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Abstract. In this paper, we present several generalizations of identities for derangement
numbers by Bhatnagar [2] and by Deutsch and Elizalde [3]. The study is motivated by the
recent paper [4].

1. Introduction

Let Dn denote the number of permutations of {1, . . . , n} with no fixed points, the so-called
derangements. If we define D0 = 1, the two well-known recursive formulas

Dn+1 = nDn + nDn−1, D0 = 1, D1 = 0, (1.1)

and
Dn = nDn−1 + (−1)n , D0 = 1, (1.2)

are valid for n ∈ N. From the second formula, one easily derives the closed expression

Dn = n!
n∑

k=0

(−1)k

k!
. (1.3)

More material on this sequence can be found in the On-Line Encyclopedia of Integer Sequences
(OEIS) [5, Sequence A000166].

Deutsch and Elizalde [3, Eq. (11)] gave two proofs of the identity

Dn =
n∑

j=2

(j − 1)

(
n

j

)
Dn−j (1.4)

by combinatorial arguments and analytically by using the exponential generating function

D (z) =
∞∑
n=0

Dn
zn

n!
=

e−z

1− z
(|z| < 1) (1.5)

of the sequence (Dn)∞n=0. Bhatnagar presented families of identities for some sequences includ-
ing the shifted derangement numbers [1, 2], deriving them using Euler’s identity [1, Eq. (2.1)].
Recently, Martinjak and Dajana Stanić [4, Theorem 1] demonstrated for the nice derangement
identity

1 +

n∑
k=1

Dk

k!
=

Dn+2

(n + 1)!
(n ∈ N) (1.6)

[1, Eq. (10.14)] an interesting combinatorial proof.
In what follows, we present a short combinatorial proof of Eq. (1.4) and generalize it in the

form

Dn =

n∑
j=p

fp (j)

(
j − 1

p− 1

)(
n

j

)
Dn−j (n = p, p + 1, . . .) ,
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for arbitrary p ∈ N. The functions fp (j) will be determined by explicit formulas. Furthermore,
we generalize the formula (1.6) by presenting closed expressions of

n∑
k=0

Dk+r

k!
and

n∑
k=0

Dk

(k + r + 1)!
(n ∈ N) ,

for arbitrary positive integers r.

2. The identity by Deutsch and Elizalde

We start with a combinatorial argument for demonstrating Eq. (1.4). Let Dn (j) denote
the number of permutations of {1, . . . , n} having exactly j fixed points. Thus, Dn (0) = Dn.
Obviously, we have Dn (j) =

(
n
j

)
Dn−j and

∑n
j=0Dn (j) = n!. Hence,

n∑
j=1

(j − 1)

(
n

j

)
Dn−j = n

n−1∑
j=0

(
n− 1

j

)
Dn−1−j −

n∑
j=1

(
n

j

)
Dn−j

= n (n− 1)!− (n!−Dn) = Dn.

The next theorem generalizes the result by Deutsch and Elizalde [3, Eq. (11)] by presenting a
recursive formula for Dn in terms of D0, D1, . . . , Dn−p.

Theorem 2.1. For each positive integer p, the recursive formula

Dn =
n∑

j=p

fp (j)

(
j − 1

p− 1

)(
n

j

)
Dn−j (n = p, p + 1, . . .) , (2.1)

is valid with

fp (j) = jDp−1 + (−1)p ,

for p ≤ j ≤ n.

Remark 1. In the special cases p = 1 and p = 2, Theorem 2.1 reduces to formula (1.4) since
f1 (j) = j − 1 and f2 (j) = 1. The special case p = n, i.e.,

Dn = fn (n) = nDn−1 + (−1)n

is equivalent to the recursive formula (1.2).

Remark 2. For p = 1, 2, 3, . . ., formula (2.1) can be rewritten in the form

Dn+p =

(
n + p

p

) n∑
j=0

p

j + p

(
n

j

)
fp (j + p)Dn−j (n = 0, 1, 2, . . .) . (2.2)

This follows by elementary manipulations and application of the binomial identity(
j + p− 1

p− 1

)(
n + p

j + p

)
=

p

j + p

(
n + p

p

)(
n

j

)
.

We emphasize that the proof given below is not merely a verification of the formula in
Theorem 2.1, but it yields the explicit formula for fp (j).

Proof of Theorem 2.1. Let p be a positive integer. The representation

Dn =
n∑

j=p

fp (j)

(
j − 1

p− 1

)(
n

j

)
Dn−j (n = p, p + 1, . . .) ,
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is equivalent to

D (z) =

p−1∑
n=0

Dn
zn

n!
+

∞∑
n=p

n∑
j=p

fp (j)

(
j − 1

p− 1

)(
n

j

)
Dn−j

zn

n!
, (2.3)

where D (z) = (1− z)−1 e−z is the exponential generating function (1.5) of the sequence
(Dn)∞n=0. The double sum is equal to

∞∑
j=p

(
j − 1

p− 1

)
fp (j)

j!

∞∑
n=j

Dn−j
zn

(n− j)!
= Fp (z)D (z) ,

where

Fp (z) =

∞∑
j=p

(
j − 1

p− 1

)
fp (j)

zj

j!
. (2.4)

Therefore, (2.3) is equivalent to

Fp (z) = (1− z) ez
∞∑
n=p

Dn
zn

n!
. (2.5)

Binomial convolution yields

ez
∞∑
n=p

Dn
zn

n!
=
∞∑
n=p

zn

n!

n∑
j=p

(
n

j

)
Dj .

