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Abstract. Let (Fn)n>0 be the Fibonacci sequence given by F0 = 0, F1 = 1, and the re-
currence formula Fn+2 = Fn+1 + Fn for all n > 0. In this note, we completely solve the
Diophantine equation

Fn = 2a ± 2b + 1

in positive integers (n, a, b) with a > b > 1.

1. Introduction

Let (Fn)n>0 be Fibonacci sequence given by F0 = 0, F1 = 1, and the recurrence formula

Fn+2 = Fn+1 + Fn for all n > 0.

Its few first terms are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, . . .

Let p be a prime number. In [8], Luca and Szalay study the Diophantine equation

Fn = pa ± pb + 1 (1)

in positive integers (n, p, a, b) with n > 2 and max{a, b} > 2. They prove that equation (1)
has only finitely many solutions and all of them are effectively computable. This result was
generalized in [7]. In this note, we study the particular case p = 2. More precisely, we solve
the Diophantine equation

Fn = 2a ± 2b + 1 (2)

in positive integers (n, a, b) with a > b > 1. Our result is the following theorem.

Theorem 1. All solutions of equation (2) in positive integers (n, a, b) with a > b > 1 are

F7 = 23 + 22 + 1, F8 = 24 + 22 + 1,

and

F4 = 22 − 21 + 1, F5 = 23 − 22 + 1, F7 = 24 − 22 + 1.

2. Tools

The method of proof of Theorem 1 is the classic one with lower bounds in logarithms and
the reduction method of Baker-Davenport, used in [2, 3] for example. We collect these tools in
this section. Let α be an algebraic number of degree d, let a > 0 be the leading coefficient of its
minimal polynomial over Z, and let α = α(1), . . . , α(d) denote its conjugates. The logarithmic

height of α is defined as

h(α) =
1

d

(

log a+

d
∑

i=1

log max
{

|α(i)|, 1
}

)

.

This height has the following basic properties. For algebraic numbers α and β and m ∈ Z, we
have
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• h(α + β) 6 h(α) + h(β) + log 2.
• h(αβ) 6 h(α) + h(β).
• h(αm) = |m|h(α).

Now, let L be a real number field of degree dL, α1, . . . , αℓ ∈ L, and b1, . . . , bℓ ∈ Z \ {0}. Let
B > max{|b1|, . . . , |bℓ|} and

Λ = αb1
1 · · ·αbℓ

ℓ − 1.

Let A1, . . . , Aℓ be real numbers with

Ai > max{dL h(αi), | log αi|, 0.16}, i = 1, 2, . . . , ℓ.

The first tool we need is the following result due to Matveev in [9] (see also Theorem 9.4
in [4]).

Theorem 2. Assume that Λ 6= 0. Then,

log |Λ| > −1.4 · 30ℓ+3 · ℓ4.5 · d2L · (1 + log dL) · (1 + logB)A1 · · ·Aℓ.

In this note, we always use ℓ = 3. Furthermore, L = Q(
√
5) has degree dL = 2. Throughout

the paper, we fix the constant

C = 9.69742 × 1011 > 1.4 · 303+3 · 34.5 · 22 · (1 + log 2).

Our second tool is a version of the reduction method of Baker-Davenport, based on the
Lemma in [1]. We shall use the one given by Bravo, Gómez, and Luca in [2]. For a real
number x, we write ‖x‖ for the distance from x to the nearest integer.

Lemma 3. Let M be a positive integer. Let τ , µ, A > 0, and B > 1 be given real numbers.

Assume that p/q is a convergent of τ such that q > 6M and ε = ‖µ q‖ −M‖τ q‖ > 0. Then,

there is no solution to the inequality

0 < |n τ −m+ µ| < A

Bw

in positive integers n, m, and w satisfying

n 6 M and w >
log(Aq/ε)

log(B)
.

Lemma 3 is a slight variation of the one given by Dujella and Pethő in [5]. Finally, the
following result will be useful. This is Lemma 7 in [6].

Lemma 4. If m > 1, T > (4m2)m, and T > x/(log x)m. Then,

x < 2mT (log T )m.

