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Abstract. We study a family of interpolating rational polynomials that produce Fibonacci
numbers on certain integer values. By construction, the degree m polynomial gives Fibonacci
numbers for m+1 arguments; we show that several additional outputs are also closely related
to Fibonacci numbers. Also, we use an alternative version of the polynomials to establish
several identities.

1. Introduction

There are many polynomials associated with the Fibonacci numbers. Our interest here is in
certain interpolating polynomials determined by points (i, Fj) for particular integers i, j where
Fj refers to the Fibonacci sequence. There has been previous attention to such interpolating
polynomials [1, 2]; both use the condition i = j. That is, they consider polynomials determined
by the points (0, F0), (1, F1), etc. (actually, [1] allows a generalization of Fibonacci numbers).

We consider instead the degree n polynomial determined by points whose abscissas are
Fibonacci numbers and whose index depends on n. In particular, we use the points (0, Fn+2),
(1, Fn+3), . . . , (n, F2n+2), that is, (i, Fj) with j = n + i + 2. These particular choices allow
us to relate many additional values of these polynomials to Fibonacci numbers. In addition,
alternative forms of these polynomials (Theorem 2.1 and Proposition 2.3) allow us to establish
various identities (Corollary 3.2).

We use the standard definition of the Fibonacci numbers extended to the negative indices:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2, and Fn = (−1)n+1F−n for n < 0.

We also use the falling factorial notation defined by (x)0 = 1 and (x)n = x(x−1) · · · (x−n+1)
for n ≥ 1. Therefore, (n)n = (n)n−1 = n!. By extension,

(
x
n

)
= (x)n/n!. This also allows us to

use binomial coefficients with negative integers, for example,(
−1

n

)
= (−1)n,

(
−2

n

)
= (−1)n(n+ 1),

(
−3

n

)
= (−1)n

(
n+ 2

2

)
.

Further, we will use the identity [4, Eq. 6] valid for all integers n and nonnegative integers k,(
n

k

)
= (−1)k

(
k − n− 1

k

)
. (1.1)

2. Interpolating Polynomials

Our primary result gives alternative forms for a family of interpolating polynomials deter-
mined by points involving the Fibonacci numbers.

Theorem 2.1. Given a nonnegative integer n, let Pn(x) be the interpolating polynomial de-
termined by the points (0, Fn+2), (1, Fn+3), . . . , (n, F2n+2). For n = 0, we let P0(x) be the
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constant polynomial F2 = 1. For n > 0, using Lagrange’s formula, we have

Pn(x) =
n∑

i=0

Fi+n+2

n∏
j=0
j 6=i

x− j
i− j

.

The polynomial Pn(x) has degree n with leading coefficient 1/n! and an alternative form

Pn(x) =
n∑

i=0

Fi+n+2

(
x

i

)(
n− x
n− i

)
. (2.1)

Further, for each integer k > n,

Pn(k) = Fk+n+2 −
k−n∑
i=1

Fi

(
k − i
n

)
. (2.2)

Also, for each integer k < 0,

Pn(k) = Fk+n+2 +
−k−1∑
i=1

F−i

(
k + i

n

)
. (2.3)

Table 1 shows the first few of these polynomials.

Table 1. Pn(x) for small values of n.

n Pn(x)

0 1

1 x+ 2

2 (x2 + 3x+ 6)/2

3 (x3 + 3x2 + 14x+ 30)/6

4 (x4 + 2x3 + 23x2 + 94x+ 192)/24

5 (x5 + 35x3 + 180x2 + 744x+ 1560)/120

6 (x6 − 3x5 + 55x4 + 255x3 + 1744x2 + 7308x+ 15120)/720

Before proving the theorem, we collect some facts about other polynomials related to the
Fibonacci numbers. For each positive integer k, let

Fk(x) = F1x
k−1 + F2x

k−2 + · · ·+ Fk−1x+ Fk.

Lemma 2.2. The polynomial Fk(x) satisfies the following statements.

(i) The nth derivative of Fk(x) with respect to x is

F (n)
k (x) =


k−n∑
i=1

xk−n−iFi · (k − i)n if n ≤ k − 1,

0 if n ≥ k.

