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Abstract. We show that a result about Fibonacci matrices actually holds for all real sym-
metric matrices; then we discuss this in the context of general constant coefficient linear
recurrence relations.

1. Introduction

In [3], the author introduces the Fibonacci numbers Fn, (defined, as usual, by F0 = 0,
F1 = 1, and Fn+2 = Fn + Fn+1), and the matrix

M =

(
1 1
1 2

)
,

and then observes that (because of known relations between the Fibonacci numbers)

lim
n→∞

1

F2n−1
Mn =

(
1 τ
τ τ2

)
, where τ = (1 +

√
5)/2. (1.1)

It is perhaps easier to see (1.1) if we let

S =

(
0 1
1 1

)
. (1.2)

Then S2 = M and (by induction),

Sn =

(
Fn−1 Fn

Fn Fn+1

)
, and Mn = S2n =

(
F2n−1 F2n

F2n F2n+1

)
.

The author of [3] then asks if

X =

(
1 1
1 1 + x

)
and Xn =

(
an bn
cn dn

)
,

then

lim
n→∞

a−1n Xn =

(
1 ϕ
ϕ ϕ2

)
, where ϕ = 1

2

(
x+

√
x2 + 4

)
. (1.3)

We shall show that much more than this is true, and that it has little to do with Fibonacci
numbers. For a brief history of the use of the matrix S given in (1.2), see [2].

2. Real Symmetric Matrices

It is a standard result in linear algebra that any real square symmetric matrix A has real
eigenvalues, and there is an orthogonal matrix P (that is, its transpose P t is its inverse P−1)
such that PAP t is a diagonal matrix (whose diagonal elements are the eigenvalues of A). Thus,
given a real, symmetric, 2×2 matrix A, with eigenvalues λ and µ, there is an orthogonal matrix
P such that

PAP t = D, D =

(
λ 0
0 µ

)
, P =

(
a b
c d

)
, P−1 = P t =

(
a c
b d

)
.
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As An = P t(PAnP t)P = P t(PAP t)nP = P tDnP , this shows that

An =

(
a2λn + c2µn abλn + cdµn

abλn + cdµn b2λn + d2µn

)
.

If we now suppose that |λ| > |µ|, then we find that

lim
n→∞

1

a2λn
An =

(
1 y
y y2

)
, y = b/a. (2.1)

If A = X, then (2.1) must agree with (1.3) so that we must have b/a = 1
2(x +

√
x2 + 4).

However, it is easy to show directly that this is so. As AP t = P tD, we have

A

(
a
b

)
= λ

(
a
b

)
, A

(
c
d

)
= µ

(
c
d

)
;

thus, y in (2.1) is the slope of any eigenvector associated with the eigenvalue λ (of largest
modulus). Now if A = X, then the eigenvalues of A are

λ = 1 + 1
2

(
x+

√
x2 + 4

)
, µ = 1 + 1

2

(
x−

√
x2 + 4

)
,

where |λ| > |µ|. As (
1 1
1 1 + x

)(
a
b

)
= λ

(
a
b

)
,

we see that a+ b = λa so that b/a = λ− 1 = 1
2

(
x+
√
x2 + 4

)
, as required.

We leave the reader to investigate the three remaining cases, namely when (i) |µ| > |λ|, (ii)
λ = µ, and (iii) λ = −µ.

3. A Closing Remark

The analysis above prompts a remark that might be of greater interest than the answer to
the question posed in [3]. A question about Fibonacci numbers has led to a result that holds in
a general situation, and we suggest that this is a more general phenomenon than is generally
realized. In particular, the so-called primary solution xn, defined by x0 = 0 and x1 = 1, of
any (real or complex) second order constant coefficient recurrence relation

xn+2 = axn+1 + bxn, (3.1)

can, by a change of variable, be converted into the Fibonacci sequence, and it follows from
this that for every identity that is satisfied by the Fn, there is a corresponding identity that is
satisfied by the solution of (3.1). For example, the three well-known identities

Fn+1Fn−1 − F 2
n = (−1)n,

Fp+2Fq+1 + Fp+1Fq = Fp+q+2,

F 2
n+1 + F 2

n = F2n+1.

are special cases of the general identities

xn+1xn−1 − x2n = (−1)nbn−1,

xp+2xq+1 + bxp+1xq = xp+q+2,

x2n+1 + bx2n = x2n+1,

which are satisfied by the primary solution of (3.1) (see [1] for more details). Surely then, we
should, wherever possible, focus on the recurrence relation (3.1) instead of so often considering
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the Fibonacci sequence. The link between [3] and recurrence relations is simply that every
second order constant coefficient recurrence relation is given by a matrix; for example, (3.1) is(

xn+1

xn+2

)
=

(
0 1
b a

)(
xn
xn+1

)
=

(
0 1
b a

)n+1(
x0
x1

)
,

and the sequence Fn is the special case of a = b = 1.
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