3. Proof of Theorem 1

To start with, let us to recall some basic properties of the Fibonacci sequence. Put

α =
1 +

√
5

2
, β =

1−
√
5

2
.

The well known Binet formula states that

Fn =
αn − βn

√
5

for all n > 0. (3)

Furthermore, the inequality
αn−2

6 Fn 6 αn−1 (4)

also holds for all n > 1.
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Now, we start with the study of (2) in positive integer solutions (n, a, b) with a > b > 1.
From (4), we obtain

αn−2
6 Fn = 2a + 2b + 1 < 2a+2, αn−1

> Fn = 2a + 2b + 1 > 2a,

and

αn−2
6 Fn = 2a − 2b + 1 < 2a+1, αn−1

> Fn = 2a − 2b + 1 > 2a−1.

Then, in both cases, we have

(n − 2)
log α

log 2
< a+ 2 and (n− 1)

log α

log 2
> a− 1. (5)

Since log α/ log 2 = 0.69424 . . ., we have that if n 6 200, then a 6 139. We ran a Mathematica

program in the range 1 6 n 6 200, 1 6 b < a 6 139, and we obtained all the solutions listed
in Theorem 1. We will prove that these are all of them.

From now on, we assume n > 200. Furthermore from (5), we obtain that a > 135 and
n > a. From the Binet formula (3), we rewrite (2) as

∣

∣

∣

∣

αn

√
5
− 2a

∣

∣

∣

∣

6
|β|n√

5
+ 2b + 1 < 2b+1.

Dividing through by 2a, we obtain
∣

∣

∣

∣

1√
5
αn2−a − 1

∣

∣

∣

∣

<
1

2a−b−1
. (6)

Let Λ be the expression inside the absolute value on the left side of (6). We note that Λ 6= 0.
Actually, from (2) with the + sign, we have that Λ > 0, whereas with the − sign we have that
Λ < 0. Indeed from (2), we have that

αn

√
5
− 2a = ±2b + 1 +

βn

√
5

and we note that its right side is positive or negative according to the choice of the sign of 2b.
In particular, in both cases, we have that Λ 6= 0 and we apply Matveev’s inequality to it. To
do this, we take

α1 =
1√
5
, α2 = α, α3 = 2, b1 = 1, b2 = n, b3 = −a.

Thus, B = n. Furthermore, we have h(α1) = log
√
5, h(α2) = log α/2, and h(α3) = log 2.

Thus, we take A1 = log 5, A2 = 0.5, and A3 = 1.4. Then,

log |Λ| > −C · (1 + log n) · log 5 · 0.5 · 1.4.
Comparing this with (6), we obtain

(a− b) log 2 < 1.09253 × 1012(1 + log n). (7)

Again from the Binet formula (3), we rewrite (2) as
∣

∣

∣

∣

αn

√
5
− (2a−b ± 1)2b

∣

∣

∣

∣

< 2.

Dividing through by 2a ± 2b, we obtain
∣

∣

∣

∣

1√
5(2a−b ± 1)

αn2−b − 1

∣

∣

∣

∣

<
2

2a ± 2b
6

4

2a
<

1

αn−8
, (8)
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where we use αn−2 < 2a+2 and 16 < α6. Let Λ1 be the expression inside of the absolute value
on the left side of (8). We note that Λ1 > 0. Indeed from (2), we obtain

αn

√
5
− (2a ± 2b) = 1 +

βn

√
5
> 0.

Now, we apply Matveev’s inequality to Λ1. To do this, we consider

α1 =
1√

5(2a−b ± 1)
, α2 = α, α3 = 2, b1 = 1, b2 = n, b3 = −b.

Thus, B = n. The heights of α2 and α3 are already calculated. For α1, we use the properties
of the height and (7) to conclude that

h(α1) 6 h(
√
5) + h(2a−b ± 1) < 1.09254 × 1012(1 + log n).