(ii) (x2 − x− 1)Fk(x) = xk+1 − Fk+1x− Fk.
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(iii) The derivatives with respect to x of the product in (ii) are

(x2 − x− 1)F ′k(x) + (2x− 1)Fk(x) = (k + 1)xk − Fk+1,

(x2 − x− 1)F (n)
k (x) + n(2x− 1)F (n−1)

k (x) + n(n− 1)F (n−2)
k (x)

=

{
xk−n+1(k + 1)n, if 2 ≤ n ≤ k + 1,

0, if n ≥ k + 2.

Proof. Differentiation with respect to x yields (i) and (iii). The product in (ii) telescopes. �

Proof of Theorem 2.1. Algebraic manipulation gives (2.1). For n > 0,

Pn(x) =

n∑
i=0

Fi+n+2

n∏
j=0
j 6=i

x− j
i− j

=

n∑
i=0

Fi+n+2

∏
j 6=i

1

i− j
∏
j 6=i

(x− j)

=

n∑
i=0

Fi+n+2 · (−1)n−i
1

i!(n− i)!
· i!
(
x

i

)
(n− i)!

(
x− i− 1

n− i

)

=

n∑
i=0

Fi+n+2

(
x

i

)(
n− x
n− i

)
where the last step uses identity (1.1). This formula holds for n = 0 as well, since by definition
(x)0 = 1.

We prove the remaining assertions by induction on n. For n = 0, the polynomial P0(x) is
defined to be the constant polynomial 1, which has degree 0 and leading coefficient 1 = 1/0!
as claimed. We want to show that, for all positive integers k,

P0(k) = 1 = Fk+2 −
k∑

i=1

Fi

and, for all negative integers k,

P0(k) = 1 = Fk+2 +

−k∑
i=1

F−i.

This is immediate from substituting x = 1 and x = −1, respectively, into the formula of
Lemma 2.2(ii).

For n = 1, the polynomial P1(x) satisfies P1(0) = F3 = 2 and P1(1) = F4 = 3, so P1(x) =
x + 2, which has degree 1 and has leading coefficient 1 = 1/1!, as claimed. Now, we want to
show that, for all positive integers k > 1,

P1(k) = k + 2 = Fk+3 −
k−1∑
i=1

Fi · (k − i) (2.4)

and, for all negative integers k,

P1(k) = k + 2 = Fk+3 +
−k−1∑
i=1

Fi · (k + i). (2.5)
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For (2.4), assume k > 1. Substituting x = 1 into the equations of Lemma 2.2 gives

F ′k(1) =
k−1∑
i=1

Fi · (k− i), F ′k(1) = Fk(1)+Fk+1− (k+1), Fk(1) = Fk+1 +Fk−1 = Fk+2−1.

Hence,

k−1∑
i=1

Fi · (k − i) = F ′k(1) = (Fk+2 − 1) + Fk+1 − (k + 1) = Fk+3 − (k + 2)

which, rearranged, establishes (2.4).
For (2.5), assume k < 0. Write k = −m, where m > 0. Recall that Fk = (−1)m+1Fm.

Substituting x = −1 into the equations of Lemma 2.2 gives

F ′m(−1) = (−1)m−1
m−1∑
i=1

(−1)iFi · (m− i), F ′m(−1) = 3Fm(−1)− Fm+1 + (−1)m(m+ 1),

Fm(−1) = Fm+1 − Fm + (−1)m+1 = Fm−1 + (−1)m+1.

Hence,

−k−1∑
i=1

F−i · (k + i) = (−1)m+1
m−1∑
i=1

(−1)mF−i · (m− i)

= (−1)m+1F ′m(−1)

= (−1)m+1
(
3(Fm−1 + (−1)m+1)− Fm+1 + (−1)m(m+ 1)

)
= (−1)m+1(3Fm−1 − Fm+1)−m+ 2 = (−1)m+1Fm−3 −m+ 2

which establishes (2.5), after putting the expression back in terms of k.
We have now established the base case of the induction. Let n > 1 and assume the theorem

holds for all positive integers not greater than n. We want to prove that it also holds for n+1,
i.e., Pn+1(x) has degree n+1 with leading coefficient 1/(n+1)! and, for each integer k > n+1,

Pn+1(k) = Fk+n+3 −
k−n−1∑
i=1

Fi

(
k − i
n+ 1

)
(2.6)

and, for each integer k < 0,

Pn+1(k) = Fk+n+3 +

−k−1∑
i=1

F−i

(
k + i

n+ 1

)
. (2.7)

We begin by proving (2.6). Let k > n+ 1. Then, k + 1 > n+ 1 and, by Lemma 2.2(iii),

(x2 − x− 1)F (n+1)
k (x) + (n+ 1)(2x− 1)F (n)

k (x) + n(n+ 1)F (n−1)
k (x) = xk−n(k + 1)n+1.

