}{p}-i!\binom{n}{i}\right) \\
& =p\binom{n}{p} D_{p-1}-(-1)^{p-1}\binom{n-1}{p-1}
\end{aligned}
$$

THE FIBONACCI QUARTERLY

which implies

$$
f_{p}(n)=n D_{p-1}+(-1)^{p} .
$$

By the recursive equation (1.2), the latter formula is valid also for $n=p$. This completes the proof of Theorem 2.1.

3. The identity by Bhatnagar

We prove the following formulas that generalize identity (1.6) by Bhatnagar in two directions.

Theorem 3.1. The derangement numbers D_{n} satisfy, for $r=1,2,3, \ldots$, the identities

$$
\begin{equation*}
r n!\sum_{k=0}^{n} \frac{D_{k+r-1}}{k!}=D_{n+r}-(-1)^{r} D_{n} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
r \sum_{k=0}^{n-1} \frac{D_{k}}{(k+r+1)!}=(-1)^{r}\left(\frac{D_{n+r}}{(n+r)!}-\frac{D_{r-1}}{(r-1)!}\right)-\frac{D_{n}}{(n+r)!} . \tag{3.2}
\end{equation*}
$$

Remark 3. In the special case $r=1$, identity (3.1) reduces to

$$
n!\sum_{k=0}^{n} \frac{D_{k}}{k!}=D_{n+1}+D_{n}
$$

which becomes Bhatnagar's result (1.6) after an application of the recursive formula (1.1).
Remark 4. For $n=0$, (3.1) is the recursive equation (1.2) when recalling that $D_{0}=1$.
Remark 5. It would be interesting to find a closed expression of the finite sum

$$
\sum_{k=0}^{n} \frac{D_{k}}{(k+1)!} .
$$

Please note that the similar looking identity [1, Eq. (10.14)] is equivalent to (1.6) because therein, D_{n} denote the shifted derangement numbers D_{n+1} in our notation.
Proof of Theorem 3.1. Let n be a positive integer. The explicit representation (1.3) and interchanging the order of summation leads to

$$
\sum_{k=0}^{n+r} \frac{D_{k}}{k!} z^{k}=\sum_{j=0}^{n+r} \frac{(-1)^{j}}{j!} \sum_{k=j}^{n+r} z^{k} \quad(z \in \mathbb{C})
$$

Differentiating $(r-1)$ times with respect to z und putting $z=1$ yields

$$
\sum_{k=r-1}^{n+r} \frac{D_{k}}{(k-r+1)!}=\sum_{j=0}^{n+r} \frac{(-1)^{j}}{j!} \sum_{k=j}^{n+r}(r-1)!\binom{k}{r-1} .
$$

Inserting $\sum_{k=j}^{n+r}\binom{k}{r-1}=\binom{n+r+1}{r}-\binom{j}{r}$, we obtain

$$
\begin{aligned}
\frac{1}{(r-1)!} \sum_{k=0}^{n+1} \frac{D_{k+r-1}}{k!} & =\sum_{j=0}^{n+r} \frac{(-1)^{j}}{j!}\left[\binom{n+r+1}{r}-\binom{j}{r}\right] \\
& =\binom{n+r+1}{r} \frac{D_{n+r}}{(n+r)!}-\frac{1}{r!} \sum_{j=0}^{n} \frac{(-1)^{j+r}}{j!}
\end{aligned}
$$

which implies

$$
r \sum_{k=0}^{n+1} \frac{D_{k+r-1}}{k!}=(n+r+1) \frac{D_{n+r}}{(n+1)!}-(-1)^{r} \frac{D_{n}}{n!} .
$$

Subtracting $r D_{n+r} /(n+1)$! from both sides of the equation and multiplying by $n!$ completes the proof of Eq. (3.1).
To prove (3.2), we integrate

$$
\sum_{k=0}^{n} \frac{D_{k}}{k!} z^{k}=\sum_{j=0}^{n} \frac{(-1)^{j}}{j!} \sum_{k=j}^{n} z^{k} \quad(z \in \mathbb{C})
$$

$r+1$ times and put $z=1$ to obtain

$$
\sum_{k=0}^{n} \frac{D_{k}}{(k+r+1)!}=\sum_{j=0}^{n} \frac{(-1)^{j}}{j!} \sum_{k=j}^{n} \frac{k!}{(k+r+1)!} .
$$

Telescoping

$$
\sum_{k=j}^{n} \frac{k!}{(k+r+1)!}=\frac{-1}{r} \sum_{k=j}^{n}\left(\frac{(k+1)!}{(k+r+1)!}-\frac{k!}{(k+r)!}\right)=\frac{-1}{r}\left(\frac{(n+1)!}{(n+r+1)!}-\frac{j!}{(j+r)!}\right),
$$

we obtain

$$
-r \sum_{k=0}^{n} \frac{D_{k}}{(k+r+1)!}=\frac{n+1}{(n+r+1)!} D_{n}-\sum_{j=0}^{n} \frac{(-1)^{j}}{(j+r)!} .
$$

Adding $r D_{n} /(n+r+1)$! to both sides of the equation yields

$$
-r \sum_{k=0}^{n-1} \frac{D_{k}}{(k+r+1)!}=\frac{D_{n}}{(n+r)!}-\sum_{j=0}^{n} \frac{(-1)^{j}}{(j+r)!} .
$$

Observing that

$$
\sum_{j=0}^{n} \frac{(-1)^{j}}{(j+r)!}=(-1)^{r} \sum_{j=r}^{n+r} \frac{(-1)^{j}}{j!}=(-1)^{r}\left(\frac{D_{n+r}}{(n+r)!}-\frac{D_{r-1}}{(r-1)!}\right)
$$

completes the proof.

Acknowledgment

The author thanks the anonymous referee for a thorough reading of the manuscript and for supplying useful comments that led to a better presentation. In particular, the referee found the nice form (2.2) of Eq. (2.1) given in Remark 2.

References

[1] G. Bhatnagar, In praise of an elementary identity of Euler, Electronic J. Combinatorics, 18 (2), \#P13, (2011) 44 pp .
[2] G. Bhatnagar, Analogues of a Fibonacci-Lucas identity, The Fibonacci Quarterly, 54.2 (2016), 166-171.
[3] E. Deutsch and S. Elizalde, The largest and the smallest fixed points of permutations, European J. Combin., 31 (2010), 1404-1409.
[4] Ivica Martinjak and Dajana Stanić, A short combinatorial proof of derangement identity, Elem. Math., 73 (2018), 29-33.
[5] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/a000166.

THE FIBONACCI QUARTERLY

MSC2010: 05A19
Fachbereich MND, Technische Hochschule Mittelhessen, Wilhelm-Leuschner-Strasse 13, 61169 Friedberg, Germany

E-mail address: ulrich.abel@mnd.thm.de

