FIBONACCI MATRICES

ALAN F. BEARDON

ABSTRACT. We show that a result about Fibonacci matrices actually holds for all real sym-
metric matrices; then we discuss this in the context of general constant coefficient linear
recurrence relations.

1. INTRODUCTION

In [3], the author introduces the Fibonacci numbers F),, (defined, as usual, by Fy = 0,
Fy =1, and F42 = F, + F,,11), and the matrix

11
=)

and then observes that (because of known relations between the Fibonacci numbers)

lim ! M" = (1 ;2) , where 7 = (14 V/5)/2. (1.1)

n—oo Fanl T

0 1
S = <1 1) . (1.2)
Then S? = M and (by induction),

Sn — (Fn_l E, ) 7 and M" — Sgn _ <F2n_1 Fs, > ‘

It is perhaps easier to see (1.1) if we let

Fn Fn+1 FQn F2n+1
The author of [3] then asks if

1 1 n_ (an by
X‘(l 1+m) and X _<cn dn>’

lim a, ' X" = (1 ;02>, where ¢ = §(z + V22 +4). (1.3)

then

n—00 2

We shall show that much more than this is true, and that it has little to do with Fibonacci
numbers. For a brief history of the use of the matrix S given in (1.2), see [2].

2. REAL SYMMETRIC MATRICES

It is a standard result in linear algebra that any real square symmetric matrix A has real
eigenvalues, and there is an orthogonal matrix P (that is, its transpose P! is its inverse P~!)
such that PAP! is a diagonal matrix (whose diagonal elements are the eigenvalues of A). Thus,
given a real, symmetric, 2 X 2 matrix A, with eigenvalues A and u, there is an orthogonal matrix
P such that

)\ 0 a b _ a C
t 1 t
PAP' =D, D——(O ), P_<c l)’ P —P—<b l)'
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As A" = PY(PA"PYP = P{(PAPY)'P = P'D"P, this shows that
An — a’\? + cu™ abA" + cdu™
T \ab\" +cdp BEA" 4 A
If we now suppose that |A| > |u|, then we find that
. Lo (1 oy _
nh_{rolo a2/\”A = <y y2) , y=bla. (2.1)

If A= X, then (2.1) must agree with (1.3) so that we must have b/a = 3(z + Va2 + 4).
However, it is easy to show directly that this is so. As AP! = P'D, we have

() =26) 46) =+ ()

thus, y in (2.1) is the slope of any eigenvector associated with the eigenvalue A (of largest
modulus). Now if A = X, then the eigenvalues of A are

A=1+3(z+Va2+4), pu=1+3(z—Va2+4),

where [A\| > |p|. As
1 1 a a
(1 1+:c> (b) _)‘<b>’

we see that a +b = Aa so that b/a =\ —1= %(az + Va2 + 4), as required.
We leave the reader to investigate the three remaining cases, namely when (i) |u] > |Al, (ii)
A =p, and (iii) A = —p.

3. A CLOSING REMARK

The analysis above prompts a remark that might be of greater interest than the answer to
the question posed in [3]. A question about Fibonacci numbers has led to a result that holds in
a general situation, and we suggest that this is a more general phenomenon than is generally
realized. In particular, the so-called primary solution x,, defined by xg = 0 and x; = 1, of
any (real or complex) second order constant coefficient recurrence relation

Tpt2 = ATpy1 + by, (3.1)

can, by a change of variable, be converted into the Fibonacci sequence, and it follows from
this that for every identity that is satisfied by the F,,, there is a corresponding identity that is
satisfied by the solution of (3.1). For example, the three well-known identities

Fop1Fooy — F7 = (-1)",
FppoFyp1 + Fpp1Fy = Fpigia,
F2 .+ F2 = Foppa.
are special cases of the general identities
Tpy1Tn_1 — x2 = (—=1)"p" 1,
Tp42Tg+1 + bTpr1Tg = Tptgt2,
Tp gy + by = Tonga,
which are satisfied by the primary solution of (3.1) (see [1] for more details). Surely then, we

should, wherever possible, focus on the recurrence relation (3.1) instead of so often considering
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the Fibonacci sequence. The link between [3] and recurrence relations is simply that every
second order constant coefficient recurrence relation is given by a matrix; for example, (3.1) is

Zoi) (0 1\ [ za ) (0 1\" [z
Tpr2) \b a)\xpt1) \b a 1)’
and the sequence Fj, is the special case of a =b = 1.
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