Substituting x = 1 yields

−F (n+1)
k (1) + (n+ 1)F (n)

k (1) + n(n+ 1)F (n−1)
k (1) = (k + 1)n+1. (2.8)

By the induction hypothesis, polynomials Pn(x) and Pn−1(x) are of degrees n and n− 1, and
have leading coefficients 1/n! and 1/(n− 1)!, respectively, so that

Pn(k) = Fk+n+2 −
1

n!
F (n)
k (1), Pn−1(k) = Fk+n+1 −

1

(n− 1)!
F (n−1)
k (1).
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By Lemma 2.2(i) (with x = 1) and (2.8), we have

−
k−n−1∑
i=1

Fi · (k − i)n+1 + (n+ 1)[n!Fk+n+2 − n!Pn(k)]

+ n(n+ 1)[(n− 1)!Fk+n+1 − (n− 1)!Pn−1(k)] = (k + 1)n+1.

Rearranging terms gives

(k + 1)n+1 + (n+ 1)!Pn(k) + (n+ 1)!Pn−1(k)

= (n+ 1)!Fk+n+2 + (n+ 1)!Fk+n+1 −
k−n−1∑
i=1

Fi · (k − i)n+1

= (n+ 1)!Fk+n+3 −
k−n−1∑
i=1

Fi · (k − i)n+1,

or equivalently, (
k + 1

n+ 1

)
+ Pn(k) + Pn−1(k) = Fk+n+3 −

k−n−1∑
i=1

Fi

(
k − i
n+ 1

)
.

Call the left side of this equation

Q(x) =

(
x+ 1

n+ 1

)
+ Pn(x) + Pn−1(x). (2.9)

Showing Q(x) = Pn+1(x) will establish (2.6). Notice that the polynomial Q(x) has degree
n + 1 and leading coefficient 1/(n + 1)!. It suffices then to verify that Q(k) = Fk+n+3 for
k = 0, . . . , n+ 1. Consider three cases.

Case 1. For 0 ≤ k ≤ n − 1, we have Pn(k) = Fk+n+2 and Pn−1(k) = Fk+n+1 by the

definitions of the polynomials. Also,
(
k+1
n+1

)
= 0 in these cases. Hence,

Q(k) =

(
k + 1

n+ 1

)
+ Fk+n+2 + Fk+n+1 = Fk+n+3.

Case 2. For k = n, we have Pn(n) = F2n+2 by definition and

Pn−1(n) = F2n+1 − F1

(
n− 1

n− 1

)
= F2n+1 − 1

by the induction hypothesis. Also,
(
k+1
n+1

)
=
(
n+1
n+1

)
= 1. Hence,

Q(k) = Q(n) = 1 + F2n+2 + F2n+1 − 1 = F2n+3.

Case 3. For k = n+ 1, by the induction hypothesis,

Pn(n+ 1) = F2n+3 − F1

(
n

n

)
= F2n+3 − 1,

Pn−1(n+ 1) = F2n+2 − F1

(
n

n− 1

)
− F2

(
n− 1

n− 1

)
= F2n+2 − n− 1.

Also,
(
k+1
n+1

)
=
(
n+2
n+1

)
= n+ 2. Hence,

Q(k) = Q(n+ 1) = n+ 2 + F2n+3 − 1 + F2n+2 − n− 1 = F2n+4.

From these three cases, we conclude Q(x) = Pn+1(x).
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It remains to establish (2.7). Let k < 0 and write k = −m, where m > 0. Also, let
m′ = m+ n. Then, again using the identity (1.1), we can write the sum in (2.7) as

−k−1∑
i=1

F−i

(
k + i

n+ 1

)
=

m−1∑
i=1

F−i

(
−m+ i

n+ 1

)

= (−1)n+1
m−1∑
i=1

F−i

(
m+ n− i
n+ 1

)

=
(−1)n+1 · (−1)m

′−n

(n+ 1)!

m′−(n+1)∑
i=1

(−1)m
′−nF−i · (m′ − i)n+1

=
(−1)m+n+1

(n+ 1)!
F (n+1)
m+n (−1).

