CLOSED FORMULAS FOR FINITE SUMS OF FRACTIONAL
EXPRESSIONS THAT INVOLVE THE SINE AND COSINE FUNCTIONS

R. S. MELHAM

ABSTRACT. In this paper, we give closed formulas for a number of fractional expressions
that involve the sine and cosine functions. In each case, the argument of sine/cosine is in
arithmetic progression or geometric progression.

1. INTRODUCTION

In this paper, we present closed formulas for families of finite sums of fractional expressions
that involve the sine and cosine functions. In Theorems 2.1 to 2.4, the arguments of sine and
cosine are in arithmetic progression, and in Theorem 2.5, the argument of sine is in geometric
progression.

In Section 2, we state our main results, and in Section 3, we give a sample proof.

2. THE MAIN RESULTS

In this section, we present our main results in five theorems. In each case, the constraints
that we place on a, b, and k eliminate the possibility of a zero denominator.

Theorem 2.1. Let a # 0 and b be real numbers such that cos(2ai 4+ b) £ cosa # 0 for i > 0.
Then,
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" sin(a(n + 1))
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(a—1b)/2)  sin(an+ (a+b
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Z cos(2ai + b) + cosa  2sinacos

n

_

1 )
Z cos(2ai +b) —cosa  2sinasin )

—~

/2)

Theorem 2.2. Let a # 0 and b be real numbers such that cos(2ai + b) &+ cosa # 0 for i > 1.
Then,

zn: (—1)'sin(20i +b) _ | sesarnzm < co§(a:1(8172b)/2)7 if n is even;
cos(2ai + b) + cosa 2COS((;£rb)/2) cZ:(liZL(I(—;?l;l})z)’ if n is odd.

zn: (—1)'sin(2ai +b) _ {2sin((al+b)/2) X sin(a:i((ﬁb)/m’ if n is even;
1

. — sin(a(n+1)+b) . .
cos(2ai +b) — cosa Sen((at8)/2) X snant(atby/y): o 1 is odd.

Theorem 2.3. Let a # 0 and b be real numbers such that cos(2ai + b) &+ cosa # 0 for i > 0.
Then,

i=1

sin(2ai + b) 1 1 B 1
lz:% (cos(2ai + b) + cos a)2 ~ 4sina <cos2(an + (a+b)/2) cos?((a— b)/2)> ’

- sin(2ai + b) 1 < 1 B 1 )
(cos(2ai + b) — cosa)?  4sina \sin?((a—b)/2) sin’(an+ (a+b)/2))

1=0
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Theorem 2.4. Let a # 0 and b be real numbers such that cos(2ai + b) £+ cosa # 0, and
sin(2ai + b) £sina # 0 fori > 0. Then,

Z cos(2ai + b) 1 1 n 1 21)
£ cos?(2ai +b) — cos?a  2sina \sin(a(2n+1)+b)  sin(a—>b) /)’ '
z": (=1)'sin(2ai +b) 1 < (=1)" B 1 > (2.2)
P sin?(2ai + b) —sin?a  2cosa \sin(a(2n+1) +b) sin(a—1>b)/)’ '
Z”: 1 B 1 L _Sin(2a(n + 1)) (2.3)
= sin(2ai + b) —sin?a  sin(2a)sin(b —a) ~ sin(a(2n + 1) +b)’ ’

Theorem 2.5. Let k # 0 be a real number that is not a rational multiple of w. Then,

: 1 1 (sin (k2" = 1)  sin(k — 1)> ' (2.4)

sin (k2?) " sinl sin (k27) sin k

7

For k =1, (2.4) becomes

1

z”: 1 sin(2"-1)
“— sin (21)  sinlsin(27)’

3. A SAMPLE PRrROOF

In this section, we give a proof of (2.1). This proof is typical of the method by which all
results in Section 2 can be proved.

Proof. We require three identities from high school trigonometry. These are

sina — sin 8 = 2 cos (Oé;ﬁ> sin <a2ﬁ> , (3.1)
sinasin § = —% (cos(a + B) — cos(a — f3)) (3.2)
cos(2ar) — cos(28) = 2 (cos? a — cos® ) . (3.3)

Let r(n,a,b) denote the right side of (2.1), and let I(n,a,b) denote the left side of (2.1).
Then,

r(n+1,a,b) —r(n,a,b)
1 ( 1 - 1 >
2sina \sin(a(2n +3)+b) sin(a(2n+1) +b)
1 sin(a(2n + 1) +b) — sin(a(2n + 3) +b)
2sina - sin(a(2n + 3) + b)sin(a(2n + 1) + b)
cos(2a(n+1) +b)

B _sin(a(Qn +3)+b)sin(a(2n+ 1) +b) by (3.1)
B 2cos(2a(n+ 1) +b)

~ cos(4a(n + 1) + 2b) — cos(2a) by (3.2)
_ cos(2a(n + 1) + b) by (3.3)

cos?(2a(n + 1) + b) — cos?a
=Il(n+1,a,b) —l(n,a,b).
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Likewise, we see that
#(0,a,b) = 1(0, a,b) = —°

cos?b — cos?a’
and this completes the proof of (2.1). O
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