Using
n∑

j=p

(
n

j

)
Dj =

n∑
j=p

Dn (n− j) = n!−
p−1∑
j=0

(
n

j

)
Dj ,

we arrive at

Fp (z) = (1− z)
∞∑
n=p

zn

n!

n!−
p−1∑
j=0

(
n

j

)
Dj


= zp −

∞∑
n=p

zn

n!

p−1∑
j=0

(
n

j

)
Dj +

∞∑
n=p+1

nzn

n!

p−1∑
j=0

(
n− 1

j

)
Dj .

Since
∑p−1

j=0

(
p
j

)
Dj = p!−Dp, we obtain

Fp (z) = Dp
zp

p!
+

∞∑
n=p+1

zn

n!

p−1∑
j=0

(n− j − 1)

(
n

j

)
Dj .

Comparison with Eq. (2.4) yields, for n ≥ p + 1,

fp (n) =

p−1∑
j=0

(n− j − 1)

(
n

j

)
Dj =

p−1∑
i=0

(−1)i

i!

p−1∑
j=i

(
(j + 1)!

(
n

j + 1

)
− j!

(
n

j

))

=

p−1∑
i=0

(−1)i

i!

(
p!

(
n

p

)
− i!

(
n

i

))
= p

(
n

p

)
Dp−1 − (−1)p−1

(
n− 1

p− 1

)
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which implies
fp (n) = nDp−1 + (−1)p .

By the recursive equation (1.2), the latter formula is valid also for n = p. This completes the
proof of Theorem 2.1. �

3. The identity by Bhatnagar

We prove the following formulas that generalize identity (1.6) by Bhatnagar in two direc-
tions.

Theorem 3.1. The derangement numbers Dn satisfy, for r = 1, 2, 3, . . ., the identities

rn!

n∑
k=0

Dk+r−1
k!

= Dn+r − (−1)r Dn (3.1)

and

r

n−1∑
k=0

Dk

(k + r + 1)!
= (−1)r

(
Dn+r

(n + r)!
− Dr−1

(r − 1)!

)
− Dn

(n + r)!
. (3.2)

Remark 3. In the special case r = 1, identity (3.1) reduces to

n!
n∑

k=0

Dk

k!
= Dn+1 + Dn,

which becomes Bhatnagar’s result (1.6) after an application of the recursive formula (1.1).

Remark 4. For n = 0, (3.1) is the recursive equation (1.2) when recalling that D0 = 1.

Remark 5. It would be interesting to find a closed expression of the finite sum
n∑

k=0

Dk

(k + 1)!
.

Please note that the similar looking identity [1, Eq. (10.14)] is equivalent to (1.6) because
therein, Dn denote the shifted derangement numbers Dn+1 in our notation.

Proof of Theorem 3.1. Let n be a positive integer. The explicit representation (1.3) and in-
terchanging the order of summation leads to

n+r∑
k=0

Dk

k!
zk =

n+r∑
j=0

(−1)j

j!

n+r∑
k=j

zk (z ∈ C) .

Differentiating (r − 1) times with respect to z und putting z = 1 yields

n+r∑
k=r−1

Dk

(k − r + 1)!
=

n+r∑
j=0

(−1)j

j!

n+r∑
k=j

(r − 1)!

(
k

r − 1

)
.

Inserting
∑n+r

k=j

(
k

r−1
)

=
(
n+r+1

r

)
−
(
j
r

)
, we obtain

1

(r − 1)!

n+1∑
k=0

Dk+r−1
k!

=
n+r∑
j=0

(−1)j

j!

[(
n + r + 1

r

)
−
(
j

r

)]

=

(
n + r + 1

r

)
Dn+r

(n + r)!
− 1

r!

n∑
j=0

(−1)j+r

j!
,
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which implies

r
n+1∑
k=0

Dk+r−1
k!

= (n + r + 1)
Dn+r

(n + 1)!
− (−1)r

Dn

n!
.

Subtracting rDn+r/ (n + 1)! from both sides of the equation and multiplying by n! completes
the proof of Eq. (3.1).
To prove (3.2), we integrate

n∑
k=0

Dk

k!
zk =

n∑
j=0

(−1)j

j!

n∑
k=j

zk (z ∈ C)

r + 1 times and put z = 1 to obtain
n∑

k=0

Dk

(k + r + 1)!
=

n∑
j=0

(−1)j

j!

n∑
k=j

k!

(k + r + 1)!
.

Telescoping
n∑

k=j

k!

(k + r + 1)!
=
−1

r

n∑
k=j

(
(k + 1)!

(k + r + 1)!
− k!

(k + r)!

)
=
−1

r

(
(n + 1)!

(n + r + 1)!
− j!

(j + r)!

)
,

we obtain

−r
n∑

k=0

Dk

(k + r + 1)!
=

n + 1

(n + r + 1)!
Dn −

n∑
j=0

(−1)j

(j + r)!
.

Adding rDn/ (n + r + 1)! to both sides of the equation yields

−r
n−1∑
k=0

Dk

(k + r + 1)!
=

Dn

(n + r)!
−

n∑
j=0

(−1)j

(j + r)!
.

Observing that

n∑
j=0

(−1)j

(j + r)!
= (−1)r

n+r∑
j=r

(−1)j

j!
= (−1)r

(
Dn+r

(n + r)!
− Dr−1

(r − 1)!

)
completes the proof. �
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