By Lemma 2.2(iii) (with x = −1), since n+ 1 ≤ m+ n+ 1, the last expression can be written

(−1)m+n+1

(n+ 1)!

(
3(n+ 1)F (n)

m+n(−1)− n(n+ 1)F (n−1)
m+n (−1) + (−1)m(m+ n+ 1)n+1

)
. (2.10)

Now, we determine F (n)
m+n(−1) and F (n−1)

m+n (−1). By Lemma 2.2(i), identity (1.1), and the
induction hypothesis, we have

F (n)
m+n(−1) =

m∑
i=1

(−1)m+1F−i · (m+ n− i)n

= (−1)m+1n!
m∑
i=1

(−1)nF−i

(
−m− 1 + i

n

)

= (−1)m+n+1n!

(m+1)−1∑
i=1

F−i

(
−(m+ 1) + i

n

)
= (−1)m+n+1n! (Pn(−m− 1)− Fn−m+1) .

Similarly, F (n−1)
m+n (−1) = (n − 1)!(−1)m+n+1 (Pn−1(−m− 2)− Fn−m−1). Substituting these

expressions into (2.10) gives

(−1)m+n+1

(n+ 1)!

(
3(n+ 1)(−1)m+n+1n! (Pn(−m− 1)− Fn−m+1)

− n(n+ 1)(−1)m+n+1(n− 1)! (Pn−1(−m− 2)− Fn−m−1) + (−1)m(m+ n+ 1)n+1

)
= −3Fn−m+1 + Fn−m−1 + 3Pn(−m− 1)− Pn−1(−m− 2) + (−1)n+1

(
m+ n+ 1

n+ 1

)
= −Fn−m+3 + 3Pn(−m− 1)− Pn−1(−m− 2) +

(
−m− 1

n+ 1

)
.

Define R(x) as

R(x) =

(
x− 1

n+ 1

)
+ 3Pn(x− 1)− Pn−1(x− 2).

Showing that R(x) = Pn+1(x) will establish (2.7). As with Q(x) above, it suffices to establish
R(k) = Fk+n+3 for k = 0, . . . , n+ 1, which again takes three cases.
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Case 1. For k = 0, we have

R(0) =

(
−1

n+ 1

)
+ 3Pn(−1)− Pn−1(−2) =

(
−1

n+ 1

)
+ 3Fn+1 − Fn−1 − F−1

(
−1

n− 1

)
= Fn+3.

Case 2. For k = 1, we have

R(1) =

(
0

n+ 1

)
+ 3Pn(0)− Pn−1(−1) = 3Fn+2 − Fn = Fn+4.

Case 3. For 2 ≤ k ≤ n + 1, we have 1 ≤ k − 1 ≤ n and 0 ≤ k − 2 ≤ n − 1, so that
Pn(k − 1) = Fk−1+n+2 = Fk+n+1 and Pn−1(k − 2) = Fk−2+n−1+2 = Fk+n−1. Also,

(
k−1
n+1

)
= 0

in these cases. Hence, R(k) = 3Fk+n+1 − Fk+n−1 = Fk+n+3.
We conclude R(x) = Pn+1(x), which completes the proof. �

In the proof, we showed that the polynomials Pn(x) satisfy the recurrence relations

Pn+1(x)− Pn(x)− Pn−1(x) =

(
x+ 1

n+ 1

)
, (2.11)

Pn+1(x)− 3Pn(x− 1) + Pn−1(x− 2) =

(
x− 1

n+ 1

)
. (2.12)

Now, we prove that the converses are also true in the following sense.

Proposition 2.3. The polynomials Pn(x) are uniquely determined by the initial conditions and
(2.11). That is, let (Qn(x)) be a sequence of polynomials defined by Q0(x) = 1, Q1(x) = x+ 2,
and, for n ≥ 1,

Qn+1(x) = Qn(x) +Qn−1(x) +

(
x+ 1

n+ 1

)
.

Then, Qn(x) = Pn(x) for all n ≥ 0.

Proof. We proceed by induction. For n = 0 and 1, Q0(x) = 1 = P0(x) and Q1(x) = x + 2 =
P1(x), respectively. For n = 2,

Q2(x) = Q1(x) +Q0(x) +

(
x+ 1

2

)
= (x+ 2) + 1 +

(x+ 1)x

2
=
x2 + 3x+ 6

2
= P2(x).