So we take A1 = 2.18508 × 1012(1 + log n) and A2 and A3 as above. Hence, from Matveev’s
inequality we obtain

log Λ1 > −C(1 + log n) ·
(

2.18508 × 1012(1 + log n)
)

· 0.5 · 1.4,
which compared with (8) yields

n logα < 1.48328 × 1024(1 + log n)2.

Thus, n < 1.23295 × 1025(log n)2, and from Lemma 4 we conclude that

n < 1.64616 × 1029. (9)

Now, we will reduce this bound on n. To do this, we consider

Γ = n logα− a log 2 + log

(

1√
5

)

,

and we consider (6). Assume that a − b > 10. Note that eΓ − 1 = Λ 6= 0. Thus, Γ 6= 0. If
Γ > 0, we have that

0 < Γ < eΓ − 1 = |Λ| < 1

2a−b−1
.

If on the other hand, Γ < 0, we then have that 1− eΓ = |Λ| < 1/2. Thus, e|Γ| < 2. Hence,

0 < |Γ| < e|Γ| − 1 = e|Γ||Λ| < 2

2a−b−1
.

Thus in both cases, we have that

0 < |Γ| < 2

2a−b−1
.

Dividing through by log 2, we obtain

0 < |n τ − a+ µ| < 6

2a−b
,

where

τ =
log α

log 2
and µ =

log(1/
√
5)

log 2
.

Now, we apply Lemma 3. To do this, we take M = 1.64616×1029 , which from (9) is the upper
bound on n. With the help of Mathematica, we found that the 70th convergent

p70
q70

=
14385737929335598761951193326873

20721505928824926197089563175427

NOVEMBER 2018 357



THE FIBONACCI QUARTERLY

of τ is such that q70 > 6M and ε = ‖q70 µ‖ −M‖q70 τ‖ = 0.452806 > 0. Thus from Lemma 3,
with A = 6 and B = 2, we obtain that

a− b <
log (q70 6/ε)

log 2
< 108.

Now, we consider

Γ1 = n logα− b log 2 + log

(

1√
5 (2a−b ± 1)

)

and we consider (8). Note that eΓ1 − 1 = Λ1 > 0. Thus, Γ1 > 0 and we have

0 < Γ1 < eΓ1 − 1 = Λ1 <
1

αn−8
.

Dividing through by log 2, we obtain

0 < n τ − b+ µ <
68

αn
,

where τ is as above and

µ =
log
(

1/
√
5
(

2a−b ± 1
))

log 2
.

Again, we apply Lemma 3. Consider

µk =
log
(

1/
√
5
(

2k ± 1
))

log 2
, k = 1, 2 . . . 107.

Again, with the help of Mathematica, we find that the 70th convergent of τ above also works
well. That is, q70 > 6M and εk > 0.000905562 for all k = 1, . . . , 107. We calculated
log(q70 68/εk)/ log α for all k = 1, . . . , 107 and found that the maximum of these values is
at most 173. Thus n 6 173, which contradicts the assumption on n. This finishes the proof
of Theorem 1.

4. Remarks

a) In the same way, it can be proved that in the cases p = 3, 5, the only solutions of (1) in
positive integers (n, a, b) with a > b > 1 are

F7 = 32 + 31 + 1 and F10 = 34 − 33 + 1,

and

F8 = 52 − 51 + 1,

respectively, whereas in the cases p = 7, 11, 13 it does not have any solution. Thus, one is
tempted to conjecture that for all primes p > 7 (1) does not have any solution.

b) The reviewer pointed out that the conditions a > b > 1 in Theorem 1 can be relaxed to
a > b > 0. Their argument says that, to do this, what we need is to additionally study the
cases Fn = 2a, Fn = 2a + 2, for example. In the last case, we find that n is a multiple of 3,
but not 6, and rewrite Fn − F3 = Fn±3/2Ln∓3/2. Then, apply the Primitive Divisor Theorem
to all cases.
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[5] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford,

49 (3) (1998), 291–306.
[6] S. Guzmán Sánchez and F. Luca, Linear combinations of factorials and S-units in a binary recurrence

sequence, Ann. Math. Québec, 38 (2014), 169–188.
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