Assume Qk(x) = Pk(x) for all k ≤ n; we want to show that Qn+1(x) = Pn+1(x). By the
definition of (Qn(x)) and the induction hypothesis, we see that Qn+1(x) has degree n + 1.
Hence, it suffices to verify that Qn+1(k) = Fk+n+2 for k = 0, . . . , n + 1. This justification
follows the same details as the step of the proof of Theorem 2.1, where we verified that Q(x),
defined by (2.9), satisfies Q(k) = Fk+n+2 for k = 0, . . . , n+1. We conclude that Qn(x) = Pn(x)
for all n ≥ 0. �

The analogous result for the second recurrence relation has a similar proof, which we omit.

Proposition 2.4. The polynomials Pn(x) are uniquely determined by the initial conditions and
(2.12). That is, let (Rn(x)) be a sequence of polynomials defined by R0(x) = 1, R1(x) = x+ 2,
and, for n ≥ 1,

Rn+1(x) = 3Rn(x− 1)−Rn−1(x− 2) +

(
x− 1

n+ 1

)
.

Then, Rn(x) = Pn(x) for all n ≥ 0.

We will use the following result on the derivative of Pn(x) in the next section.
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Lemma 2.5. Let n be a nonnegative integer. The derivative of the polynomial Pn(x), defined
in Theorem 2.1 with respect to x, is given by

P ′n(x) = Pn(x)

n∑
i=0

1

x− i
−

n∑
i=0

1

x− i
Fi+n+2

(
x

i

)(
n− x
n− i

)
.

In particular,

P ′n(n) = HnF2n+2 +

n−1∑
i=0

(−1)n−i

n− i
Fi+n+2

(
n

i

)
,

where Hn is the harmonic number defined by H0 = 0 and Hn =
∑n

i=1
1
i for n ≥ 1.

Proof. Differentiating with respect to x, using d
dx

(
x
n

)
=
(
x
n

)∑n−1
i=0

1
x−i , gives

d

dx

(
x

i

)(
n− x
n− i

)
=

(
x

i

)(
n− x
n− i

) n−1−i∑
j=0

(−1)

n− x− j
+

(
n− x
n− i

)(
x

i

) i−1∑
j=0

1

x− j

=

(
x

i

)(
n− x
n− i

)n−1−i∑
j=0

1

x− n+ j
+

i−1∑
j=0

1

x− j


=

(
x

i

)(
n− x
n− i

) n∑
j=0

1

x− j
− 1

x− i


for each i = 0, . . . , n. Combining this with the definition of Pn(x) gives the desired formula.
To evaluate P ′n(x) when x = n, rewrite the expression of P ′n(x) as

P ′n(x) = Pn(x)

n−1∑
i=0

1

x− i
−

n−1∑
i=0

1

x− i
Fi+n+2

(
x

i

)(
n− x
n− i

)
+

1

x− n
Pn(x)− 1

x− n
F2n+2

(
x

n

)
.

By the definition of Pn(x), the last two terms in the sum above can be expressed as

1

x− n

n−1∑
i=0

Fi+n+2

(
x

i

)(
n− x
n− i

)
=

1

x− n

n−1∑
i=0

Fi+n+2

(
x

i

)
n− x
n− i

(
n− x− 1

n− i− 1

)

= −
n−1∑
i=0

1

n− i
Fi+n+2

(
x

i

)(
n− x− 1

n− i− 1

)
.

Substituting x = n into this alternative form of P ′n(x) gives the desired expression. �

3. Summation Identities Involving the Fibonacci Numbers

We can now motivate our definition of Pn(x) by detailing how it is closely related to Fi-
bonacci numbers beyond the defining values x = 0, . . . , n. For instance, applying (2.3) to
k = −3,−2,−1 and (2.2) to k = n+ 1, n+ 2 gives

Pn(−3) = Fn−1 + (−1)nn, Pn(−2) = Fn + (−1)n, Pn(−1) = Fn+1;

Pn(n+ 1) = F2n+3 − 1, Pn(n+ 2) = F2n+4 − (n+ 2), (3.1)

respectively. Let us highlight that these results depend on our particular choice of the points
(i, Fn+i+2) for i = 0, . . . , n to determine the interpolating polynomials; most choices of points
(i, Fj) do not lead to comparable results. In future work, we will consider some other choices
of points that do lead to interesting polynomials.
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Our last result makes use of the following lemma, an easy extension of Theorem 1, and
Corollary 2 in [3] to arbitrary polynomials.

Lemma 3.1. Let n be a nonnegative integer and p(x) a degree k polynomial with leading
coefficient an.

If k < n, then
n∑

i=0

(−1)ip(i)

(
n

i

)
= 0. If k = n, then

n∑
i=0

(−1)ip(n− i)
(
n

i

)
= n!an.

We conclude with various identities that come from the alternative formulations of Pn(k)
developed in Theorem 2.1.

Corollary 3.2. Given positive integers m,n, and nonnegative integer k,
n∑

i=0

(−1)iFi+n+2

(
n+ 1

i+ 1

)
= Fn+1, (3.2)

n∑
i=0

(−1)iFi+n+k

(
n

i

)
= (−1)nFk, (3.3)

n∑
i=0

(−1)iF2n+2−i

(
n

i

)
= 1, (3.4)

m∑
i=1

(−1)i+1Fi

((
m+ n− i+ 1

n+ 1

)
+

(
m+ n− i− 1

n

))
=

(
m+ n

n+ 1

)
, (3.5)

n−1∑
i=1

(−1)n−i

n− i

(
Fi+n

(
n− 1

i− 1

)
− 3Fi+n+2

(
n

i

)
+ Fi+n+4

(
n+ 1

i+ 1

))
=

1

n+ 1
+

(−1)n

n(n+ 1)

(
Fn − nFn+1 − n2Fn+4

)
−Hn−1F2n + 3HnF2n+2 −Hn+1F2n+4.

(3.6)

Proof. Identity (3.2) is essentially writing out Pn(−1) using (3.1).
We prove (3.3) by induction on k. For k = 0, Lemma 3.1 applied to the polynomial Pn−2(x)

and the specific formulas (3.1) yield

0 =

n∑
i=0

(−1)iPn−2(i)

(
n

i

)

=

n−2∑
i=0

(−1)iPn−2(i)

(
n

i

)
+ (−1)n−1Pn−2(n− 1)

(
n

n− 1

)
+ (−1)nPn−2(n)

(
n

n

)

=

n−2∑
i=0

(−1)iFi+n

(
n

i

)
+ (−1)n−1(F2n−1 − 1)n+ (−1)n(F2n − n)

=

n∑
i=0

(−1)iFi+n

(
n

i

)
.

Similarly, for k = 1, applying Lemma 3.1 to Pn−1(x) gives
n∑

i=0

(−1)iFi+n+1

(
n

i

)
= (−1)n = (−1)nF1.
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The inductive step then follows from the recurrence relation of the Fibonacci numbers.
Identity (3.4) follows immediately from applying Lemma 3.1 to Pn(x).
Identity (3.5) follows from evaluating the recurrence relation (2.11) at negative integers

whose values are supplied by (2.3).
To prove (3.6), differentiate the recurrence relation (2.12) with respect to x and then evaluate

at x = n+ 1 to obtain

P ′n+1(n+ 1)− 3P ′n(n) + P ′n−1(n− 1) =
1

n+ 1
.

Replacing each derivative with the formula from Lemma 2.5 gives the identity. �

The identity (3.3) for k = 2 can also be derived by equating 1/n!, the leading coefficient of
the polynomial Pn(x), to the leading coefficient of the polynomial appearing on the right side
of (2.1). Moreover, (3.2)–(3.4) can also be proved directly using Binet’s formula for the nth
Fibonacci number. For example, to prove (3.2),

n∑
i=0

(−1)iFi+n+2

(
n+ 1

i+ 1

)
=

n∑
i=0

(−1)i
(αi+n+2 − βi+n+2

√
5

)(n+ 1

i+ 1

)

=
αn+2

√
5

n∑
i=0

(−α)i
(
n+ 1

i+ 1

)
− βn+2

√
5

n∑
i=0

(−β)i
(
n+ 1

i+ 1

)
=
αn+2

√
5

(−α)−1((1− α)n+1 − 1)− βn+2

√
5

(−β)−1((1− β)n+1 − 1)

= −α
n+1

√
5

(βn+1 − 1) +
βn+1

√
5

(αn+1 − 1)

=
αn+1 − βn+1

√
5

= Fn+1.

In contrast, identities (3.5) and (3.6) do not seem to have a more direct proof of this type.
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